Quantum Electronics 35(11) 1045—1052 (2005)

©2005 Kvantovaya Elektronika and Turpion Ltd

PACS numbers: 42.25.Bs; 42.60.Jf
DOI:10.1070/QE2005v035n11ABEH013034

On alternative methods for measuring the radius
and propagation ratio of axially symmetric laser beams

A.S. Dement’ev, A. Jovaisa, G. Silko, R. Ciegis

Abstract. Based on the developed efficient numerical methods
for calculating the propagation of light beams, the alternative
methods for measuring the beam radius and propagation ratio
proposed in the international standard ISO 11146 are
analysed. The specific calculations of the alternative beam
propagation ratios Miz performed for a number of test beams
with a complicated spatial structure showed that the
correlation coefficients c¢; used in the international standard
do not establish the universal one-to-one relation between the
alternative propagation ratios M? and invariant propagation
ratios M,f found by the method of moments.
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1. Introduction

The main parameters characterising an axially symmetric
laser beam are the beam radius w(z), the radius of curvature
R(z) of the wave front, and the divergence angle 0.
However, these parameters can be rather simply determined
only for Gaussian beams [1—3]. In the case of beams with a
complicated spatial structure, the International Standard
Organization proposed to use the normalised moments of
the beam power density distribution for determining the
beam radius and other parameters, in particular, the
propagation ratio M> [4]. The averaged description of
wave beams in linear and nonlinear media by using the
method of moments of the transverse distribution of the
energy flux density was proposed as early as 1971 [5]. The
main advantage of this method is that the radius of an
axially symmetric beam changes along the beam propaga-
tion direction by the same law w2 (z) = w2+ 02 (z— z,0)” as
for axially symmetric Gaussian beams; here, wy, is the
beam radius in the z =z, plane of the generalised waist
and 0, is half the total beam divergence [3, 4]. These
parameters for Gaussian beams coincide with usual
parameters, for which the relation wy0, = /= is fulfilled,
where /1 is the wavelength [1, 2].
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In the general case, this relation takes the form
Wo00,0 = M2/ /m, where M2 >1 is the so-called beam
propagation ratio [3, 4]. Note that this ratio is minimal
for Gaussian beams (M2 =1) and M? > 1 for all other
beams, the numerical value of this ratio being preserved
during the beam propagation in the first-order optical
systems [1—3]. It is this invariance property of the ratio
M? that makes it attractive and useful. Although critical
comments concerning the parameter introduced in this way
are well known (see, for example, [6, 7]), nevertheless the
international standard ISO 11146 [4] used till recently is also
recommended in the literature in Russian [8] and the beam
propagation ratio M2 (or the beam quality) is now widely
employed in papers.

Unfortunately, the measurement of the beam radii and
propagation ratios by using the second moments requires,
first, multielement detectors for measuring the transverse
distribution of the laser beam intensity, which is possible not
for all wavelengths. Second, the processing of experimental
results obtained with CCD or CMOS cameras [9] involves
certain difficulties caused by the presence of a dark
inhomogeneous background and thermal noise from indi-
vidual pixels in the measured intensity distribution (energy
density) (see, for example, [3, 9—11] and references therein).
In addition, high-quality CCD cameras are still quite
expensive. For this reason, the applied standard [4, §]
allowed the measurement of the beam radii and propagation
ratios by the so-called alternative methods based on the use
of a variable circular aperture, a moving knife or a slit. The
standard [4] assumes that there exists a correlation between
the propagation ratios M? and M} determined by the
alternative methods, which is established by the relation
M, =c;(M;— 1)+ 1. This linear (in M = VM?) relation
allows one to perform simply the conversion of results if the
correlation coefficients ¢; are known. The coefficients ¢;
recommended in [4] were found in experiments with low-
power gas lasers. It is pointed out in [4] that for the beams
with the propagation ratios M> >4 and lasers of other
types, the values of these coefficients should be verified.
However, because of their simplicity, the alternative meth-
ods are also widely used for measuring beam radii and
propagation ratios for various solid-state lasers [12—14],
including phase-conjugate lasers having a high degree of
radiation coherence [13, 14].

