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Dynamics of a delayed-feedback semiconductor laser
depending on the number of stationary solutions

A.P. Napartovich, A.G. Sukharev

Abstract. The lasing regimes of a diode laser with an
external mirror are studied using the Lang — Kobayashi (LK)
equations in the limit of a small distance from the mirror. The
system of LK equations is integrated directly with the help of
a program package developed. In addition, the instability and
bifurcation points of solutions are found by -calculating
numerically the contour integral and the spectrum of
Lyapunov exponents is calculated. The hysteresis zones of
the lasing dynamics are found, which appear when the phase
of a reflected signal changes. The parameters are determined
at which two or three attractors corresponding to different
dynamic regimes coexist in the phase space. It is shown that,
when the rest of parameters are fixed, an increase in the pump
power leads to a chaotic regime according to a classical
scenario via period-doubling bifurcations. The regions of
parameters are found in which packets of regular pulsations
are generated, and the transition of these packets to the
chaotic regime is observed.

Keywords: semiconductor laser with an external mirror, radiation
dynamics.

1. Introduction

The lasing dynamics of a diode laser is often complicated
and poorly reproducible. In the absence of control of the
number of transverse modes, the spectrum of radiation
pulsations contains characteristic frequencies of tens and
hundreds of megahertz, and chaos, if it develops, is
observed in time and space. If one transverse mode is
stabilised, the nonlinearity of a medium in conjunction with
the inhomogeneity of the laser field also can cause low-
frequency pulsations of the field [1]. From the point of view
of using chaotic signals for optical communications, a high
frequency (more than 1 GHz) and good reproducibility of
pulsation regimes are required. One of the variants pro-
viding both these conditions is the use of an additional
mirror placed at a certain distance from a single-mode (in
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the transverse and longitudinal indices) diode laser. For the
conditions when reflection from the external mirror is much
weaker than from the semiconductor face, Lang and
Kobayashi [2] derived dynamic equations, which are now
widely used to study the dynamics of chaotic lasers.

The specific mathematical feature of the Lang — Kobaya-
shi (LK) equations is related to the delay of the field
reflected from the external mirror by the time t;, resulting
in the appearance of a function with the retarded argument.
The solution of equations with the retarded argument is
unambiguously determined, strictly speaking, by the defini-
tion of functions on the interval [—7;, 0], which is equivalent
to the appearance of an infinite number of degrees of
freedom in the system. This circumstance, which makes
such systems substantially different from more conventional
laser systems with chaotic dynamics, has required the
modification of mathematical methods for its study.

The author of paper [3] considered the problem of
calculating the Lyapunov indices for an infinite-dimensional
system, which characterise the dynamic stability of the
system. The calculation procedure was proposed and the
relation was found between these indices and different
definitions of the fractal dimensionality related to the
structure of integral curves in the phase space in the
dynamic chaos regime. As follows from many calculations,
the dimensionality of attractors, which are sets of the fractal
(fractional) dimensionality embedded into the infinite-
dimensional phase space, proves to be finite. By restricting
the dimensionality of the phase space in calculations by a
great number N, we can find the spectrum of Lyapunov
indices (N values). If the positive indices, which indicate the
dynamic instability of the system, change weakly with
increasing N, we can assume that these indices have been
found correctly. The question of the equivalence of the
discrete system of equations, which is used in numerical
calculations instead of differential equations, is solved by
increasing the accuracy of calculations to achieve the
convergence.

The system of the LK equations has five control
parameters, and the radiation dynamics is still too compli-
cated to be completely understood. In numerical calcula-
tions and experiments at different values of control parame-
ters, nonlinear dynamic phenomena such as the period
doubling [4], the quasi-periodic scenario of the transition
to chaos [5], the Ikeda-scenario of the rearrangement of the
system dynamics [6], and bifurcation cascades [7] were
observed.

In Ref. [5], the evolution of the dynamic behaviour of
solutions of the LK equations with increasing feedback
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strength was studied at a long delay time. It was found that
the limit cycle via the bifurcation was transformed to a
quasi-periodic solution with two incommensurable frequen-
cies, so that trajectories in the phase space cover a two-
dimensional torus. Then, the third incommensurable fre-
quency appears, generating a three-dimensional torus, which
rapidly transforms to a chaotic attractor. As the feedback
strength further increases, another chaotic attractor is
created. Experiments [5] demonstrate that the lasing spec-
trum contains a set of frequencies corresponding to both
attractors. If the time resolution is high enough, one can see
that signals for different attractors are anti-correlated and a
random switching from one attractor to another occurs.

