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Abstract. The nonlinear dynamics of solid-state ring lasers
with the homogeneously broadened luminescence line is
studied upon periodic modulation of their parameters. The
main temporal, spectral, and phase characteristics of counter-
propagating waves are considered and non-stationary lasing
regimes are classified.
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1. Introduction

One of the most important achievements in the field of
nonlinear dynamics in recent decades has been the
discovery of dynamic (deterministic) chaos. Numerous
theoretical and experimental studies have shown that in
many rather simple dynamic systems with a small number
of degrees of freedom, along with stationary periodic and
quasi-periodic dynamic regimes, the non-stationary regimes
can appear, which are characterised by irregular, chaotic
variations of dynamic variables in time. Such regimes are
paradoxical because irregular motions appear in the
absence of any external random factors and their character-
istics are completely determined by the initial conditions. At
present the problem of chaos attracts great attention in
studies of dynamic systems of a different nature, including
lasers of different types (gas, solid-state, and semiconductor
lasers). Numerous non-stationary lasing regimes, including
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chaotic ones, are also observed in solid-state ring lasers
(SRLs). This is explained, first, by the presence of several
relaxation frequencies in such lasers and, second, by the
specific interaction of counterpropagating waves in them. In
addition, SRLs of a new generation — diode-pumped
monolithic ring lasers (ring chip lasers) — play a great
role in modern fundamental physics and laser technology.

Being complex nonlinear systems, SRLs are very con-
venient for studying the general laws of the nonlinear
dynamics of a variety of nonlinear systems, as well as
the details of physical mechanisms of the nonlinear inter-
action between counterpropagating waves in an active
medium. One of the urgent problems is the investigation
of the conditions and mechanisms of the appearance of
dynamic chaos in SRLs. The development of the mathe-
matical model of SRLs is based on detailed theoretical
studies of the nonlinear dynamics and a comparison of them
with experiments. It is a carefully performed physical
experiment that allows one to determine whether or not
the mathematical model is adequate to a real nonlinear
system and to find experimentally the field of its appli-
cability.

The principal possibility of the appearance of non-
periodic modulation of the radiation intensity in a laser
under certain conditions (for certain values of parameters)
was discovered by Grasyuk, Zubarev, and Oraevsky as early
as 1962 [1, 2].

Attempts to find deterministic chaotic lasing regimes in
autonomous single-mode SRLs have failed for a long time.
Dynamic chaos in a unidirectional SRL was first observed
experimentally in Ref. [3], where it was shown that in the
presence of the frequency nonreciprocity of the resonator,
there exists the region of the SRL parameters in which a
resonance appears between the two branches of relaxation
oscillations, resulting in their instability and appearance of
deterministic chaos. In Refs [4, 5], another mechanism of
dynamic chaos in a bidirectional SRL was found, which was
related to the parametric resonance between self-modulation
(wn,) and relaxation (w,) oscillations.

The regions of laser parameters in which quasi-periodic
and chaotic lasing regimes appear are much broader in
SRLs with modulated parameters, and in this case it is much
simpler to realise the conditions for the appearance of
dynamic chaos by exciting relaxation oscillations.

Although quasi-periodic and chaotic lasing regimes in
solid-state lasers and systems of coupled lasers have been
studied in many papers [6—15], there are still many blind
spots in this field. This is explained to a great extent by the
fact that it is extremely difficult to study dynamic chaos
analytically, whereas numerical methods can be only used to
investigate particular cases, which restricts the possibilities
of generalisations and prediction of the nonlinear dynamics
of lasers in a broad range of parameters. In addition, it was
difficult to perform detailed experiments for a long time
because of a high level of technical fluctuations of the
parameters of flashlamp-pumped solid-state lasers.

The radiation dynamics of bidirectional SRLs has much
in common with the dynamics of two coupled linear lasers
investigated in many papers. However, along with common
properties, ring lasers fundamentally differ in respect of the
nature of coupling between counterpropagating waves (non-
linear coupling on the inverse population gratings induced
in an active medium). Note also that the use of ring lasers
opens up much greater possibilities for controlling lasing

regimes due to the phase and amplitude nonreciprocities of
the ring resonator.

Recall that the frequency (phase) nonreciprocity is
manifested in the inequality of the -eigenfrequencies
(w, # w,) of the ring resonator for counterpropagating
waves. This takes the place despite the fact that the
longitudinal and transverse mode indices are identical. In
the case of the amplitude nonreciprocity, the eigenfrequen-
cies of the resonator for counterpropagating waves are
identical (w; = w,), whereas the Q factors of the resonator
(i.e., intracavity losses) for counterpropagating waves are
different (Q; # 0,).

In this paper, we considered the main characteristics,
conditions for the appearance, and evolution of non-sta-
tionary lasing regimes in SRLs with modulated parameters
and made an attempt to classify these regimes. It should be
emphasized that we analysed here the nonlinear radiation
dynamics only for single-frequency SRLs with the homoge-
neously broadened gain line (i.e., for ring lasers in which one
mode with the same longitudinal and transverse indices is
excited in each direction).

2. Solid-state ring laser and its mathematical
model

Modern diode-pumped monolithic SRLs substantially
differ from their predecessors — conventional flashlamp-
pumped solid-state lasers consisting of separate elements.
Monolithic ring lasers (ring chip lasers) feature a high
stability of all parameters providing an extremely low level
of technical fluctuations and a high stability of the laser
frequency. It is this circumstance that allows us to study in
detail their nonlinear dynamics under strictly controlled
conditions.

2.1 Design of highly stable SRLs

The most stable characteristics of radiation can be achieved
in a longitudinally diode-pumped monoblock ring laser. In
this case, technical perturbations of the laser are greatly
reduced, the laser design is rigid and stable, and good
thermal stabilisation is provided (due to a small size of the
laser and weak thermal release).

High-quality Nd** : YAG single crystals are used as an
active medium in most papers devoted to the study of the
radiation dynamics of SRLs with the homogeneously
broadened luminescence line. This is explained by their
good performance parameters: low lasing threshold, high
heat conduction and optical homogeneity, and high rigidity.

Note that almost all lasing regimes can be excited in the
same monolithic laser by varying coupling coefficients
between counterpropagating waves, the pump power excess
over the lasing threshold, the value of the frequency and
amplitude nonreciprocity or by modulating laser parame-
ters. This allows the use of a few ring chip Nd** : YAG
lasers in experiments, which differ only in the resonator
flatness, the reflectivity of the output mirror (determining
the relaxation oscillation frequency), and in the effective
coupling coefficients between counterpropagating waves,
which determine the self-modulation oscillation frequency.

We used in our experiments (except the study of
unidirectional ring lasers) a ring chip laser fabricated of
a high-quality Nd*" : YAG single crystal in the form of a
complex polyhedral prism, with one of the faces having a
spherical surface (Fig. 1a). The prism configuration pro-
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Figure 1. Design of the active element of a monolithic ring chip laser
(ABCD is the laser-beam axis) (a) and the principal scheme of the laser
setup (b): (/) monolithic ring chip laser; (2) pump laser diode; (3)
transformer for pump-current modulation; (4) alternating-current gene-
rator; (5) LFD-2 photodetector; (6 ) ASK-3151 digital oscilloscope; (7)
PC; (8) selective mirror; (9) laser-diode power supply; ( /0) obturator;
(11) IR filter.

vided, due to total internal reflections from plane faces and a
dichroic mirror applied to the spherical face, the existence of
a closed loop inside the prism, serving as the axis of a ring
resonator [16—18]. The ring laser was excited by radiation
from a laser diode, which was focused and directed to the
active element through a dichroic mirror. The high stability
of the chip ring laser was provided by thermal stabilisation
of the active element with an accuracy of 0.05°C and by
stabilisation of the laser-diode temperature with an accuracy
of 0.1 °C. The design of highly stable solid-state chip lasers is
described in more detail in papers [18—20]. The scheme of
the experimental setup is shown in Fig. 1b.

2.2 Mathematical model of a SRL

A bidirectional ring laser is a complex nonlinear oscillatory
system with output characteristics depending on many
parameters (the excess over the pump power threshold, the
amplitude and frequency nonreciprocity of the resonator,
its polarisation properties, the detuning of the laser
frequency from the gain line centre, the amplitude and
phase of the effective coupling coefficient of counter-
propagating waves, and the Q factors of the resonator for
counterpropagating waves).

The radiation dynamics of the SRL is theoretically
analysed, as a rule, using the following assumptions:

(1) only one (fundamental) longitudinal mode is gene-
rated in each direction (in the presence of the optical
nonreciprocity in the resonator, the frequencies of counter-
propagating waves can be different);

(ii) polarisation of the waves is linear and identical for
counterpropagating waves;

(iii) spatial inhomogeneity in the transverse direction is
absent both for the population inversion and pump radia-
tion;

(iv) population inversion gratings produced during gain
saturation in the field of counterpropagating waves are
sinusoidal.