One of the most popular alternative methods is the
method for measuring the beam radius and propagation
ratio by means of a variable circular aperture [15]. It was
shown recently that for the incoherent superposition of two
coaxial Gaussian beams, the propagation ratio M meas-
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ured by this method can be smaller than unity [16]. This
means that for the positive correlation coefficient, ¢, > 0
and the beam propagation ratio measured by the method of
moments is M2 < 1. This example shows that the use of
alternative methods, assuming the existence of the above-
mentioned correlation, can lead to physically unsatisratioy
results. Nevertheless, a new version of the standard [17]
retains the possibility of using alternative measurement
methods. For this reason, we analysed in this paper in
detail the relation M, = ¢,(M; — 1)+ 1 for a number of
axially symmetric beams with the known propagation ratios
M? by using the efficient numerical methods developed for
calculating the propagation and focusing laser beams of a
complicated spatial structure [18] and showed that no
universal one-to-one relation exists between M? and the
propagation ratios M? found by alternative methods.

2. Method for calculating focusing
of complicated beams

For simplicity we consider axially symmetric monochro-
matic beams E(r,z,t) = Releu(r,z)exp (ikz — iwt)]. Here, e
is the unit polarisation vector, k =2n// is the wave
number, A is the wavelength, w is the cyclic frequency,
and the slowly varying complex amplitude u(r,z) satisfies
the parabolic equation

%+A,u_
oz 2k

in a free space, where

10 0
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is the transverse Laplacian. It is well known [1-3] that
Eqn (1) has solutions in the form of the Laguerre-—
Gaussian (LG) modes:
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where L,(-) is the Laguerre polynomial, and the beam
radius w(z) of the fundamental Gaussian mode and the
radius R(z) of the wave-front curvature are described by
expressions

w(z) = 11)0{1 + F(z—_f‘)r}l/z and

Twy
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The values of radii @w(z) and R(z) are uniquely determined
by the position of the waist plane Z, and its radius w,. It is
obvious that the position of the waist plane Z, and its radius
Wy can be determined from the values of radii w(z) and
R(z).

It is well known [1-3] that any axially symmetric
solution of Eqn (1) can be expanded in the eigenmodes (2)
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where the coefficients

Cy(z1) = 27'5J
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depend not only on the choices of the initial plane z = z;
but also on the parameters determining a set of eigenmodes
(2). This important circumstance is indicated by the tilde in
expansion (4). Let us explain this by a simple example. The
solution of Eqn (1) in the form of some LG mode u(r, z)
can be always expanded over the full system of modes (2).
However, in the general case many expansion terms (4) are
required. And only in the case when the parameters of
expansion modes exactly coincide with those of the initial
mode, only one term (p =g¢) in expansion (4) will be
required. To describe the diffraction of the initial beam by
an aperture, again many LG modes will be obviously
required [19], the criteria for their choice being quite
uncertain in the general case [20]. It seems that for this
reason the efficient mode-expansion method (MEM) is used
comparatively rarely in numerical calculations of diffraction
problems [1-3, 18—-22].

Thus, to use the MEM for numerical calculations of the
propagation of beams of a complicated structure, additional
considerations are required, which are obviously related to
the beam propagation ratio for the problem under study.
Because the determination of the beam propagation ratio
for beams restricted by rigid apertures involves some
difficulties [3], we will consider below only the beams
that are not restricted by rigid apertures. During the
propagation of such beams, the total power and the
propagation ratio are preserved [23, 24]:

P(u) = 27'5[ |ul*r dr, ®)
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1

4
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In addition, it is also convenient to introduce the beam
radius and the radius of beam curvature determined by the
method of moments [3, 23]:

(N
1 -l rc”z a_uu* B ou” dr,
R(uw) ~ wiwPw )y " \&" T or
as well as the generalised complex beam parameter
11 M
_——= — g . 8
¢ R, w2 ®

Then, the ABCD law [1—3] can be used for any, not only
Gaussian, beams [23]. Its application shows that to any
beam a Gaussian beam can be ‘embedded’ whose radius
wg(z) = (W2(2)/M2)"? and radius of curvature Rg(z) =
R,(u) vary as for a usual Gaussian beam with the Rayleigh
waist length Zy = kivg,/2, where gy is the waist radius of
the embedded Gaussian beam [25, 26].
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The concept of an embedded Gaussian beam is often
useful for optimisation of the expansion in the LG modes

N,

uap(r, z) = Epﬁp(n z) 9
p=0

to minimise the approximation error [25—28]. By using the
energy norm, it was shown in [28] that for beams with a
plane wave front in the input plane [R;(u) = o], the
relation & < (M2 — 1)/2N, for the relative error

o0
J |u — uap|2r dr
0

L —
J |ul*r dr
0

&=

is valid if the LG modes with w, = g, in the input plane
are used in expansion (7).