When the frequency of relaxation oscillations is multiple
of the delay time of the beam reflected from the external
mirror placed at the distance L (v, = ¢/2L), the transition
to chaos occurs via a chain of period doublings [4].

For a laser near the generation threshold with the round-
trip transit frequency v,. = 1 GHz, the transition to chaos
via the cascade of bifurcations was found [7]. Stable lasing
becomes unstable with increasing the feedback strength,
passing through a series of Hopf bifurcations, and becomes
chaotic. Then, rare deep holes in the laser power appear,
which were related by authors [7] to low-frequency fluctua-
tions (LFFs). As the feedback strength further increases, a
stable lasing again appears, but at a different frequency and
with a higher intensity. Then, the previous scenario repeats.
The coexistence of two regimes — the LFF mode and
stationary lasing, was experimentally observed.

In the papers considered above, which were devoted to
the study of lasers with a long delay time of feedback, the
frequency v, of relaxation oscillations of the laser was used
as a natural measure for the round-trip transit frequency v,.
For short resonators (v, > v,,), the authors of paper [§]
observed a regime in which laser generated a periodic train
of regular pulsation packets (RPPs). Each packet consisted
of light pulses with the pulse repetition rate v.,, while the
RPP repetition rate was approximately an order of magni-
tude lower than the pulse repetition rate. In the case of a
short delay, the dynamics of a laser with a delayed feedback
proves to be similar to the dynamics of a pair of diodes with
optical feedback without delay [9] and demonstrates a two-
frequency (quasi-periodic) scenario of the transition to
chaos.

The possibility of formation of a high-dimensional
chaotic attractor with a high modulation frequency is of
interest for cryptographic communication systems [10], by
allowing the coding and transfer of a broadband signal (a
bandwidth of 1.5 GHz has been already achieved).

It is well known that the LK equations have the so-called
stationary solutions [11]. The number of different solutions
and their stability depend on a combination of parameters,
of which the most important are the feedback strength and
delay time. In this paper, we made an attempt to relate the
type of solutions to the number and stability of the so-called
stationary solutions of the LK equations. The system of the
LK equations was integrated directly with the help of a
specially developed program packet (the Gear method
adapted for problems with feedback). In addition, by
calculating the contour integral, we found the instability
points and bifurcations of solutions and, according to
Ref. [3], calculated the spectrum of Lyapunov indices.
We considered only relatively short delay times, which
provide a high pulsation frequency.

2. Stationary solutions of the LK equations
and their stability

Laser system with an external feedback have been exten-
sively studied (the fundamentals of the theory and results
obtained before 2000 can be found in Ref. [11]). The LK
equations, describing a laser diode with an optical feedback,
have, in the dimensionless variables, the form

%—)T(: (1 —iR)NX (1) +iMX(t — 1) exp(ix), (1)
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where the equation for the complex field X = Eexp (ip) can
be split into the real equations

Z—f: NE(t) — ME(t — ;) sin[x + o(t — 1) — o), 3)
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Here, 7, is the delay time in the feedback loop of length 2L;
wy and E are the frequency and amplitude of the elec-
tromagnetic field. The gain in the active medium slightly
above the lasing threshold can be approximately described
by a linear function G(A") =1/t +g(AN "= ny) of the
carrier density ./, where g = 0G/0.4" is the differential gain
of the medium. The threshold gain is equal to the inverse
lifetime 7, of a photon for a semiconductor laser without
the external resonator. The dimensionless variables are
defined as follows: the field amplitude is X = (1g7,)'?¢ (&
is the complex amplitude of a physical field); the inversion
population measured with respect to the threshold is
N = %gtph(ﬂf — N 4); and the normalised pump intensity
is P =1gtw(pty — A ). The lifetime of carriers T = t,/Ty,
the current time t = #/t,;, and the strength of feedback
from the external mirror M = (R./ Ry x (tpn/74) (R and
Ry are the reflectivities of the mirror and the diode facet, 74
is the round-trip transit time in the diode) were normalised
to the photon lifetime. The anti-waveguide parameter R is
proportional to the ratio of the derivative of the refractive
index with respect to population to the differential gain of
the medium R = —2ky(dn/0.N")(0G/oN )"