The radiation field in the ring laser is written as the sum
of two counterpropagating waves travelling along the
resonator axis z:

E(z, 1) = Re{ 122: e, expli(wr + kz)]},
’ (D

EI,Z = El,2 €Xp iq)l,2’

where 1:7112, E,,, and ¢, are the complex amplitudes,
moduli, and phases of the fields of counterpropagating
waves, respectively; e, , are the unit vectors; w is the optical
frequency; and k is the wave number.

The lasing dynamics of a SRL in the absence of external
perturbations is well described by the system of differential
equations [21—23]
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Here Ny, is the threshold inversion population; w/Q;, are
widths of the resonator bands for counterpropagating
waves; L is perimeter length of the ring resonator; 7= L/c¢
is the round-trip transit time for light in the resonator; 7 is
the longitudinal relaxation time; / is the active element
length; a= T,co/(8hwm) is the saturation parameter;
og=ay/(1 + 8%) is the cross section for the laser transition;
0 =(w—wy)/Aw, is the relative detuning of the laser
frequency from the gain line centre; Aw, is the gain
linewidth; 1, = my,exp(%i0;,) are the complex coeffi-
cients of coupling between counterpropagating waves
through backscattering; m;, and 0, are the moduli and
phases of the coupling coefficients; 4 = (w/0,— w/Q)) is
the amplitude nonreciprocity of the resonator. The rest of
the terms determine changes in the spatial harmonics N,
and N, during saturation of the population of operating
levels by the field of interfering counterpropagating waves.

These equations were derived assuming that the optical
frequency o is equal to the half-sum of the resonator
eigenfrequencies: w = () + w,)/2.

The first term in the right-hand side in equations for EI,Z
determines the decay rate of the fields of counterpropagat-
ing waves due to intracavity losses. The second term takes
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into account changes in the complex amplitudes of counter-
propagating waves at frequencies ; —w =Q/2 and
Wy —w = —0/2, where Q = w; — w, is the frequency non-
reciprocity of the resonator. The third term in equations for
EI,Z determines changes in the fields of counterpropagating
waves due to a linear feedback between them, which appears
because of backscattering of the waves in the resonator. The
last term takes into account the amplification and nonlinear
coupling between counterpropagating waves, which are
determined by polarisation of the medium.

During the interaction of counterpropagating waves
with the active medium, inversion population gratings
are induced in the latter, which can be described by the
spatial Fourier components

+00
N =" N,expik,z.
—0oQ

With a sufficiently good accuracy, we can take into
account only the three first Fourier components

1 |
NO :7J0Nd2, Nﬂ:2 :7JONCi‘2kZdZ, N+2 :sz,

which are the complex amplitudes of the spatial harmonics
of the inverse population N.

The pump rate in equations for these components is
written in the form Ny, (1 +#5)/T), where 7 is the excess of
the pump power over the lasing threshold.

It was shown in many papers (see Refs [24—30] and
other papers) that this model well describes a real situation,
although in some cases (for example, for the description of
polarisation characteristics of radiation) it should be refined.
The mathematical model of the SRL allows us not only to
find possible lasing regimes but also to determine the regions
of their existence, and to solve the problem of stability of
these regimes and their bifurcations.

This model can be applied to both bidirectional ring
lasers and travelling-wave lasers (unidirectional lasing). In
the latter case, the Q factors of the resonator for counter-
propagating waves should be assumed different (for

example, Q; > Q,).

3. Non-stationary lasing regimes of solid-state
ring lasers

All nonlinear systems (including ring lasers) can be divided
into two groups: autonomous and non-autonomous. The
operating regime of autonomous systems is completely
determined only by their internal properties, whereas the
properties of nonautonomous systems depend on the
external control. In particular, ring lasers with modulated
parameters (for example, ring lasers with the modulated
pump power) belong to nonautonomous systems. Note that
the excitation of non-stationary chaotic lasing regimes in a
nonautonomous laser is considerably alleviated.

3.1 Methods of the dynamic chaos identification

The study of chaotic processes appearing in deterministic
nonlinear systems (in our case, in SRLs) is one of the
fundamental problems of physics. It has been shown in
many experiments that chaotic deterministic lasing regimes

observed in lasers appear not due to external and/or
internal fluctuations (technical or quantum) but due to the
realisation of the conditions provided by a certain
combination of laser parameters, under which the phase
trajectories come apart exponentially. Note that radiation
parameters in the case of deterministic chaos fundamentally
differ from the characteristics of chaotic lasing stimulated
by external or internal fluctuations.

To describe all the features of deterministic quasi-
periodic and chaotic oscillations and to analyse the mecha-
nisms of transitions between different lasing regimes caused
by a change in the control parameter, the study of only one
of the oscillation characteristics is insufficient. It is neces-
sary, as a rule, to use a combination of different
characteristics (temporal realisations of the process, spectral
power density, spectrum of the Lyapunov exponents (coeffi-
cients), Poincare mapping, bifurcation diagrams, etc.).

Consider some criteria that permit the identification of
dynamic chaos in SRLs. Among radiation characteristics
allowing the classification of non-stationary lasing regimes
in ring lasers, the time dependences of the intensities /; 5(¢)
of counterpropagating waves, their power spectra Jl,z((u),
and phase portraits play an important role. Speaking about
the time dependences, we should bear in mind that lasing
regimes are possible in which the repetition periods of
chaotic radiation pulses can coincide with the modulation
period or will be a multiple of it. In addition the intervals
between the pulses can be irregular and not related to the
modulation period.

Depending on the relative temporal positions of counter-
propagating radiation pulses and their amplitudes, radiation
pulsations can be either in-phase or out-of-phase. In the case
of in-phase oscillations, pulsations in the counter directions
can be in-phase (when a greater peak in one direction
corresponds to a greater peak in the opposite direction) or
out-of-phase (when a greater peak in one direction corre-
sponds to a smaller peak in the opposite direction). Finally,
the so-called generalised chaos is possible. In this case, the
chaotic intensities of counter-propagating waves are related
by the functional dependence I,(7) = f(I,(1)).

An important characteristic used to classify the lasing
regimes in ring lasers is the radiation power spectrum in
counter directions. While the power spectrum of the
periodic or quasi-periodic regime is characterised by a
limited set of discrete spectral components, this spectrum
in the dynamic chaos regime is characterised by a relatively
broad band. The power spectrum of chaotic oscillations can
exhibit against a broad noise background the intense
discrete components at frequencies coinciding with or
multiples of the frequencies of self-modulation and relaxa-
tion oscillations, as well as of the modulation frequency of
the control parameter. In some cases, the power spectrum
can be of the ‘noisy’ type. One should bear in mind in this
case that the radiation power spectra in counter directions
can be either identical or different (i.e., the spectral non-
reciprocity is possible). If the spectrum contains discrete
components, then components with the maximum intensity
can have different frequencies in counter directions.

Lasing regimes can be also classified with the help of
phase portraits and Poincare cross sections. The criterion
showing the presence of chaotic oscillations is also the form
of the correlation function K = (I;(z + t)I,(¢)), which expo-
nentially decays with increasing t in the case of dynamic
chaos.
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The criterion allowing one to determine unambiguously
the possibility of the dynamic chaos appearing is the
presence of the positive Lyapunov coefficients (exponents),
whose spectra give quantitative information on the average
stability of a phase trajectory. The type of lasing can be
determined directly by calculating the Lyapunov coefficients
from experimental data (which is, however, rather difficult
to do). It is also possible to reproduce first the experimental
realisation of the nonlinear process using numerical simu-
lations and then to calculate the Lyapunov coefficients for
this model.

Note that the difference between various quasi-periodic
and chaotic lasing regimes in nonautonomous ring lasers
can be caused by the difference in the phase dynamics of
counterpropagating waves [31—34].

3.2 Conditions for the appearance of dynamic chaos
in ring lasers

The possibility (or impossibility) of existence of chaotic
regimes in a nonlinear system is determined from the
theoretical point of view by the dimensionality of a
mathematical model describing the nonlinear system or
by the dimensionality of the corresponding phase space
[35-38].

For example, the mathematical model of an autonomous
unidirectional ring laser oscillating at the centre of the
homogeneously broadened gain line represents the second-
order differential equation. In this case, the phase space is a
plane, and only periodic self-oscillations can appear. The
geometrical image of the established self-oscillations in the
phase space is an attractor — a trajectory (or a set of
trajectories) located within a limited region of the phase
space and attracting all the near trajectories. Because the
trajectories cannot intersect in the phase plane, a simplest
nontrivial attractor appears in the system — a closed
trajectory, which is called the limit cycle. The limit cycle
determines the amplitude, period (the time of motion of an
imaging point over the limit cycle), and shape of oscillations.