Unfortunately, such simple estimates cannot be obtained
in the general case, the more so for other norms [18].
Therefore, we used here the following procedure. First the
LG mode parameters and their number were selected so that
errors in the specified norm would be minimal for the start
plane (usually, the z; = 0 plane). Note that in the general
case, to achieve this goal, the radii of the beam [tw(z;)] and
curvature [R(z;)] of the fundamental LG mode may not be
coincident generally speaking with the corresponding radii
of the initial (or embedded Gaussian) beam determined by
the method of moments.

Having received minimal errors in the initial plane, we
can hope that rather small errors in the specified norm will
be also obtained in other planes. To control additionally the
accuracy of expansion of the beams in the LG modes, we
calculated first from expressions (5) and (6) the power and
the beam propagation ratio and compared them with the
corresponding expressions [25] for the power and prop-
agation ratio of the coherent superposition of the LG
modes:

P(u) = 3 &y, Mo(u) g{[% (2p + 1)R,,1,]2

p=0

(10)
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where R,,, = ¢;C,,/P(u) are the normalised expansion
coefficients and the condition

N,
> (p+1ImR,,. =0
p=0

should be fulfilled for collimated beams in the initial plane.
If the LG modes with the radius of curvature obtained from
the relation

I 1 1

o 11
R 7 R (1m
are used for the initial beams with aberrations and the
wave-front curvature R, after a focusing lens with the focal
distance f, relation (10) is again valid and can be once more
used to control the expansion accuracy.

To reduce the number N, of nods of a radial network,
two independent transformations were normally used. First,
calculations for the specified plane z were performed only
within an aperture dependent on z, which was varied
according to a certain law, for example, like the initial
beam radius: A4(z) ~ w,(z). Second, the transformation of
the transverse coordinate was used, which allowed one to
obtain from the homogeneous grid ri(z) = jA(z)/N, the
inhomogeneous network with the near-axis condensation
of points (j =0, 1, 2, ...). Taking into account that the radius
of the higher LG mode determined by the method of
moments is w,,(z) = wy(z)(2p + 1)'/2 [3], the aperture radius
was matched to the number N, of expansion modes.
Therefore, the size of the initial aperture was chosen to
provide the fulfilment of the inequality A(0) >
wy(2N, + 1)1/ 2. In this case, the number of radial points
was chosen sufficiently large (N, ~ 2000) in order that the
expansion accuracy would be determined only by the
restriction of the number N, of expansion terms.

To verify the assumptions presented above, we per-
formed the corresponding calculations of the propagation
and focusing of the beams for which exact analytic solutions
are known. First of all, the coherent superposition of coaxial
Gaussian beams, which can give the zero intensity at the
beam axis [29], belongs to the beams of this type. The exact
solution is also known for the propagation of a Bessel—
Gaussian (BG) beam [30]. For a BG beam collimated in the
initial plane, analytic expressions were also found for the
expansion coefficients in LG modes [31]. Integral expres-
sions for the expansion coefficients of a Gaussian beam with
spherical aberration were obtained in [26].

The exact and approximate (by the given method)
transverse field distributions were calculated for these beams
behind a focusing lens (the calculations were performed for
definiteness for a spherical lens with the focal distan-
ce f=100 cm and beams at a wavelength of 1.06 um)
and the calculation errors were found for the given norms.
The additional control was performed by calculating the
beam propagation ratios in these planes from (6), which
were compared with the known values. Our calculations
showed that for different beams with close values of M2, the
numbers of expansion terms required to obtain the given
accuracy could significantly differ depending on the selected
beam radius and the radius of curvature of the LG modes.

3. Calculation of the alternative beam radii
and beam propagation ratios

The main advantage of the method of expansion in the LG
modes over the diffraction integral method [1—3] is that, by
calculating once expansion coefficients ¢,, it is easy to
calculate the field distribution u,,(r, z) in any plane because
the propagation law of LG modes (2) is known. It is for this
reason that the MEM is convenient for the numerical
analysis of alternative methods for measuring the beam
propagation ratio, when it is necessary to calculate the field
distribution simultaneously in many planes.