Equations (2)—(4) have the so-called stationary solu-
tions [11], which are characterised by the nonzero frequency
Q = 0¢/0t = const, whereas 0E/0t = ON/0t = 0. The sta-
tionary solutions can be found from the equations

N .

i sin(x — Q1;), (5)
RN+ Q = Mcos(x — Q1;), (6)
P=N+(1+2N)E> (7)

From equations (5) and (6), the transcendent equation for
the frequency Q can be derived [11]:
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Q:M(l—i—Rz)]/zsin {QTL—%—&—arctanE}. (3)

The number of solutions of this equation is determined by
one parameter s = Mt;(1 + R?)"?, which is called the
effective feedback strength [11]. The LK equations contain
five external parameters: the pump excess over the thres-
hold P, the lifetime T of carriers, the feedback delay time
77, the feedback amplitude M and phase x. The effective
feedback strength s, which determines the number of
stationary solutions, depends only on the product of two
of them (we ignore the possibility of varying the value of
R). Although the stationary solutions are formally depen-
dent on time, the analysis of their stability with respect to
small perturbations exponentially dependent on time [11] is
reduced to the system of equations for variation of the
coefficients corresponding to the population inversion #;,,,
the field amplitude « and phase y:
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where yT = (1 +2P)/(1 + 2N).
The exponent A can be found from the transcendent
equation

g3(2) = (p + D{M(1 — e ) sin(x — Q1;) — 4]

+M2(1 —e1) cos*(x — Qt, )} — [2(P— N)/T) (10)

x{M(1 — e ") [Rcos(x — Qt;) + sin(x — Qt;)] — 1} = 0.

The presence of the root 4 =0 is caused by an arbitrary
choice of the phase reference point. The stability of
stationary solutions is determined by the sign of the real
part of A. The solution is unstable when ReZ > 0. To
exclude the root at the coordinate origin, we introduce the
function g,(1) = g3(1)/4.

Equation (10) takes the form

©(0) = Ay + A)[1 + M2 + 2Mfsin(Qt; — »)]
+{2[P + Msin(Qt, — »)]/T}{1 — Mf(1 + R?)""
x cos[Qt; — » + arctan(1/R)]} =0, (11)

where f= (1 —e “*)/2. The number of zeroes of equation

(11) in the right complex half-plane can be expressed in
terms of the contour integral covering the right half-plane,

25(4)
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This contour integral can be reduced to the integral
along the imaginary axis. Then, the number of zeroes of
equation (11) in the right half-plane is determined by the
expression

This integral can be calculated numerically using one of the
subroutines of the program packet. The instability develops
when one of the zeroes of equation (11) passes from the left
half-plane to the right one (n = 1). The Hopf bifurcation
corresponds to the simultaneous crossing of the imaginary
axis (symmetrically with respect to zero) by two roots. In
this case, the lasing regime changes, and oscillations appear
at the frequency coinciding with the imaginary part of the
roots.

In the short resonator approximation, Mt; < 1, we can
estimate the frequency of field oscillations at the Hopf
bifurcation points. Assuming that A =iw, we obtain two
complex conjugate roots with an accuracy to the second
order in wt; < 1:

_ar-m)
T
1— Mz, (1+ R2)1/2 sin(x — Qt; + arctan R)

- 12
1+ M2t — 2Mxz; sin(x — Qt;) (12)

The critical value of the phase ¥ = %, can be found from
the equation [assuming additionally that M < P and taking
equation (5) into account]

yT

P—+ 2MTL[MTL — Sin(%cr — QTL)] + M'L'L(l + R2)1/2
L

(13)

X sin(xg — Qt; + arctan R) = 0.

In the rough approximation, the frequency of laser
oscillations is of the order of the relaxation oscillation
frequency (2P/ T)l/ 2. However, actually within the limits of
applicability of expressions (12) and (13), the dependence of
the oscillation frequency on the effective feedback strength
s proves to be noticeable.