In the case of single-mode bidirectional SRLs, which are
described in the general case by the seven-order system of
differential equations, the situation is more complicated
[21—23]. This model already admits the existence of not only
periodic and quasi-periodic but also chaotic oscillations.

In the case of excitation of dynamic chaos, an attractor
is also present: all the trajectories in the phase space are
located within a limited region, which, however, contains
neither stable states nor limit cycles. Such an attractor is
called a strange attractor [35-38]. It represents a set of
attracting trajectories, each of them being unstable. The
strange attractor has two substantial features: its trajectories
are non-periodic and are not closed.

Note that, although the nonlinear system of equations
describing bidirectional lasing in an autonomous SRL
admits the existence of quasi-periodic and chaotic oscil-
lations in the laser, nevertheless dynamic chaos can be
realised in the autonomous ring laser only within rather
narrow regions of variation of laser parameters [3—35, 22].

The modulation of parameters of a ring laser can be
efficiently used to control the nonlinear dynamics and excite
quasi-periodic and chaotic oscillations. A specific feature of
bidirectional ring lasers is a large number of control
parameters (compared to a unidirectional ring laser), whose
modulation can change the type of lasing, resulting, in
particular, in the appearance of quasi-periodic and chaotic

regimes. Such parameters include the excess over the pump
threshold, intracavity losses, frequency and amplitude non-
reciprocities of the resonator, coupling coefficients for
counterpropagating waves, and some other parameters.

The theoretical and experimental studies of SRLs have
shown that the modulation of laser parameters can produce
a number of instabilities appearing before the realisation of
dynamic chaos. Among the most probable scenarios of
transition to chaos with increasing the control parameter,
we can point out the transition through bifurcations of the
period doubling. The second probable scenario is a quasi-
periodic transition to chaos: the chaotic regime appears due
to instability of quasi-periodic lasing. The transition to
chaos can also occur through intermittencies characterised
by alternating periods of quasi-periodic and chaotic pulsa-
tions of radiation [35-—37].

Note that, when a new regime appears, the previous
regime can lose its stability or even disappear, while the new
regime can either acquire some properties of the previous
one or can be fundamentally different (bifurcation).

The asymmetry of the system plays an important role in
nonlinear systems with strange attractors [39]. In particular,
the degree of asymmetry (for example, the amplitude
nonreciprocity of the resonator) determines to a great extent
the dynamic properties of ring resonators in the case of
parametric resonance [4].

3.3 Classification of non-stationary lasing regimes in ring
lasers

Many studies [40—72] have shown that a variety of non-
stationary regimes can exist (along with periodic self-
modulation lasing regimes) under certain conditions in
SRLs. In this paper, we focus our attention on quasi-
periodic and chaotic lasing regimes in autonomous lasers
and also nonautonomous lasers with harmonically modu-
lated parameters. The difference between lasing regimes is
manifested in a number of their qualitative features: the
type of time dependences of the intensities of counter-
propagating waves, their phase relations, the difference in
the spectra of counterpropagating waves, phase portraits,
Lyapunov coefficients, etc. Note that lasing regimes cannot
be classified unambiguously with the help of only one of the
radiation parameters.

At present there exists a distinct classification of possible
non-stationary lasing regimes in autonomous ring lasers.
The main non-stationary regimes are self-modulation of the
first and second kinds, beats of counterpropagating waves,
and dynamic chaos regimes. In lasers with periodically
modulated parameters, much more non-stationary regimes
can exist, which have not been classified so far.

By analysing the results of numerous experimental and
theoretical studies, we can distinguish the following non-
stationary lasing regimes appearing in nonautonomous
SRLs, classifying them mainly by the temporal and spectral
radiation parameters of ring lasers:

(1) Quasi-sinusoidal (QS) lasing regimes in which the
time dependence of the radiation intensity is described by
sinusoidal oscillations with a periodic low-frequency enve-
lope. Such regimes appear when the modulation amplitude
of the control parameter is small; and the radiation intensity
is well described by the expression 7, = 1I)cos(mp?)
X cos (Wt & @) ,). The QS regimes can be of two types:
the QS-I regime, when a component at the frequency w,, of
self-modulation oscillations of an autonomous laser domi-
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nates in the emission spectrum, and the QS-II regime, when
a component at the modulation frequency w,, of the control
parameter dominates. In a certain region of parameters,
both types of the QS regime can be stable (bistability). The
QS-I regime is characterised by the antiphase dynamics of
the appearance of quasi-periodic radiation pulses of coun-
terpropagating waves. In this case, the total intensity is
I =1, + I, and oscillations at the self-modulation frequency
o, are suppressed or can be even absent under certain
conditions. In the QS lasing regimes, the spectrum of the
Lyapunov coefficients does not contain positive coefficients.

(ii) Regimes of forced synchronisation of self-modula-
tion oscillations (FS regimes) representing harmonic
oscillations of the intensities of counterpropagating waves
at the frequency w,,.

(iii) Periodic and quasi-periodic impulse (QPI) regimes in
which the counterpropagating waves follow in the form of
rather short pulses at the pulse repetition period equal to or
a multiple of the modulation period of the control parame-
ter. The peak intensity of radiation pulses can be either
constant or can have a low-frequency envelope. In the latter
case, regimes are possible in which the envelopes for
counterpropagating waves are in phase (the QPI-1A regime)
or out of phase (the QPI-1B regime).

Hereafter, the numbers 1 or 2 in the regime notation
mean that synchronous or nonsynchronous pulsations of the
intensities of counterpropagating waves occur. The letters
characterise the behaviour of the low-frequency envelopes of
counterpropagating waves: A or B mean that oscillations
occur in phase or out of phase, respectively; while C means
that there exists a complicated functional dependence
between the envelopes of the intensities of counterpropa-
gating waves. If the envelope period is a multiple of the
pulse repetition period, such a regime is periodic, otherwise
it is quasi-periodic. Note that there exist periodic pulsed
regimes, which differ in the number n of pulses per period
(nT regimes). The emission spectrum in QPI regimes is
discrete. The spectrum of the Lyapunov coefficients, as in
the case of the QS and FS regimes, does not contain positive
coefficients.

(iv) Strange-nonchaotic-attractor (SNA) regimes. Unlike
periodic and quasi-periodic regimes, SNA regimes are
characterised by a complex geometrical structure of the
attractor, the irregular temporal structure, and a compli-
cated emission spectrum. The time dependence of the
leading Lyapunov exponent J, is irregular and its mean
value is zero. However, the local values of A, are positive
during some time intervals. The distribution of local values
of Jy is characterised by a function with a maximum at
Ao =0.

In the case of chaotic regimes, two phase trajectories
located within a small region of the phase space come apart
with time (mixed) and occupy the entire region of the
attractor (the so-called trajectory mixing; see details, for
example, in Ref. [37]). In the case of the strange nonchaotic
attractor, no such mixing occurs.

(v) Discrete-spectrum chaotic (DSC) regimes. The oscil-
lation spectra in these regimes exhibit intense discrete
components against a relatively weak ‘noise’ background
(for example, at the frequencies equal to or multiple of the
external modulation frequency w,, self-modulation (wy,) or
relaxation (w,) frequencies or their combinations). As all
other regimes of dynamic chaos, DSC regimes are charac-
terised by the exponential instability of phase trajectories,

which is determined by the presence of the positive
Lyapunov coefficients. The narrowband chaos varieties
can also exist, when the component at the frequency w,,
or w, can be the most intense component in the spectrum.
As a rule, DSC regimes appear in bidirectional ring lasers
when the modulation frequency of the control parameter is
lower than the main relaxation frequency w,.

(vi) Continuous-spectrum chaotic (CSC) regimes. These
regimes are characterised by a broad continuous spectrum,
which can exhibit weak spectral components at the fre-
quencies w,, oy, and .. The regimes are also characterised
by the presence of several positive Lyapunov coefficients.

(vii) Intermittent chaotic (IC) regimes in which the
regions of chaotic oscillations with different types of
radiation are alternated through irregular time intervals.

The above classification is not exhaustive. In particular,
it contains no information on the presence or absence of
synchronisation between counterpropagating waves, which
could be used to divide the above-considered regimes into
several groups.

Note that synchronisation processes have a number of
specific features in the case of chaotic lasing regimes. It may
appear that the synchronisation of chaotic oscillations is
impossible because the phase trajectories in the interacting
systems are unstable. However, it has been shown in many
studies that in this case the relative motion of phase
trajectories of the interacting subsystems often proves to
be stable, resulting in the synchronisation of chaotic
oscillations.