A fraction of the beam energy propagating through a
centred circular aperture of radius a in a given plane can be
calculated most conveniently from the known field distri-
bution u,,(r,z). For a Gaussian beam, this fraction is
nag(a,z) = 1 — exp[—2a* /wd(z)], where wg(z) is the beam
radius in the z plane. The calculation of the beam energy
fraction propagating through a slit of width 2d whose
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middle is located at a distance of ¢ from the beam axis is
somewhat more complicated. For a Gaussian beam, this
fraction is

)|

wg( wg(2)

where

2 X
erf (x) = ——| exp(—¢?)ds
() == ew(=r)
is the error function [12]. Obviously, this fraction will be
small for a thin slit (d — 0). Therefore, it is more
convenient to use the energy fraction transmitted through
a narrow slit normalised to a maximum. For a Gaussian
beam, this fraction is #,g(c,z) = exp (—202/w(2;(z)). Note
that the bar over #, in figures below is omitted for
simplicity. Calculations of the energy fractions transmitted
through a slit and a moving knife are closely interrelated. If
the fraction of energy propagated through a slit of width 25
centred with the beam axis (¢ = 0) is known, the standard
energy fractions behind a moving knife at any specified
level can be easily calculated [3, 4, 8, 17]. For a Gaussian
beam, the fraction of energy propagated through such a slit
is nyg(b,z) = erf(ﬂb/wG(z)). Note that the transmission
curves for a Gaussian beam are self-similar at any cross
section of the beam.

The radius of an arbitrary axially symmetric beam is
measured according to the international standard ISO 11146
[4, 8] and its new modification [17] as follows. The aperture
radius g g through which 86.5 % of the total beam power
propagates is found by the linear interpolation method. This
radius is taken as the beam radius w,gs determined by the
variable aperture method from the fraction of transmitted
energy 7, = 0.865. To measure the aperture radius a, for a
different fraction (1) of transmitted energy, it is necessary to
find the relation between this radius and the standard (at the
86.5 % level of the total power) radius of the equivalent
Gaussian beam w,, = k,(11)a,.

The expression for the correspondence coefficient
k,(1)={2]-In(1 — ;7)]71}1/2 can be easily obtained from
the above expressions. The equivalent radii for any specified
level can be obtained from the calculated transmission curve
1,(a, z) monotonically increasing with the aperture radius a.
Below, we present the calculated equivalent radii for trans-
mission of the energy fractions 0.80, 0.86, and 0.95 for which
the coefficients k, are equal to 1.12, 1.00, and 0.82,
respectively. (The transmission levels and corresponding
coefficients for determining alternative beam radii recom-
mended by the standard ISO 11146 [17] are indicated in
bold.) The relation wy, = ky(n)b, is found by the same
method from the transmission fraction #,(h). The coeffi-
cients ki equal to 2.00, 1.56, and 1.33 correspond to the
energy fractions 0.68, 0.80, and 0.86. Recall that to the radii
by, the positions of a moving sharp edge (knife) correspond
for which the fractions of transmitted power (energy) are
equal to 84 % and 16 %, 90 % and 10 %, 93% and 7 %,
respectively [3, 4, 8, 17]. In the case of a slit, the corre-
sponding coefficients k; are 1.00, 1.11, and 1.29 for the
normalised transmission levels equal to 0.135, 0.20, and
0.30, respectively.

The specific calculations of the alternative propagation
ratios are presented for a number of beams for which the
standard beam propagation ratios M are known. Then, by
using the expression [2, 3]

B \* [iM:B\’
2 2 4
=w;(0)|( 4 12
w0 =io|(1+75) +(Gag) | o
we can find the beam radius at any plane z behind a
spherical lens. Here, the corresponding 4BCD matrix has
the form

A B\ _ [(l—=z/f =z
(¢ 5)-(50 )
This analytic expression for the beam radius allows us to
verify additionally the accuracy of numerical calculations
because, aside from the alternative radii w, (z), we also
found the radii w,(z) in each numerical experiment directly
from expression (7), which were compared with those

calculated by a simple expression (12).
For a coherent superposition of two Gaussian beams

2 2
ugg(r,z=0) :Alexp{— (le) } +Azexp[—<wiz) } (13)

with the common waist in the z=0 plane, the beam
propagation ratio can be easily found as Mg, =
(b1)'2/1. Here, Iy = j[Afwi + A3w3 + 24, Aswh]: b =
x[Ajw] +A43w3 —|—2A1A2w12l; L= %lf‘l% + A3+ 24, Ay wih(w,
xw,) 7] and w}, = 2(1/wi + 1/w )~'. By knowing Mg,
and the initial radius wgg,(z =0) = (212/11)1/2 of such a
beam, we can easily find from (12) the beam radius in any
plane behind the lens.
Of great interest are super-Gaussian beams