3. Calculation methods

The system of equations (2)—(4) was solved using one of
the variants of the Gear method. The advantage of the
Gear method over other multistep methods of the
numerical integration of rigid systems is that this method
allows one to change easily the integration step and order.
The features of the calculation program used in the paper
are described in Appendix 1.

The spectrum of the Lyapunov exponents in systems
with delay is calculated using the Packard —Takens proce-
dure. According to the Takens theorem, it is necessary to
use the embedded space with the dimensionality that is no
less than two times plus unity greater than the dimension-
ality of the attractor being studied. Under this condition, it
is expected that the spectrum of positive Lyapunov indices
required for a finite system will be adequate to the spectrum
for the initial infinite-dimensional system.
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When the attractor dimensionality is small (in the case of
a short external resonator), the dimensionality of the
embedded space can coincide with the dimensionality »
of the system. As the feedback delay time increases, the
attractor dimensionality also increases. Then, the genera-
lised Packard—Takens procedure [12] is used to construct a
new embedded space of the dimensionality m * n, which is a
combination of phase spaces formed by the state vectors of
the system at the moments i, i + 1,..., i+ m — 1. It follows
from the Takens theorem that almost for any realisations of
the dynamic system constructed in such a way, its attractor
will have the same properties as the required attractor if
only the dimensionality of the constructed embedded space
proves to be sufficient to describe the properties of the
required attractor with the Hausdorff dimensionality dy
(m*nz=2dy+1).

Under such a condition, the attractor dimensionality and
the spectrum of Lyapunov indices found for a finite-dimen-
sional space are good approximations of these quantities for
the required attractor. For the LK equations, the number of
equations is n = 3. It is natural to restrict the number m by
the number of the grid nodes falling into the delay interval
for the chosen integration step: m = t/h. The integration
step is determined by the required accuracy, so that m
proves to be proportional to the delay time. Already for
7 = 10, it is unreal to take the maximum value m = 2000 for
calculations. However, there is no need to calculate many
Lyapunov indices. When the index is equal to a great
negative number, this dimension disappears (is compac-
tified) for the attractor. Calculations showed that to find
positive Lyapunov indices for T = 80, it is sufficient to take
m = 3 — 4. The details of calculations of Lyapunov indices
are presented in Appendix II.

4. Results of the numerical calculation
of the system dynamics

It is convenient to analyse the solutions of the LK
equations beginning from the frequency Q of the stationary
solution, which, for the fixed effective feedback strength,
can be obtained as a function of the feedback phase x (due
to the obvious periodicity over x, it is sufficient to consider
the region 0 < » < 360°). The greater is the effective feed-
back strength at the fixed phase, the greater is the number
of stationary solutions. We analysed variations in the lasing
dynamics with increasing the effective feedback strength
accompanied by the complication of the dynamics. We paid
main attention to the study of the role of the feedback
phase, which is difficult to control in experiments. The
presence of many parameters in the problem makes the
classification of regimes and scenarios of the chaos
development extremely complicated.

We used in numerical calculations the values 7'= 1000
and R = 3, which are typical for diode lasers. In addition,
we considered only a laser pumped slightly above the
threshold P. Figure 1 shows the dependence Q(x)t; /s for
a comparatively weak effective feedback strength and the
parameters P = 0.2, M = 0.02, and 7; = 10. On the curve
the regions corresponding to stable stationary solutions are
indicated, as well as the regions of instability with respect to
Hopf bifurcations (the presence of two roots in the right
half-plane). One can see that the instability to Hopf bifur-
cations is observed in a small vicinity of the phase » = 90°.
The first Lyapunov index at this point is 74; = 0, which is

o/[M(1+R*)""]
1.0

05 R

—0.5

Figure 1. Stability diagram for stationary states for P = 0.2, M = 0.02,
and t; = 10; hereafter, n is the number of roots with Rel > 0.

explained by an arbitrary phase reference point. The next
two indices are weakly negative: T4, = —0.06 and TA; =
—0.088, whereas the fourth index is already a great negative
number 71, = —270. Therefore in this case, the embedded
space is restricted by three dimensions.

Except the phase, all the quantities are strictly periodic
in time (Figure 2 shows the behaviour of the field and
inversion), which corresponds to the presence of the limit
cycle in the phase space. The oscillation period is T, = 274.
The derivative of the phase (the instant frequency value) is
also strictly periodic. However, the phase shift over the
period is, as a rule, not multiple of 2n. The oscillation
frequency near the lower bifurcation point x ~ 80° (Fig. 1)
satisfies expression (12), and the position of the point can be
found from expression (13).