Studies have shown that several different synchronisa-
tion regimes can exist in chaotic systems. For example, the
identical-synchronous-chaos regime can exist in which the
temporal and spectral characteristics of coupled chaotic
systems coincide. In a more general case, the synchronisa-
tion of chaotic oscillations is manifested in the establishment
of a certain functional dependence x;(7) = F(x,(?)) between
chaotic oscillations x;(¢) and x,(¢) of the subsystems. This
regime is called the generalised synchronisation regime [73].

In the synchronous chaos regimes, the dynamics of the
intensity and/or optical phases of counterpropagating waves
are correlated, unlike the case of nonsynchronous chaos.
The transition from synchronous to nonsynchronous chaos
can occur in certain regions of the SRL parameters.

Therefore, depending on the presence or absence of
synchronisation in counterpropagating waves, the DSC and
CSC regimes can be divided into two subgroups:

(1) The DSC-1 and CSC-1 regimes, which are charac-
terised by the synchronisation of chaotic pulsations in
counterpropagating waves; and

(2) the DSC-2 and CSC-2 regimes, in which synchro-
nisation of counterpropagating waves is absent.

In turn, there exist among synchronous chaos regimes
(the first-group regimes) at least three different regimes:
identical synchronous chaos (DSC-1A and CSC-1A), syn-
chronous chaos with the antiphase dynamics of
counterpropagating waves (DSC-1B and CSC-1B), and
generalised synchronous chaos (DSC-1C and CSC-1C).

In the case of chaotic oscillations, there also exist re-
gimes of phase synchronisation, when the correlation bet-
ween the amplitudes of chaotic oscillations can be absent,
the instant frequencies of the interacting systems fluctuate
and can differ from each other, but their mean values prove
to be identical. In this case, the phase difference of oscilla-
tions in coupled subsystems varies within a limited interval.
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Synchronisation processes in ring lasers can be conside-
red both applied to oscillations at the optical frequencies of
counterpropagating waves and to the oscillations of their
envelopes. Note that it is the dynamics of envelopes
(intensities) of counterpropagating waves that has been
analysed in most experimental studies, while information
on the optical phases of the fields is often absent.

In the case of a bidirectional ring laser, the interacting
subsystems are counterpropagating waves. As was men-
tioned above, the coupling between them is determined by
backscattering and self-diffraction of radiation from inverse
population gratings induced by the interfering fields in the
active medium. The coupling between counterpropagating
waves on inverse population gratings is nonlinear, which
introduces certain features to the phase dynamic of radia-
tion in the regimes of synchronisation of counter-
propagating waves. Upon modulation of the parameters
of a ring laser, the laser itself and an external oscillator
providing modulation can be treated as the interacting
subsystems. In this case, one of the subsystems proves to
be completely independent.

4. Parametric processes and dynamic chaos
in autonomous ring lasers

In autonomous ring lasers, a number of stationary lasing
regimes are possible, whose characteristics are well studied,
and the regions of existence of these regimes are known. It
has been found that single-mode cw SRLs in the absence of
external perturbations (at different values of their parame-
ters) can operate in the travelling-wave regime (uni-
directional single-frequency modulation), self-modulation
regimes of the first and second kinds, the beat regime,
parametric-resonance regime and strong-coupling regimes,
and some other regimes [42—50].

4.1 Self-modulation regime of the first kind

The most interesting and widespread lasing regime in SRLs
is the self-modulation regime of the first kind, which is
characterised by the sinusoidal antiphase modulation of the
intensities of counterpropagating waves. The frequency of
self-modulation oscillations depends on the coupling
strength of counterpropagating waves, the frequency and
amplitude nonreciprocity of the ring resonator and a
number of other parameters. In the absence of non-
reciprocities, the self-modulation frequency is described in
the general case by the expression

w2y = mym, cos(0, — 0,) — dmymy sin(6, — 0,)

(1 + 6%)mims3 sin®(60, — 6,)
mi 4+ m3 + 2mymy cos(0,0,)]

3)

This expression is significantly simplified if the lasing
frequency coincides with the gain line centre and the
coupling between counterpropagating waves is symmet-
rical: wpy = mcos[(0; — 0,)/2]. If the coupling is caused,
for example, by the inhomogeneities of the dielectric
constant of the medium, then we have |0, — 0, < 1. In
the presence of the frequency nonreciprocity 2, the fre-
quency of self-modulation oscillations is determined by the
expression a)m:(wquJrQZ)l/z‘ The conditions of the
appearance and stability of this regime (in the absence of

the resonator nonreciprocity) are determined by the inequa-
lities

nw sk 0, — 0,
—Q T, cos —

which are satisfied in a broad region of the SRL
parameters. Here, we assume for simplicity that m; =
ny, =m.

Studies [21 —25] have shown that, if in the absence of the
frequency nonreciprocity (i.e., for Q = 0) the laser operates
in the self-modulation regime of the first kind, this regime is
preserved with increasing Q| in the region [Q| < Q. The
boundary value of Q; can be found from the expression

—1 -1

G

0, -0,
2

sin

<m< 12
m< 12
0

" sinol —0 o m(m2 + le)'/z
2 | 0" 31202
For |Q2] > Q,, the self-modulation regime passes to

stationary lasing with counterpropagating waves having
unequal intensities. In the self-modulation regime of the
first kind, the frequency of self-modulation oscillations
increases with increasing [Q|, while the mean values of the
intensities of counterpropagating waves become unequal.
The frequency of self-modulation oscillations of the SRL in
the absence of the resonator nonreciprocity is mainly
determined by the strength of coupling between counter-
propagating waves through backscattering and can vary
from hundredths to a few megahertz.

Because the inverse population relaxes slowly
(w/Qy, > 1/T)), non-stationary processes of the establish-
ment of the stationary state of self-modulation oscillations
are of the oscillator type and are described by relaxation
frequencies. The number of relaxation frequencies depends
on the dimensionality (the number of independent variables)
of the dynamic system.

Relaxation oscillations in the SRL operating in the self-
modulation regime of the first kind occur at two characte-
ristic frequencies. One of these frequencies (the main
relaxation frequency)

o 5 1/2
O = (@ﬁ) ©)

is similar to the relaxation frequency of a linear solid-state
laser, while another corresponds to low-frequency relaxa-
tion oscillations and is determined by the expression [21]

1 1/2
on={30i +oi- @i e} @

4.2 Dynamic chaos regimes in a bidirectional autonomous
laser

The study of the self-modulation regime of the first kind
showed that this regime is stable within the entire region of
values of m determined by condition (4), except regions of
parametric resonances. In an autonomous laser operating in
the self-modulation regime, the parametric interaction
between self-modulation oscillations is the main mechanism
leading to bifurcations and a passage to dynamic chaos. It
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seems that chaotic oscillations can be excited only when the
system is asymmetric: the conditions my # m, and/or
Q) # Q, are necessary. In the regions of parametric
resonance, the self-modulation regime is unstable, period-
doubling bifurcations appear, and a passage to dynamic
chaos is observed under certain conditions. As shown in
Refs [4, 5], the main parametric resonances are observed at

Oy == 20, Oy >~ 20,1, and oy, ~ o, + 0. (7)

The modulation of the laser parameters required for the
appearance of parametric phenomena is produced due to
periodic energy transfer between counterpropagating waves,
which is typical for this lasing regime.

The self-modulation regime becomes unstable not only
when conditions (7) are exactly satisfied but also in some
region near the exact resonance (the width of this region can
be a few tens of kilohertz). The parametric build-up of
oscillations, for example, at the frequency w,, = 2w, occurs
if wy, lies in the region w,; < 0, < oy, The boundaries of
this region (w,,; and w.,) at §; = 6, are determined by the
expressions

O =A—B, wn=A4+B, ®)

where

o +Q5/4 (795 + 120])o;
16c, 4(8Q¢ +28w?2)

2 1/2
B= [(5(‘)3) 4h2e? ,L} ! .
(4Q2 + 140?) ' ’

A =20, +

)
Qf = 2w,)" — mymy > 0;

(m1m2)1/2(ml — ;)

h =
26Um(n/ll + m2)

One can see that the width of the region of parametric
instability increases with increasing the difference of moduli
of coupling coefficients. In the case of symmetric coupling
(m; = m,), the width of the instability region vanishes.
Studies of the radiation dynamics in parametric-reso-
nance regions show that the build-up of relaxation
oscillations and their interaction with self-modulation
oscillations lead to a number of period-doubling bifurca-
tions and the appearance of chaotic oscillations.
Dynamic chaos regimes can be excited in an autono-
mous SRL by several methods. Consider this question by
the example of parametric resonance in the region
2w, = wy. The frequency of self-modulation oscillations
in the presence of frequency nonreciprocity @ in the
resonator depends on the parameters of the ring laser as [21]

Wy = (wéo + Q2)1/2

+ Aw, (10)
where w, is determined by expression (3); Aw = w(Q>+
wéo)/(4w§10) is the correction in the first approximation
over a small parameter o] /wéo; and o, is the main
relaxation frequency [see (5)] [4].