“gLG’NL)('%Z = 0) = usg(r) exp(i®L (7))

(14)

with linear [®} (r,z) = a,,(r/wy)™] and nonlinear [Py (1) =
2 . . L.

anLUsg(r)] aberrations in the initial plane. Here, ugg(r) =

exp[—(r/wg)"] and the coefficients a,, and oy determine the

value and sign of aberrations. The power

PO = 2mui G) o @

and initial radius

o )/ )

of such beams [where I'(z) is the gamma function] are well
known. Also, the analytic expressions are known [23, 32]
for the radius of curvature

(m=2)/n -1
R, (uls]) = 2nwér(%) {mmm G) r(mTJrz)} .(15)

24/n 2 2 1
R,(ufM) = ﬂ[ <_ + _)

A.OCNL n 2

(16)

and the beam propagation ratios
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In a particular case of a Gaussian beam with a spherical
aberration, expressions (15) and (17) coincide with the
expressions known earlier (see [26] and references therein).

Note that the calculations of Gaussian beams with
aberrations in this method require a great number N, of
expansion terms compared to super-Gaussian beams for the
same aberration coefficients. This is explained by the fact
that in the case of a Gaussian beam, a comparatively large
fraction of the beam energy  ~ 0.135 with rapidly increas-
ing linear aberrations and slowly decreasing intensity
distribution remains beyond the radius r = w, at which
the aberration value is «,,. In addition, to reduce the number
of expansion terms in the case of beams with aberrations,
expression (11) should be used for calculating the optimal
radius of curvature of the LG modes.

The beam [29]

I 2
r r
ug(r,z=0) = <_w0) exp(— w2>
0

has a circular structure in the input plane with the zero
intensity on the beam axis. In this case, the beam
propagation coefficient is described by a simple expression
M2 =(+D"2

The Bessel—Gaussian beam

M (uSg") = MZ(MSG){I + (2aNL>2

(18)

(19)

up (2 = 0) = Jo(Br) exp [— (w—(])z} (20)

(p is the Bessel beam parameter) has a complicated circular
structure in the input plane. However, the propagation law
of this beam through the ABCD system [30] and the

propagation coefficient Mjg = {[1+ ul; (,u)/]o(,u)]z—uz}l/z7
are known, where u:ﬁ2w§/4, Iy (n) are the modified
Bessel functions [33]. Therefore, by using expansion (9), we
can quite simply calculate the distributions of the field and
propagation ratios in any plane (Figs 1 and 2). One can see
that the dependence #,(c) either oscillates in the input plane
(Fig. 1c) or has a nonmonotonic character in the focal
plane (Fig. 2¢). Note also that similar dependences 7,(c) are
also typical for higher LG modes (Fig. 3c).

The problem of ambiguity of measuring the beam radius
in the standard method of a narrow moving slit can be
solved in different ways. In the simplest method, the
minimal radius is taken as the beam radius with a given
transmission level. In the calculations presented below, we
used this method. Then, by increasing the slit width, we can
smooth the transmission curve, which sometimes eliminates
its oscillations in the case of a narrow slit.

The most efficient and, generally speaking, applied to
any alternative methods for measuring the beam radius is
the fitting of the above transmission functions 1, ¢ for
Gaussian beams to any other beams by the method of least
squares. Such a fitting gives one certain value of the
equivalent radius w(, G in each plane (already without
indication of the transmission fraction). This method for
measuring the beam radius by using a scanning slit was
employed in [12]. However, taking into account the com-
plicated behaviour of the transmission curves demonstrated
in Figs 1 and 2, it is difficult to assert that this method has
the advantage. In the general case, the radii found by this
method can differ significantly from those measured by
other methods and are not necessarily closer to the values of
radii determined by the method of moments.