E/P'? N/M

2.0

1.5

1.0

0.5

0
199.07 199.2T 199.4T

199.6T

199.8T

Figure 2. Time dependences of the field amplitude £ and inversion N of
the medium for » = 90°, P=0.2, M =0.02, and 7, = 10.

As the feedback strength or delay time increases, the
dependence Q(x)t; /s becomes ambiguous (Fig. 3), and the
region appears where solutions are unstable (of the saddle
point type) (the aperiodic development of instability). The
interval where the Hopf instability is present increases
noticeably. In the general case, if several stationary states
correspond to one value of the phase, among which a stable
state exists, the solution becomes, as a rule, stationary.
Therefore, we paid the main attention in this work to the
study of solutions near bifurcations and in the bistability
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region. The shape of self-oscillations near the extreme
bifurcation points is shown in Fig. 4, and the Lyapunov
indices and oscillation periods are presented in Fig. 3. One
can see from Fig. 4 that the type of pulsations strongly
depends on the phase x, changing from incomplete modu-
lation when the phase is small to separate intense peaks for
the phase » = 180°. Note that for » = 30°, two Lyapunov
indices are zero.

Q/[M(1+R*)"]
1.0

0.5

Figure 3. Stability diagram for stationary states for P = 0.2, M = 0.02,
and t; = 20.

199.07 199.2T

19947 199.6T 199.8T T

Figure 4. Dynamics of the field E for » = 30 and 180°, P =0.2, M =
0.02, and 7; = 20.

LW
T A=90
Al Ta=0 : 5
TjQ:*O.SO .......... .........

Tiy = —2.82

—0.5

-1.0

Figure 5. Stability diagram for stationary states for P = 0.2, M = 0.02,
and t; =20. The straight arrow along the » axis denotes the self-
oscillation region.

Figure 6 shows the change in the stability regions of
stationary solutions for the same efficient feedback but with
different values of the feedback strength (M = 0.02) and
delay time. In this case, the bistability region disappears,
however, the hysteresis remains. As the phase increases from
zero, the stationary solution is preserved until the break
point 4, and then self-oscillations appear with the period
Tose = 529 (Fig. 6, point 1; Fig. 7). Oscillations are pre-
served as the phase further increases up to x» =~ 185°
although the stationary solution is stable in this region.
When the phase changes in the opposite direction, the
stationary solution (Fig. 6, point 2) is preserved down to
» ~ 110°, and then self-oscillations appear, which have the
form close to that observed at point 1. At x =~ 70°, self-
oscillations rapidly change to the upper stationary state. We
found that, at the given parameters (x =~ 120°, point 3), the
system under study has one more attractor in the form of
the limit cycle. This attractor was found when the phase
rapidly changed from 165° to 120°. Therefore, for x ~ 120°,
depending on the initial conditions, one of the three regimes
shown in Fig. 7 can be realised. The complicated nature of
the system is demonstrated by the presence of the two zero
Lyapunov indices for self-oscillation solutions. This example
demonstrates the complexity of the phase space for the LK
equations and the necessity of a search for new methods for
its detailed study.

The increase in the efficient feedback strength due to the
increase in M up to 0.04 leads to the appearance of a region
where two stable stationary solutions can coexist (Fig. 5).
As a result, when the feedback phase changes, the hysteresis
region appears where the solution depends on the direction
of the phase variation (indicated by the dashed arrow in
Fig. 5). In particular, as the phase decreases along the lower
branch and comes to the bistability region, the stationary
solution is stable until the jump to the upper stable sta-
tionary solution. As the phase increases from zero, the upper
stationary solution is stable until the break (linear insta-
bility) indicated by the vertical arrow directed downward in
Fig. 5. The development of instability leads to the spike
regime with a deep modulation of the field and period T, =
819, which is close to the inversion relaxation time (7 =
1000). The hysteresis indicates the presence of two coexisting
attractors in the phase space (a stable node and a limit
cycle).