In the presence of the amplitude nonreciprocity 4 of the

resonator and for Q =0, the expression for the self-

modulation frequency takes the form

0, —0
0 = {mzcos%

_ lon/(@(1 +m)I*4” _Az}l/z. (1

(2 cos|(0; — 6,),2]]

It follows from expressions (3), (10), and (11) that the
control parameter can be the frequency (22) and amplitude
(4) nonreciprocities of the resonator, the laser frequency
detuning ¢ from the gain line centre, the pump excess over
the lasing threshold, the Q factor of the resonator, and
moduli (m, ) and phases (0,,) of the coupling coefficients
for counterpropagating waves.

The condition 2w, = w,, was achieved in studies of
lasing regimes near a parametric resonance [40, 52, 53]
with the help of an external permanent magnetic field
applied to an active element, which allowed the variation
in the self-modulation frequency w,, in a broad range. In the
absence of a magnetic field, the self-modulation frequency
was op/2n =78 kHz and the frequency of relaxation
oscillations was w,/2n = 63 kHz. A magnetic field applied
to the active element of a chip laser provided the condition
of the parametric resonance 2w, =~ w,. The external
magnetic field also caused an increase in the amplitude
nonreciprocity 4 of the resonator. In the parametric
resonance region, depending on the magnetic field strength
and orientation, the period doubling was observed for self-
modulation oscillations and also quasi-periodic or chaotic
lasing regimes appeared. Figure 2 shows the characteristic
temporal and spectral characteristics of the CSC and DSC
lasing regimes, which appear in the chip laser in two
magnetic fields with different strengths and orientations
with respect to the chip-laser.

Due to the presence of several regions of parametric
resonances, the lasing characteristics do not change monoto-
nically depending on the frequency or amplitude
nonreciprocity of the resonator: dynamic chaos passes to
quasi-periodic pulsations, then dynamic chaos again
appears, etc. It was shown experimentally that to excite
the CSC regime, the amplitude nonreciprocity 4 is needed,
the width of the parametric-resonance region monotonically
increasing with 4 [22, 40]. A similar result was obtained by
numerical simulations.

4.3 Dynamic chaos in a travelling-wave autonomous ring
laser

The necessary condition for excitation of quasi-periodic and
chaotic oscillations in a unidirectional autonomous ring
laser is the presence of resonance between two relaxation
frequencies [3—35, 22, 40]. In the case of a unidirectional
ring laser, there exist three relaxation frequencies, one of
which (w,) coinciding with the relaxation frequency of a
linear solid-state laser (5) and the other two being described
by the expressions

2 2\ 1/2
) Q Q
W12 = <7r+7> :l:i

(12)

In the absence of the frequency nonreciprocity of the
resonator, the frequencies w,; and w,, are degenerated. One
can see from (12) that, when the condition
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Figure 2. Radiation oscillograms for one of the counterpropagating
waves (a, ¢) in the autonomous ring laser and its spectra (b, d) in the
cases of the parametric resonance 2w, ~ w,, in the DSC (a, b) and CSC
(c, d) regimes.

2Q = w, (13)
is fulfilled, the resonance appears between the two rela-
xation oscillations [in this case, w, = ®;1(2)]. The fulfilment
of condition (13) violates the stability of the travelling-wave
regime, and, as shown in Ref. [3], leads to the appearance
of quasi-periodic and chaotic lasing regimes in the
autonomous ring laser.

5. Lasing regimes of ring lasers with modulated
parameters

Due to a high sensitivity of ring lasers to the modulation of
their parameters, even relatively weak periodic modulation
proves to be sufficient for the laser response to the external
perturbation to become nonlinear, resulting in the appea-
rance of a variety of quasi-periodic and chaotic lasing
regimes classified above.

In a SRL with periodically modulated parameters, along
with parametric resonances inherent in autonomous lasers,
there also exist parametric resonances at the modulation
frequencies equal to or multiple of the frequencies of
relaxation and self-modulation oscillations. The SRL is
very sensitive to the modulation of its parameters in
parametric-resonance regions and passes to the dynamic

chaos regime at a substantially lower degree of modulation
of control parameters.

In nonlinear systems, along with the fundamental
resonance, resonances at the overtones and undertones of
the perturbing force are also possible, which substantially
facilitates a change in lasing regimes [74]. A strong com-
petition between counterpropagating waves in the active
medium of the ring laser also favours the appearance of
quasi-periodic and chaotic lasing regimes.

Consider now the basic properties of SRLs appearing
during the external harmonic modulation of their param-
eters [65—69]. The nonlinear dynamics of bidirectional
nonautonomous ring lasers is much more complicated
than the lasing dynamics of unidirectional ring lasers.
We consider first some features of the dynamics of travel-
ling-wave lasers.

5.1 Bifurcations and the appearance of chaos
in travelling-wave lasers

To obtain the travelling-wave regime in a ring laser, the
amplitude nonreciprocity 4 is produced in the resonator
(different Q factors of the resonator Q; and Q, for
counterpropagating waves). In addition, the Q factors are
periodically modulated:

Q) A o)
—— =+ +hsinwyt,

14
0, T2t"p (14

where w/Q is the average width of the ring resonator band
in the absence of modulation of losses; and /4 is the depth of
modulation of losses. The lasing dynamics in the travelling-
wave regime is well described by the system of equations (2)
taking expression (14) into account.

Because a detailed analysis of all properties of the
nonlinear dynamics of a travelling-wave ring laser in the
different regions of parametric resonances is not the aim of
this paper, we will consider here only the evolution of lasing
regimes in a unidirectional ring Nd : YAG laser with the Q
factor modulated at the frequencies lower than the relaxa-
tion frequency w, [3, 47]. In this region, a resonance can
occur at the undertone of the fundamental relaxation
frequency. Unidirectional lasing was provided in experi-
ments by using an intracavity amplitude nonreciprocal
element, and losses were modulated with the help of an
intracavity amplitude modulator operating at the frequency
©,/2n = 8 — 15 kHz. The fundamental relaxation frequency
®,/2n was 27 kHz.

Experimental studies and numerical simulations [47]
showed that lasing regimes are changed with increasing
the depth of modulation of losses in a laser in the following
way. At first, the laser response to the modulation is
harmonic, and a component at the frequency m,/2n appears
in the emission spectrum. As the control parameter / is
increased, the modulation depth of output radiation con-
tinuously increases and nonlinear distortions also increase.
Then, at a critical value of & = hﬁp (hg) =0.021), lasing
regime changes abruptly and the laser begins to emit pulses
with the pulse repetition period T =2n/w, (the QPI
regime). As & is further increased, period-doubling bifurca-
tions appear, and then, at hg? =0.027, dynamic chaos
appears (the DSC regime). When A = 0.035, the QPI
lasing regime appears again; however, its period is already
equal to 4T.
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5.2 Nonlinear dynamics in the region of modulation
frequencies including a parametric resonance

with self-modulation oscillations

Consider now quasi-periodic and chaotic lasing regimes and
their basic characteristics in a bidirectional ring laser with
parameters modulated periodically at the frequency w,
[31-34, 48, 65—72]. The nonlinear dynamics can be studied
experimentally by using various parameters of the ring laser
as a control parameter. It is most convenient to modulate
the pump power in monolithic chip lasers. The frequency
and amplitude nonreciprocities of the resonator can be
modulated quite easily by modulating a magnetic field
applied to the active element. By producing periodic stresses
in the active element, one can modulate the perimeter and
Q factor of the resonator, its polarisation anisotropy, and
the detuning of the laser frequency from the gain line
centre. The additional feedback between counterpropagat-
ing waves provided by an external mirror makes it possible
to change the moduli and phases of coupling coefficients.
At present the nonlinear radiation dynamics of a bidirec-
tional ring laser with modulated intracavity losses and
pump power is studied in most detail.

The nonlinear dynamics of a nonautonomous laser is
studied at fixed values of all laser parameters, except the
control parameter, which is modulated at the frequency w,
with the modulation depth 4. In a ring laser operating in the
self-modulation regime of the first kind, the regions of
parametric resonances appear at the external-perturbation
frequencies @, equal to or multiple of the relaxation
frequencies ®, and w,, the self-modulation frequency
o, and the combination frequencies nw, + mw,,, etc. In
different regions of parametric resonances, a number of
features appear in the nonlinear radiation dynamics of
counterpropagating waves.