Figure 3 presents the fitting curves and radii for the
higher LGy, mode obtained by different methods. One can
see that the obtained values of radii strongly differ in the
general case from w, = v/5wy ~ 0.45 cm, while some values
that are close to 0.45 cm seem accidental. As expected, the
radius w,g ~ 0.34 cm found by fitting the transmission

|u(r,z = 0)] (arb. units)
1.0

0.5F

0 0.1 0.2 0.3 r/em

0.5

1 1
0.3 c¢/cm

0.5 F

0 0.1 02 03 afem

0.5 F

0 0.1 0.2 0.3

1
b/cm

Figure 1. Amplitude modulus (a) and profiles of the normalised transmission through a variable aperture (b), a moving narrow slit (c), and an
increasing slit symmetric with respect to the beam axis (simulating moving knife edge) (d) for a Bessel— Gaussian beam immediately behind a focusing

lens (z = 0).
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lu(r,z = f)| (arb. units)
0.6 |-

03F

1
0 0.05 0.10 r/em

0.5

1
0 0.05 0.10

¢/cm

Na
1.0

1
0 0.05  0.10 a/em

My
1.0

1
0 0.05 0.10

b/cm

Figure 2. Amplitude modulus (a) and profiles of the normalised transmission through a variable aperture (b), a moving narrow slit (c), and an
increasing slit symmetric with respect to the beam axis (d) for a Bessel - Gaussian beam in the focal plane of a lens (z = f).

curve #,;(c) to the data obtained by the moving slit method
strongly differs from the radius w, of the LGy, mode. The
radius wg ~ 0.38 cm obtained by fitting the Gaussian
distribution of the amplitude to the modulus of the
amplitude of the LGy, mode by the method of least squares
also strongly differs from the exact value (Fig. 3a). Note
that the values of the beam radius found by the variable
aperture and moving slit methods at the transmission levels
recommended by the standard ISO 11146 are most close to
the exact value w,.

the focal distance of a focusing lens /= 100 cm in planes
with coordinates from z =0 to z =200 cm with a step of
2 cm. The superposition of Gaussian beams was calculated
for the amplitudes 4, = —4, = 1 and radii w; = 0.2 cm and
wy; = 0.1 cm. Other required parameters are indicated in
Table 1. The alternative values of M? can be found from the
radii determined by the methods described above by using
the standard fitting of the hyperbola [17]

JAME) (2 —z)" 1"?

. .. Wi = Wy |1+ 21
As mentioned above, the beam radii were calculated by e o rwg @b
different methods usually for beams with wy = 0.2 cm and
|u(r,z = 0)] (arb. units) Na
5.0 1.0 -
~
7
- 4 b
y Wy0.80 = 0.45 cm
25 05k // W,086 = 0.42 cm
Wy0.95 = 0.38 cm
L w,g = 0.48 cm
4
i 1 1 1
0 0 02 04 afem
s Mk
1.0 1.0 F —
\ c - d
\ - /
W13 = 0.43 cm # wy ez = 0.51 cm
0.5F Wg020 = 0.46 cm 0.5F W 0.80 = 0.50 cm
Ws030 = 0.30 cm w85 = 0.47 cm
B wsg = 0.34 cm /7 wig = 0.47 cm
y
1 Pl 1 I 1 I
0 0.2 0.4 ¢/em 0 0.2 0.4 b/cm

Figure 3. Amplitude modulus (a) and profiles of the normalised transmission through a variable aperture (b), a moving narrow slit (c), and an
increasing slit symmetric with respect to the beam axis (d) for a Laguerre — Gaussian beam LG, in the z = 0 plane (solid curves), and the plots of the
amplitude and corresponding normalised transmissions of a Gaussian beam (dashed curves) fitted by the method of least squares. The values of radii
presented in figures are obtained by the corresponding methods by using different transmission levels.
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by the method of least squares. The fitting is performed by
varying the values of the radius w;, and positions z;, of the
waist, as well as the beam propagation ratio M?.

Having found the corresponding values of the prop-
agation ratios M7 and assuming the presence of correlation
with M? [4, 8, 17], we can find the correlation coefficients

M, —1

T (22)

Ci =

The correlation coefficients obtained in this way for
different beams are presented in Table 1. Unfortunately, the
results presented in Table 1 contradict to the conclusion
[4, 17] that there exists a certain one-to-one correlation
between the beam propagation ratios M? and M for
coherent axially symmetric beams. Because the value of
the propagation ratio M} in alternative methods is not
principally limited (like M? > 1), the correlation coefficients
¢; found by the method described above can have negative
val2ues, which can be large in modulus (in the case of
M; ~1).

Table 1. Correlation coefficients ¢; calculated for different beams.