Q/[M(1+ R

1.0 ................. . .......................
Ti, =0 |0
.,3 Tip =0 I.:
Tiy——127

T/3 =—6.90:
: Tose =529
1.0 beeeee SFURRUUT SUOTITS SUSTOIUIOE NUUUON
0 60 120 180 240

Figure 6. Stability diagram for stationary states for P = 0.2, M = 0.02,
and 7; = 40. The dashed straight arrow denotes the hysteresis region
with increasing x; 4 is the point of a break to a stationary state; bent
arrow 3 shows the drop of » used in calculations.
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. Regirﬁe 1
o Regime 2
e Regime 3

199.0T
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Figure 7. Dynamics of regimes 1, 2, and 3 for » = 120°, P =0.2, M =
0.02, and 7; = 40.

The efficient feedback strength was further increased
also by two methods, either by increasing M (Fig. 8) or the
delay time (Fig. 9). As before (cf. Fig. 5), as M increases, the
bistability region broadens and the hysteresis is observed.
Oscillations appearing after the Hopf bifurcation are close
to harmonic oscillation with the period 1.97; (t; = 40,
Fig. 8) and 1.87; (tr; =80, Fig. 9). This means that the
dynamics is stabilised with increasing feedback strength:
oscillations become weaker and the stability region of
stationary solutions increases. As the delay time increases,
the bistability region disappears (Fig. 9); however, the
hysteresis is enhanced and the degree of modulation of
oscillations increases.

1.0

0.5

—-0.5 |

L Th = - :
1.0 B ] ........... | e -';inulu‘\l'!".‘".”l .. [ .......... l ..........

0 60 120 180 240 300 360

Figure 8. Stability diagram for stationary states for P = 0.2, M = 0.04,
and t; = 40. Jumps of regimes and the hysteresis region are shown by
the arrows.

We studied the effect of the pump power level on the
lasing dynamics for M = 0.02 and 7; = 80. For the same
shape of the multiple-valued curve (2(x)t; /s), the increase
in the pump power leads to the region broadening, where
the stable stationary state is absent (cf. Fig. 9 and Fig. 10).
When the phase is fixed, the increase in the pump power
leads to a cascade of period doublings resulting in the deve-
lopment of the chaotic regime. The phase portrait of the
chaotic solution for x =240° and P =0.6 is shown in
Fig. 11. The first positive Lyapunov index for this regime
is 5.05 and the next two indices are zero. In this case, the
Lyapunov dimensionality is 3.7. Therefore, the increase in

Figure 9. Stability diagram for stationary states for P = 0.2, M = 0.02,
and 7; = 80.

Q/[M(1+R*)'"]
1.0

0.5 |

—0.5

Figure 10. Stability diagram for stationary states for P = 0.6, M = 0.02,
and 7, = 80.

0 0.5 1.0 1.5 2.0 2.5
E(t — 150)/P"/?
Figure 11. Phase portrait for the field amplitude in the chaotic regime for
P=0.6, M =0.02, 7; =20, and » = 240°.

the pump power, as expected from the general considera-
tions (the increase of nonlinearity) complicates lasing
regimes.

The doubling of the delay time compared to that in
Fig. 8 results in the increase in the number of possible
stationary solutions (Fig. 12). However, almost all of them
are unstable with respect to either linear perturbations or
Hopf bifurcations. In the interval » = 150° — 240°, a stable
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stationary solution cannot exist. Our calculations showed
that during motion along the stationary state to lower
phases, almost harmonic self-oscillations appear at the
bifurcation point. Self-oscillations become more compli-
cated only close to the boundary of stability of the
upper branch of stationary states and take the form of
packet of regular pulsations, described earlier [8]. For x =
160°, the three Lyapunov indices are zero. In this case, the
Lyapunov dimensionality is equal to three (see Appendix
I1), so that it is convenient to represent the phase space in
the form of a three-dimensional torus.

0 60 120 180 240 300 360

Figure 12. Stability diagram for stationary states for P = 0.2, M = 0.04,
and 7; = 80. Jumps of regimes and the hysteresis region are shown by
the arrows.