Consider first the nonlinear dynamics of a SRL in the
region of modulation frequencies containing a parametric
resonance with self-modulation oscillations, i.e., in the
region of modulation frequencies close to the frequency
on. In this region, a number of specific effects appears,
which are absent in other regions. Among these effects, the
synchronisation of the frequency of self-modulation oscil-
lations by an external modulating signal should be pointed
out, which is possible only when the condition w, < wy, is
fulfilled. Otherwise, synchronisation is absent [65]. In this
region, multistability and hysteresis effects are observed
[70, 71].

Theoretical and experimental studies of the radiation
dynamics of bidirectional ring lasers with modulated pump
or resonator losses showed that these modulation methods
are almost identical. The only difference is that upon
modulation of the Q factor, the modulation depth proves
to be substantially greater. Below, we will consider mainly
only a periodic modulation of the pump (because this
modulation was used in most experiments). The theoretical
analysis and numerical simulation in this case are based on a
standard system of equations (2), in which the threshold-
pump-power excess should be written in the form

=1y + hcoswyt, (15)
where 7, is the threshold-pump-power excess in the absence
of modulation.

The radiation dynamics was studied for monolithic chip
lasers in which the self-modulation frequency was varied

from 100 to 250 kHz, while the fundamental relaxation
frequency was varied from 60 to 100 kHz. It was found
(Fig. 3) that, when the modulation frequency w, of the
control parameter approached the self-modulation fre-
quency oy, (0, < o), the self-modulation frequency was
locked to the external signal. In the locking region of width
Aw, the self-modulation frequency proves to be equal to the
frequency w, of the external force, and the emission
spectrum consists of one component (the FS regime).
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Figure 3. Oscillograms (a, ¢) and emission spectra (b, d) of the ring chip
laser in the QS (a, b) and FS (c, d) regimes and the behaviour of the
spectrum of self-modulation oscillations in the QS regime (solid curve)
and FS regime (dashed curve) (e).

Similar results were also obtained in the theoretical study
of the radiation dynamics of a ring laser. System of
equations (2) has a periodic solution describing the syn-
chronisation of the self-modulation frequency by an external
signal. Note that an exact analytic solution can be obtained
only for small values of the parameter /. Analysis performed
in paper [65] gave the relation

4
Tla)rha)p o (wé_wZ)l/Z(wg _

2
4(1 + no)nowm P or)

(16)
for determining the width of the locking region of the self-
modulation frequency by the external signal.

The values of w, satisfying relation (16) determine the
left boundary of the region of existence of the synchronisa-
tion regime. The right boundary proves to be equal to the
self-modulation frequency w,,. Inside this region, self-
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modulation oscillations are synchronised by the external
signal (radiation represents a harmonic oscillation with a
period equal to the modulation period). An interesting
feature of the locking regime is a considerable narrowing
(almost by a factor of three) of the spectrum of self-
modulation oscillations locked to the external signal, which
was observed in experiments. This is distinctly illustrated in
Fig. 3 where the emission spectra of a ring chip laser
pumped by modulated radiation are shown in the absence
and presence of frequency locking [70, 71].

A specific feature of the FS regime is the spontaneous
appearance of the amplitude nonreciprocity: the radiation
intensities of counterpropagating waves become unequal.
There exist two FS regimes which differ in the phase shift of
the intensity oscillations for counterpropagating waves with
respect to the modulating signal. In one of the regimes, the
wave propagating clockwise is suppressed with increasing
detuning (wy, — @p), while in another regime — the counter-
clockwise propagating wave is suppressed.

The specific features of the nonlinear radiation dynamics
of a particular ring laser pumped by modulated radiation
can be studied using numerical simulations. In particular,
this method was used [70, 71] to study the radiation
dynamics of a ring chip laser (w,/2n =230 kHz, 5, =
0.21, w,/2n =70 kHz, and ®/Q =7 x 10° Hz) pumped
by modulated radiation. The positions of the right and
left boundaries of the region of stable synchronisation and
the width of the locking region were found, and the
dependence of these parameters on the pump power
modulation depth & was also studied. It was found that
the right boundary of the synchronisation region is inde-
pendent of 4 and coincides with w,,. The stable FS regime
was observed within a much narrower region than the
region of its existence determined by expression (16). For
h > 0.2, the width of the region of stable synchronisation
can achieve 50 kHz.

Outside the locking region, for small modulation depths
of the control parameter, the QS regime appears in the laser.
In this regime, the periodic modulation of the amplitude of
self-modulation oscillations appears at the frequency w,,
resulting in the emergence of new spectral components at the
combination frequencies wy, £ nw, in the spectrum, whose
number increases with increasing /.

Near the boundaries of the region of stable synchronisa-
tion, hysteresis effects are observed. There exists a bistability
region where, depending on the initial conditions, either the
FS or QS regime appears. The widths of bistability regions
near the left and right boundaries of the synchronisation
region of self-modulation oscillations are considerably
different, being equal to ~ 25 and ~ 5 kHz, respectively.

The performed studies showed that a passage to dynamic
chaos in this region of modulation of control parameters is
hindered. This can be explained by the fact that, as the
pump modulation depth is increased, the width of the
synchronisation region increases and the regions of existence
of the QS and QPI regimes narrow down.

5.3 Nonlinear dynamics in the region of modulation
frequencies including parametric resonances

with relaxation oscillations

Let us now discuss the characteristic features of nonlinear
dynamics in the regions of modulation frequencies includ-
ing parametric resonances with relaxation oscillations.
Consider first the nonlinear dynamics of a ring laser in

the case of low-frequency pump modulation, when the
modulation frequency lies in the region of resonances with
the fundamental relaxation frequency w, or the additional
relaxation frequency w,;, and the amplitude and frequency
nonreciprocities of the resonator are absent.

The sequence of appearance of different regimes with
increasing the modulation depth 7 of the control parameter
depends not only on the parameters of the chip laser itself
but also to a great extent on the modulation frequency
o, /2 of the control parameter. Consider, for example, the
sequence of appearance of different lasing regimes in a ring
chip laser (w,/2n =170 kHz, ®,/2n =66 kHz, and n =
0.21) with increasing the modulation depth for the fixed
modulation frequency w,/2n = 50 kHz, close to the relaxa-
tion frequency. In this case, the FS regime does not appear.
For /1 = 0, the laser operates in the self-modulation regime,
which passes to the QS and then QPI regimes with
increasing &, which, in turn, pass to the CSC and IC
regimes. As /& is further increased, the DSC regimes appear
in the laser.

At small modulation depths, bistability can exists and
two different QS regimes appear. In one of these regimes
(QS-1), a component at the frequency w,, dominates in the
spectrum, while in another (QS-II) — a component at the
frequency w, of the modulating signal dominates (Fig. 4).
In the QS-I regime, the antiphase radiation dynamics takes
place: the intensities of counterpropagating waves have the
form of antiphase self-modulation oscillations with the low-
frequency envelope whose frequency coincides with w,/2m.
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Figure 4. Calculated (a, b) and experimental (c, d) emission spectra of
the ring laser in the QS-I (a, ¢) and QS-II (b, d) regimes for # = 0.03 and
o, /21 = 50 kHz.

As the modulation depth /4 is increased (k& > 0.1), the
QPI lasing regimes appear (Fig. 5) in which trains of short
pulses of duration t are emitted, the pulse duration being
much shorter than the modulation period T, coinciding with
the pulse repetition period. In the presence of frequency
nonreciprocity (see below), the QPI regimes can appear with
the period equal to the doubled modulation period.

Dynamic chaos regimes emerge when a critical value A,
of the modulation depth, which depends on the modulation
frequency and laser parameters, is exceeded. In this case, a
passage to chaos occurs according to a quasi-periodic
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Figure 5. Oscillogram (a) and emission spectrum (b) of the ring laser in
the QPI regime (experiment) for the pump modulation depth 4 = 0.29
and o, /21 = 50 kHz.
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Figure 6. Emission characteristics in the CSC-2 regime (experiment):

intensity oscillograms for counterpropagating waves (a), spectrum of one
of the waves (b), and phase portrait (c) for # = 0.4 and w,/2n = 50 kHz.

scenario: for i < h., the attractor of the system represents a
multidimensional torus, which becomes unstable at /& > 5,
and is destroyed, becoming a strange chaotic attractor (i.e.,
dynamic chaos appears).

In the presence of the amplitude nonreciprocity of the
ring resonator, a regime with a complex time radiation

dynamics, having a strange nonchaotic attractor, can appear
before the dynamic chaos regime.