Taking into account that the total beam power
o0 N,
P(u) = 271[ |u| *rdr = Z CpCy
0 -
p=0

for such variations in the coefficients ¢,(¢) does not change
in time, the corresponding alternative radii were calculated,
as usual, by using the average value |u|2. In this case, the
beam propagation ratio, determined by the method of
moments, should be close to the incoherent ratio

N

M7 ()22 " (2p+ DR,
p=0

~k o~

where R,,, = ¢,¢,/P(u) [25]. A close value of the beam
propagation ratio was also obtained by fitting (21) over the

radius
LI T 12
wgu:2—J rudr} .
0 =2 [

Variable aperture Moving knife Moving slit
Beam M3 €a0.80 Ca0.86 Ca0.95 Ck0.68 Ck0.80 Ck0.86 €50.135 €50.20 €50.30
(1.14) (0.81) (0.95)
GG 1.63 1.30 0.83 0.74 3.38 1.15 0.84 2.47 6.86 —2.69
SGy+ 1.87 1.47 0.99 0.85 5.19 2.18 1.38 27.06 —6.05 -2.97
SG; - 1.87 2.20 1.20 0.86 7.45 3.27 1.80 —3.85 —2.82 —2.98
SGn1+ 1.71 2.98 1.40 0.76 —2.05 6.12 2.35 —10.10 —3.38 -3.15
SGni- 1.71 1.72 1.14 0.82 6.69 2.49 1.57 15.69 —6.32 —-2.71
LGy, 5.00 1.01 1.13 1.41 0.81 1.25 0.67 1.05 0.95 1.10
Doy 5.00 0.94 0.94 0.978 1.26 0.98 0.82 0.997 1.09 1.39
BG 591 1.05 1.01 1.08 1.08 1.02 1.00 1.29 1.63 1.72

Note: GG: coherent superposition of two Gaussian beams; SGy ., SGy _, SGnp 4, SGny _: super-Gaussian beams with linear and nonlinear aberrations
o = £m; LGy,: Laguerre—Gaussian beam; D,4: ‘doughnut’ beam (/ = 24); BG: Bessel —Gaussian beam (fwy = 11.8). The values of correlation

coefficients proposed by the standard ISO 1114 are indicated in bold.

Preliminary results obtained for incoherent beams also
do not confirm the presence of such correlation. The
corresponding calculations were performed by two methods.
In the first method, an incoherent beam was obtained by
varying randomly the coefficients of expansion in the LG
modes. In the second method, the expansion coefficients
were varied determinately, but for the time during which the
phase of all modes changed more than by 2rn. For example,
for a super-Gaussian beam with » = 10, in which aberra-
tions are assumed absent for simplicity, in the standard case
(wp =0.2cm and f= 100 cm), the coefficients ¢,(0) of
expansion in the LG modes found in the initial instant
changed in time as ¢,(f) = ¢,(0) exp[—i2nAv,1], where Av, =
(¢/2)(2p + 1)arccos (glgz)l/ /m and g, are the parameters
of a stable resonator [2]. Calculations were performed for
the time interval Az providing the fulfilment of the relation
AvoAt = 1 even for the fundamental mode. By dividing this
time interval into N, intervals, we calculated for each time
step ;= jAt/N,(j=0,1,2, ..,N,—1), as usual u;=
u(r, z,t;). Instead of the energy density obtained by integrat-
ing the results with respect to time, we used the average
power density

N,—1

IS

As expected, the alternative beam propagation ratios
and the corresponding correlation coefficients for different
realisations changed randomly, which confirms the absence
of the one-to-one correlation between the invariant (M?2)
and alternative (M}?) beam propagation ratios.

4. Conclusions

By using the efficient numerical methods for calculating the
propagation and focusing of axially symmetric beams of a
complicated spatial structure by expanding them in the
Laguerre — Gaussian modes of a free space, we calculated
the alternative radii and propagation ratios for a number of
beams with known M2 according to the current standard
ISO 11146. The calculations of the alternative propagation
ratios M} for these beams showed the absence of the
universal one-to-one correlation between ratios M2 and
M?, which is assumed in the standard ISO 11146.
Therefore, a direct use of the alternative propagation
ratios, which are not propagation invariants, is unjustified.
However, the data obtained by measuring the beam radii by
alternative methods can be used in certain cases [34, 35] to
find the invariant beam propagation ratios M?.
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