One can see from Fig. 13 that oscillations with the
characteristic period ~ 0.17 are modulated at a lower
frequency. The scale of fast oscillations is determined by
the frequency interval between the branches of stationary
solutions, while the latter in turn are determined by the
delay time t;. Indeed, the frequency interval in Fig. 12 is
equal to 0.57M(1 +R2)1/2, corresponding to the period
87.4, which is close to the characteristic period of oscil-
lations inside a packet. This allows us to interpret the system
dynamics in terms of the three modes of an external
resonator, each of them corresponding to the torus dimen-
sion in the phase space. The relaxation oscillation frequency
= (2P/T)1/2 is estimated as 0.02 (period 314). Therefore,
the period of a smooth RPP envelope is approximately
equal to the doubled period of relaxation oscillations.

As the feedback phase further decreases (Fig. 12), the
hysteresis is observed. Near the jump to the upper stationary

E/P'?

o b S Th =Ty =Ths =
1

199.07  199.2T 19947 199.6T 199.8T T

Figure 13. Field dynamics in the regime of packets of regular pulsations
for » = 160°, P = 0.2, M = 0.04, and 7, = 80.

solution (» = 130°), the RPP regime passes to the dynamic
chaos (the positive Lyapunov index appears) with rare deep
holes in the field. As a whole, the lasing dynamics is close to
the experimental dynamics observed in paper [7]. Note that
the RPP regime and chaotic regime with deep rare holes are
observed in a narrow interval of feedback phases. According
to the Kaplan—Yorke formula (Appendix II), the dimen-
sionality of the strange attractor in the chaotic regime is
di = 4.12. The spectrum of Lyapunov indices contains one
positive number and two zeroes: 1.3, 0, 0, —0.7, =5, —10.

5. Conclusions

We have studied different generation regimes of a diode
laser with an external mirror using the LK equations based
on the stationary solutions whose number increases with
increasing the effective feedback strength. The system of the
LK equations was integrated directly using a specially
developed program package. In addition, we found
numerically the instability and bifurcation points of
solutions by calculating the contour integral and calculated
the spectrum of Lyapunov indices following paper [3].

As the efficient feedback strength increases due to the
feedback strength itself (the value of M), bistability regions
appear, i.e., two stable stationary solutions for the same
feedback phase. Simultaneously, the hysteresis appears with
a more general behaviour, which is related to the presence of
two coexisting attractors. When the effective feedback
strength increases due to the delay time, the bistability
region does not appear; however, the hysteresis remains.
When the feedback phase was rapidly changed by a finite
value, another self-oscillation regime appeared. As a result,
we have shown that there exists the value of the feedback
phase at which three attractors coexist (a stable node and
two limit cycles).

As the pump power is increased, the rest of the
parameters being fixed, the chaotic regime appears after
the sequence of period-doubling bifurcations. The dimen-
sionality of the strange attractor (3.7) is higher in this case
than that for a couple pair of diode lasers [9]. A further
increase of the feedback strength, when the delay time is
7, = 80 (in the units of the photon lifetime in laser diode
resonator) leads to the appearance of packets of regular
pulsations [8], which transfer to the characteristic chaotic
regime with rare deep holes in the laser emission [7] when
the feedback phase changes.
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Appendix I

Formulas for numerical integration

The numerical integration of the LK equations is based on
the Gear method [13]. This method uses backward diffe-
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rentiation for equations y’' = f(x, »); then, the prediction
has the form

k
Yn = Z Aiynfi + hBLf(xnfl » Vn—1 )7
i=1
and the correction is
k
Yn = Z a; Yn—i =+ hb()f (xnayn)n
i=1

where A;, By, a;, and b, depend on the order k. The
iteration process is performed using the transformation

i =y kg [ (0 p7) — By (L1)

Let us introduce the vectors Y, and Y,!"), the matrix D, and
the Nordsic vector Z:

y"/ yn/(y)
Y, = hy, , Y”(V) B ,
Yn—1 Yn—1
Yn—k+1 Yn—k+1
Ay By Ay Ag J’(,Xn)
_ Y1 51 V2 Vi _ hy (xn)
PE10 0 0 o | RIS
0 0 1 0 (h*/6)y" (x,)

The prediction and iteration process for the vector Y, are
written as

Y\ = DY, . YV =¥ 4 ceF(Y)), (12)
where the residual function F and the vector ¢ are
F(Y) = hf (x,05") = hy, ),
(1.3)

c=(by 1 0... 0)".