In the region of modulation frequencies of the control
parameter, all the three types of chaotic regimes, DSC, CSC,
and IC, can be observed. For & > k., the CSC regime first
appears, which passes to the DSC regimes with increasing
the modulation depth /. The typical time dependence of the
intensities of counterpropagating waves and the emission
spectrum for one of the waves in the CSC-2 regime are
shown in Fig. 6. In this regime, the intervals between
adjacent pulses prove to be irregular and the emission
spectrum is nearly continuous.

Figure 7 shows similar dependences for one of the DSC
regimes. One can see that the pulses of counterpropagating
waves with chaotic amplitudes propagate with regular time
intervals equal to the modulation period, and the spectrum
consists of intense discrete components against a weak noise
background.
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Figure 7. Emission characteristics in the DSC-1A regime (experiment):
intensity oscillograms for counterpropagating waves (a) and spectrum of
one of the waves (b) for w,/2n = 50 kHz and & = 0.46.

There exists the region of laser parameters where the 1C
regime is observed. The radiation dynamics in this case is
characterised by alternating regions with different lasing
parameters. For example, regions can alternate in which the
chaotic intensities of counterpropagating waves change
synchronously with the regions of nonsynchronous chaos
in counter directions. The IC regime was experimentally
observed in a ring chip laser with the parameters w,,/2n
=136 kHz, ©,/2n =90kHz, #=0.5 and o,/2n=
121 kHz. Figures 8a, b show the intensity oscillograms
for counterpropagating waves obtained in this regime at
different time-base sweeps. The oscillograms demonstrate
the alternating regions of synchronous chaos with regular
intervals between pulses (equal to the pump modulation
period) and the regions of nonsynchronous chaos in counter
directions, when intervals between pulses are irregular.
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Figure 8. Intensity oscillograms for counterpropagating waves (on the
right are fragments of the time-base sweep) in the IC regime (a, b) and
the calculated time dependences of the intensity of one of the waves (c)
and the modulus of the difference of intensities of counterpropagating
waves (d) for o, /2n = 121 kHz and /1 = 0.27.

It is convenient to study the IC regimes by detecting the
time dependence of the difference between the intensities of
counterpropagating waves. The oscillograms of the intensity
difference allow one to detect the IC regime even when it is
difficult to observe this regime by the wave intensity
oscillograms. Thus, the time dependence of the radiation
intensity of one of the waves shown in Fig. 8c does not give
reliable information on the presence of intermittent regions.
At the same time, the time dependence of the difference of
intensities for counterpropagating waves for this case
(Fig. 8d) demonstrates the presence of intermittent regions
of synchronous and nonsynchronous chaos.

As mentioned above, in some regions of parameters of
nonautonomous SRLs, bistability was observed and quasi-
periodic bistable QS-I and QS-II regimes can appear. As the
modulation depth is increased, these regimes pass to
dynamic chaos at different values of 4. As a result, the
quasi-periodic regime and dynamic chaos can be stable
simultaneously, and two different dynamic chaos regimes
can be also bistable.

Note that the scenario of a passage to chaos somewhat
changes in the case of the parametric resonance ® = 2w;,.
Figure 9 shows the results of numerical simulations
obtained using parameters of a chip laser close to their
experimental values (w,/2n = 170 kHz, w,/27n = 66 kHz,
wp/2n =130 kHz and n = 0.21). The results demonstrate
the dependences of the Poincare cross sections and the lasing
spectra of the solid-state ring on the modulation depth. One
can see that the passage to dynamic chaos is preceded by the
torus-doubling bifurcation.
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Figure 9. Scenario of a passage to chaos upon modulation of losses at
the frequency w;/2n = 130 kHz: changes in the Poincare cross sections
(left) and lasing spectra (right) with increasing (downward) the modula-
tion depth of the control parameter /4 (numerical simulation); /;(¢) and
I;(t 4 1) are given in arbitrary units.

5.4 Synchronisation of counterpropagating waves
in chaotic lasing regimes

Synchronisation is one of the characteristic phenomena
taking place in ring bidirectional lasers and determining to
a great extent their nonlinear dynamics. Conventionally,
synchronisation means the establishment of certain rela-
tions between the oscillation frequencies or phases of the
interacting subsystems. Synchronisation can be both
external (forced) and internal (reciprocal). In the first
case, the synchronisation (locking) of oscillations is
performed by an external control signal, while in the
second case, it occurs due to the interaction between
equivalent subsystems. The appearance of synchronisation
(both external and internal) in self-oscillating systems
operating in periodic and quasi-periodic regimes is charac-
terised by the presence of self-oscillations of the radiation
intensity with a constant and rational value of the Poincare
rotation number 9 = w,/w =m/n (m and n are integers).
This regime is preserved in a finite region of the system
parameters, which is called the synchronisation region.
As mentioned above, in the case of chaotic regimes, the
synchronisation of counterpropagating waves has a number
of characteristic features, which allow one to divide dynamic
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chaos regimes into several subgroups. Let us illustrate by
several examples the main synchronisation regimes of
chaotic oscillations of counterpropagating waves appearing
in solid-state lasers with periodically modulated parameters.
The case of identical synchronous chaos (the DSC-1A
regime) is shown in Fig. 10. Here, the phase portrait in
the (I}, I,) plane is a straight line 7,(¢) = I,(¢). Identical
synchronisation can occur in the DSC and CSC regimes.
The identical synchronous chaos regime appears in the laser
in the absence of the frequency and amplitude nonreciproci-
ties of the ring resonator. In the presence of nonreciprocity,
other synchronous chaos regimes can take place (Figs 11
and 12). One of them (the DSC-1B regime) is characterised
by the antiphase dynamics of chaotic pulse /() and I,(¢) in
counterpropagating waves (Fig. 11), which is manifested in
the fact that the sum intensity I; + 1, proves almost
constant. In this case, the phase portrait in the ([}, I,)
plane consists of two ‘lobes’.
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Figure 10. Intensity oscillograms for counterpropagating waves (a) and
the projection of the phase portrait on the (/;, /5) plane (b) in the case of
identical synchronous chaos (the DSC-1A regime) for w,/2n = 50 kHz
and /& = 0.24 (experiment).

The generalised synchronisation regime (DSC-1C) is
shown in Fig. 12. Figure 12a demonstrates the time beha-
viour of the intensities /; () of counterpropagating waves in
this regime. The phase portrait (Fig. 12b) in the (f;, 1)
plane shows that the intensities 7,(¢) and I5(¢) are related by
the dependence I,(z) = F(I,(¢)) representing a closed curve.

Synchronous chaos regimes exist within certain regions
of laser parameters (synchronisation regions of chaotic
oscillations), which a part of the region of existence of
dynamic chaos. Outside synchronisation regions of counter-
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Figure 11. Oscillograms of the intensities /;(f) and ,(?) (a) and the
projection of the phase portrait on the (/;, I,) plane (b) in the
synchronous chaos regime with the antiphase dynamics of chaotic pulses
in counterpropagating waves (the DSC-1B regime).
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Figure 12. Intensity oscillograms for counterpropagating waves (a) and
the projection of the phase portrait on the (/;, I,) plane (b) in the
generalised synchronous chaos regime with a periodic functional depen-
dence between the intensities of counterpropagating waves (the DSC-1C
regime) for w,/2n = 60 kHz and / = 0.45 (experiment).
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propagating waves, the IC regimes and non-synchronous
chaos regimes can be observed. Note that in the nonsynch-
ronous chaos regime the spectral nonreciprocity can appear.
In this case, the lasing spectra of counterpropagating waves
prove to be different. Figure 6 shows the time evolution of
the intensities of counterpropagating waves and the phase
portrait of the nonsynchronous chaos regime (CSC-2).

The synchronisation of intensities of counterpropagating
waves is also absent in the strange-nonchaotic-attractor
(SNA) regime, which appears under certain conditions. The
oscillograms of intensities of counterpropagating waves and
their spectra in this regime are shown in Fig. 13. It is
interesting that spectral nonreciprocity (the difference
between the envelope spectra for counterpropagating waves)
can appear in the SNA regime.

I
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0 50 100 150 200 t/us
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0 100 200 300 w/2n/kHZ

Figure 13. Intensity oscillograms for counterpropagating waves (a) and
their spectra (b) in the SNA regime for w,/2n = 60 kHz and / = 0.5
(experiment).

5.5 Phase dynamics in chaotic lasing regimes

Important information on the characteristics of quasi-
periodic and chaotic lasing regimes of bidirectional SRLs
can be obtained by studying the dynamics of optical phases
of counterpropagating waves. The features of phase
synchronisation of chaotic oscillations have been recently
widely discussed in the literature [31—34, 74—76]. However,
theoretical studies in this field cannot predict yet the
properties of the phase dynamics for specific nonlinear
systems and, therefore, the experimental study of the phase
dynamics in chaotic lasing regimes is undoubtedly of great
interest.