In the Gear method, the Nordsic vector is used as the
main vector, which is related to the vector Y, by the

transformation Q: QY(x,) = Z(x,) + O(hl"“)). Then,
anl = Q)/nfl and
=Y, =0DY, , =0D(27'0)Y,
=(epo)oY, = (0D07")Z, (1.4)

The matrix P = QDQ "' proves to be the triangular Pascal
matrix. By introducing the vector I=Qc=(l, [, L...
I)T containing the Gear coefficients, we obtain from (I.2)

ZIEO) = Panla (I 5)

=Y\ + QcF(Y)

because the residual function depends only on the first two
components of the vector Y, while the transformation Q
does not change the first two components. It is obvious that
Z, = Z\” + Iw, where

Z (v+1) QY (v+1) _ Zr(lv) +IF(ZH(V)),

w= lim ;F(Z,ﬁf)

and F(Z,) = 0. Therefore, F(Z”(O) + Iw) = 0. We solve this
equation by the Newton method:

0+1) _ ) _ {aF( 4w

w oz

N q-1
) 1} F(Z + w™),

which is equivalent to the procedure ZU*D =z0)_
1 WF(Z,SV)). The initial approximation is determined using
(I.5), while the expression for the matrix W follows from
the definition of the residual function (I1.3)

v [ - [ )]

oy

and is related only to the Jacobian of the equation and the
first two Gear coefficients. The final iteration process looks
as

z\0 =Pz, |,

) nyVn B
f( a}y )_ll [hf( r/7yn )_hyn ]

—1|hl, (1.6)
Because the Nordsic vector consists of derivatives, the order
is reduced by discarding the surplus components of this
vector, while the increase in the order by unity is performed
through the difference of the last components of two
adjacent vectors Z, and Z,_ ;. The prediction of errors
allows us to select the optimal step and order of the
integration scheme. The algorithm was realised using the
C++ language, and the feedback delay was taken into
account by memorising the intermediate data in the form of
the additional set of data.

Appendix II

Calculation of Lyapunov indices

Consider a system of nonlinear equations x = F(x, z),
z(f) = x(t — 1), where x () are the components of the vector
depending on time. For the vector y(7) of small perturba-
tions with respect to the solution x (), determined by the
initial conditions, the system of linear equations is written
from the Jacobian of the initial system of equation on the
solution trajectory

i= (5 e (5 e

The solution of this equation is found at the integration
step.

To solve the homogeneous part of the equation, we
introduce the matrices

An(h) = exp(Gn)7 n = (h 7) >
Ox "+1/>

which are defined at points in the middle of the integration
intervals. This allows us to perform calculations to the
second-order accuracy. The exponential A4,(/) is calculated
in the second order by expression 4,(h) = (E— G, /2)’1><
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(E+ G,/2). For the inhomogeneous part of the equation, 7.

we define the second matrix as 8.
h OF .
B}‘l = (2 a >
2/ i=(n+ /) s 10.
11.

Then, the solution of the equation will be determined by the
operator

h
Yoyl = An(h)|: n +% L) A;l( )Bny<t - T)dt

13.

The solution is found by using the recurrence scheme

Yng1 = An[yn + Bnyn—r/h] + Bnyn-H—r/ln
4
Iny2 = An+1 Yn1 + g Bn+1yn+17r/h
1 2
- § (Aanyn—r/h - Bnyn+l—r/h) + § Bn+ly/1+2—r//z~

By dividing the integration axis into equal time intervals,
for example, of duration 7, and by defining in terms of Q;
the expansion (contraction) transformation of the unit
Vectors v(’ ) on the ith time interval, we obtain w(’ ) =
0,; 28 A set of new vectors is orthogonalised by the
Gramm — Schmidt method:
o),
where the unit vectors v(” are constructed from the
obtalned ortho onal vectors u'): v =u"/d"); here,

(u )1/ 2 are vector lengths. Then, the Lyapunov

1nd1(:es are found as the limit of a sum over many time
intervals

J; = lim (mt) Zd

m—o0

The so-called Lyapunov dimension d; is determined from
the spectrum of Lyapunov indices. If all the values of /; are
ordered in their decreasing order (4, =74, > ... =4,)),
then, according to the Kaplan—Yorke formula [12], we
have

where j is determined from the conditions 4,4+ 4,
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