The phase dynamics of ring lasers can be studied by the
interferometric method (Fig. 14) by detecting a mixing

signal of counterpropagating waves. The intensity of this
signal can be written in the form

I =1 + I, + 2(I, 1) cos o, (17)

where 1}, is the radiation intensities of counterpropagating
waves of the same polarisation and ¢ is the optical phase
difference for interfering waves.

Nd : YAG laser

P1 PhD1
E;
Q |Ei [
|Ey + E»*
||

Figure 14. Principal scheme of the setup for studying phase effects: P1
and P2 are polarisers; PhD1—PhD3 are photodetectors.

We used in our experiments a laser with the self-
modulation frequency w,,/2n =230 kHz, the relaxation
oscillation frequency w,/2m =53 kHz, and the relative
excess over the threshold pump power = 0.08. Depending
on the pump modulation frequency and depth, different
lasing regimes (periodic, quasi-periodic, and dynamic chaos
regimes) appeared in the laser. We found that the identical
chaos regime exists within a limited region of pump
modulation depths Ay, < i < Ay, the width of this region
being dependent on the modulation frequency, achieving the
maximum at w,/2n =29 kHz.

Figure 15 shows the typical oscillograms of intensities of
counterpropagating waves and optical mixing signal. One
can see that pulses of two types are present in radiation. For
pulses of the first type, the peak intensity of the optical
mixing signal is approximately four times greater than that
of the interfering waves. Pulses of the second type in the
signal /;,,, have a very low intensity. This means that optical
oscillations in the counterpropagating pulses of the first type
occur in phase and in the pulses of the second type — out of
phase, i.e., periodic jumps in the optical phase difference by
m occur in the interval between adjacent chaotic pulses
[31-33].

The numerical simulation of the radiation dynamics of a
ring laser with parameters close to those of the laser studied
in experiments, taking into account the influence of the
spontaneous radiation noise, showed that the model of a
bidirectional SRL, which takes into account the influence of
the spontaneous radiation noise, also well describes in this
case the temporal characteristics of the ring chip laser and
its phase dynamics.
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Figure 15. Intensity oscillograms for counterpropagating waves (a),
fragments of these oscillograms and the photomixing signal (b), and the
corresponding projection of the phase portrait (c) in the idengtical
synchronous chaos regime (the DSC regime) for w,/2n = 29 kHz and
h = 0.5 (experiment).
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Figure 16. Stability regions for different lasing regimes in the ring laser in
the (w,/2m, h) plane for the self-modulaton frequency w,,/2n = 170 kHz,
the fundamental relaxation frequency w,/2n = 66 kHz, and n = 0.21
(experiment).

5.6 Regions of existence of different lasing regimes

As was mentioned repeatedly, the basic characteristics of
quasi-periodic and chaotic regimes and regions of their
existence depend on many parameters at small values of /:
the pump excess over the lasing threshold, the relation
between the relaxation, self-modulation frequencies and
modulation frequency of the control parameter, etc.
Therefore, it is impossible to represent the regions of
existence of different lasing regimes, for example, in the (A,
wp) plane for arbitrary parameters of the laser. Figure 16
shows the example of a mutual arrangement of the regions
of existence of different lasing regimes in a ring chip laser.
These results were obtained experimentally in the absence
of the frequency and amplitude nonreciprociies of the
resonator, for the self-modulation frequency /21 =
170 kHz, the fundamental relaxation frequency w,/2n =
66 kHz, and the excess over the threshold pump level
n=10.21 [68].

When the modulation depth is small, both types of the
above-described QS regimes are excited (the QS region). As
h is increased, periodic and quasi-periodic regimes of pulsed
modulation of counterpropagating waves appear (the QPI
regions). In the IC and CSC regions, the intermittent and
quasi-continuous-spectrum chaotic regimes are observed. In
the DSC region, the quasi-discrete-spectrum synchronous
chaotic regime is observed.

The presence of the frequency nonreciprocity Q of the
resonator narrows down the region of parameters where the
CSC regime is observed. As Q increases in a SRL operating
in the DSC regime, small frequency nonreciprocity leads to
the appearance of the antiphase dynamics in counter-
propagating waves. As Q further increases (at constant
values of & and w,,/2r), the dynamic chaos regime passes to
the quasi-periodic antiphase pulse-modulation regime, i.e.,
the region of existence of pulsed modulation is extended at
the expense of synchronous and nonsynchronous chaotic
regimes.

5.7 Effect of the frequency and amplitude nonreciprocities
on nonlinear dynamics

The experimental and theoretical studies have shown that
the use of the frequency or amplitude nonreciprocity of the
ring laser resonator is one of the possible ways to control
the nonlinear dynamics of ring lasers [72, 77]. This attracts
interest because it is impossible to introduce any control
elements into monolithic ring chip lasers, whereas the
frequency and/or amplitude nonreciprocity can be rather
simply produced using a magnetic field.

The possibility of using the frequency nonreciprocity to
control lasing regimes is based on two physical mechanisms.
One of them is a change in the self-modulation frequency
produced by a magnetic field applied to an active element,
which provides the conditions of parametric resonances
both in autonomous and nonautonomous ring lasers. The
second mechanism is related to the frequency degeneracy of
counterpropagating waves in ring lasers and to the appea-
rance a new degree of freedom (or a control parameter) in
them.

The use of a magnetic field to control lasing regimes was
demonstrated in Ref. [72], where it was shown that a
constant magnetic field applied to the active element of a
monolithic ring laser can substantially change the lasing
dynamics. For example, a ring laser with the parameters
O /21 =230 kHz, w,/2n = 60 kHz, = 0.21 and w, /27 =
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29.5 kHz in the absence of a magnetic field (and, hence, in
the absence of the frequency nonreciprocity) operates in the
identical synchronous-chaos regime (the CSC regime). The
application of a magnetic field of a strength of several tens
of oersted leads to the passage of this lasing regime to the
antiphase synchronous QPI regime. Figure 17 shows the
typical intensity oscillograms for counterpropagating waves
and the emission spectrum of one of them in the absence and
in the presence of a magnetic field.

The use of the amplitude nonreciprocity is mainly based
on creation of asymmetry in the laser as a nonlinear system:
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Figure 17. Oscillograms (a, b) and emission spectra (c, d) in the identical
synchronous chaos regime (the CSC regime in the absence of a magnetic
field) (a, ¢) and in the antiphase QPI regime in the external magnetic field
H =21.3 Oe (b, d).

the presence of certain asymmetry is necessary for the
appearance of dynamic chaos in the case of parametric
resonances. The amplitude nonreciprocity of the resonator
also leads to the appearance of the unequal fields of
counterpropagating waves, resulting in a change in the
resonator dynamics. In particular, the introduction of the
amplitude nonreciprocity of the ring resonator is necessary
for the appearance of the ‘single-lobe’ generalised-synchro-
nous-chaos regime. The example of such an effect is also a
change in the relaxation frequencies during the passage from
unidirectional to bidirectional lasing in a ring laser. In
principle, a change in the amplitude nonreciprocity can be
also used to change the laser parameters to obtain para-
metric-resonance conditions.

6. Conclusions

We have presented the results of theoretical and experi-
mental studies of single-mode SRLs with modulated
parameters. Such SRLs can operate in a variety of non-
stationary lasing regimes, including deterministic (dynamic)
chaotic regimes. We have studied the temporal, spectral,
and phase characteristics of counterpropagating waves in
different non-stationary lasing regimes. The dependence of
lasing regimes on the control parameters was investigated
and the regions of the laser parameters were found in which
quasi-periodic and chaotic regimes were established.

It has been shown that parametric processes and
synchronisation of counterpropagating waves play a sub-
stantial role in excitation of non-stationary lasing regimes in
SRLs. The characteristic features of the nonlinear dynamics
of SRLs were compared in different regions of parametric
resonances. The amplitude and phase synchronisation of
counterpropagating waves in chaotic lasing regimes has
been investigated.

Non-stationary lasing regimes have been classified based
on the difference in the temporal and spectral characteristics
of radiation of counterpropagating waves. This classifica-
tion can be also useful for studying lasing regimes in other
lasers (for example, lasers with two orthogonally polarised
radiation components, coupled lasers, etc.).

The studies performed have shown that solid-state ring
lasers, being complex nonlinear systems, are convenient
objects for studying the general properties of the nonlinear
dynamics of a variety of nonlinear self-oscillating systems. It
has been shown that almost all the results of experimental
studies of the nonlinear dynamics of solid-state ring lasers
are well described by a standard mathematical model.
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