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Abstract. The dynamics of nonlinear solitary waves is studied
by using the model of nonlinear Schrodinger equation (NSE)
with an external harmonic potential. The model allows one to
analyse on the general basis a variety of nonlinear phenomena
appearing both in a Bose —Einstein condensate in a magnetic
trap, whose profile is described by a quadratic function of
coordinates, and in nonlinear optics, physics of lasers, and
biophysics. It is shown that exact solutions for a quantum-
mechanical particle in a harmonic potential and solutions
obtained within the framework of the adiabatic perturbation
theory for bright solitons in a parabolic trap are completely
identical. This fact not only proves once more that solitons
behave like particles but also that they can preserve such
properties in different traps for which the parabolic
approximation is valid near potential energy minima. The
conditions are found for formation of stable stationary states
of antiphase solitons in a harmonic potential. The interaction
dynamics of solitons in nonstationary potentials is studied and
the possibility of the appearance of a soliton parametric
resonance at which the amplitude of soliton oscillations in a
trap exponentially increases with time is shown. It is shown
that exact solutions of the problem found using the Miura
transformation open up the possibility to control the dynamics
of solitons. New effects are predicted, which are called the
reversible and irreversible denaturation of solitons in a
nonstationary harmonic potential.

Keywords: solitons, nonlinear Schrédinger and Gross— Pitaevsky
equations, Bose— Einstein condensate.

1. Model of the nonlinear Schrodinger equation
with an external harmonic potential

in the theory of Bose—Einstein condensation
and the theory of optical solitons

The interpenetration of ideas and methods being used in
various fields of science and technology becomes at present
one of the decisive factors of the development of science as
a whole. Among the most spectacular examples of such an
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interchange by ideas and theoretical methods for analysis of
various physical phenomena is the problem of the dynamics
of a solitary nonlinear wave described by the mathematical
model of nonlinear Schrodinger equation (NSE) with an
external harmonic potential. This model is used in a variety
of fields of modern science and probably will be able to play
the basic role similar to that played in due time by the
model of a quantum-mechanical linear harmonic oscillator
in the development of modern physics.

At present among the most important applications of the
NSE model with a harmonic potential are the studies of
nonlinear phenomena observed upon the Bose-—Einstein
condensation (BEC) of atoms in vapours of alkali-earth
metals. It is known that the nonlinear dynamics of a Bose—
Einstein condensate in magnetic traps is described by the
Gross— Pitaevsky average-field model [1, 2]:
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The nonlinear term in the equation for the wave function
@ of the condensate (where G is the energy of the pair
interaction between particles, « is the interaction length, Ve,
is the energy of the condensate interaction with the external
field of the trap, the rest of the notation is standard [1-3])
takes into account pair interactions between the condensate
particles.

The conditions of the applicability of model (1) and of
the so-called average-field approximation are discussed in
detail, for example, in monograph [3] and review [4].
Because the condensate contains a macroscopically large
number of particles, the wave function of the condensate
becomes a classical macroscopic quantity, similarly to the
strength of the electromagnetic-wave field, which becomes
classical for large occupation numbers of photons in each
state.

It is well known that the most complicated problem in
the development of a meaningful physical model, which is
not restricted only to the mathematical description of a
particular phenomenon, is a passage from the description of
the phenomenon to its explanation. Magnificent examples of
the fine skill in the development of physically constructive
ideas, the aspiration of the author to propose simple,
physically clear explanations to intricate phenomena, based,
in particular, on the well-known concepts of quantum
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electronics, were and remain the papers of Prof. A.N.
Oraevsky (see, for example, the data base in the server
of the American Institute of Physics [5]).

The analysis of the dynamic analogy between the Bose
condensate of photons, an atomic condensate, and a
condensate of Cooper pairs performed by Oraevsky
[6—11] shows that the wave nature of matter is distinctly
manifested in the condensate, and an ensemble of a
sufficiently large number of particles behaves as a classical
field having the amplitude and phase. The dynamics of the
condensate can be treated as a substantially nonlinear
process, which is completely similar to the formation of the
Bose condensate of photons in a laser (see, for example,
review [7] and references therein), and the study of the laser
dynamics can be used as a basis for a deeper understanding
and prediction of dynamic processes in Bose condensates of
another type [6—11].

The method of analogies used by Oraevsky for the
formulation of new problems in the BEC theory is a
powerful tool for analysis of various physical phenomena.
Analogies between the BEC, superfluidity, and supercon-
ductivity, the Bose condensation of photons, and lasing
were studied in numerous papers, in particular, in [12-20].
The authors of paper [19] presented the review of concepts
of the coherence and coherent states of the field and
discussed the optical coherence, quantum-mechanical coher-
ence, photon statistics, self-induced transparency,
superconductivity and superfluidity, and Dicke superra-
diance. The theory of simulated emission and phase
transitions was developed by Oraevsky already in papers
[8, 9.

Note, however, that while the problem of localisation of
the Bose condensate of photons has been already solved in
pioneering papers of Basov and Prokhorov with co-workers
(see, for example Nobel lectures [21, 22], pioneering papers
[23—-25] and references therein), the problem of localisation
of a neutral atom still remains one of the complicated
problems up to now. The solution of this problem was first
proposed by Letokhov [26], who showed that atoms can be
localised in nodes or antinodes of a standing light wave
whose frequency is far from the atomic transition frequen-
cies. At present the method of laser manipulation of an
atomic condensate is generally accepted.

In the absence of an external potential, Eqn (1) is the
NSE, which is well studied in the theory of self-focusing.
Because the one-dimensional NSE belongs to the class of
exactly integrated equations [27] and has many exact
solutions [28], the model of a condensate in the so-called
cigar-shaped trap with the transverse dimensions far smaller
than the longitudinal size proved to be attractive. It is in
cigar-shaped traps that nonlinear collective excitations in
the BEC were first discovered, which were called bright and
dark soliton waves of matter; and it is in pioneering
experimental studies on the generation of solitons in the
BEC [29-32] that a profound mathematical analogy
between the theory of soliton waves of matter and the
theory of optical solitons in optical fibres (see also mono-
graphs [33—-36] and comprehensive references therein).

The passage to the one-dimensional dimensionless NSE
with a harmonic potential
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is described in detail, for example, in [37, 38]. Note that
one-dimensional model (2) was developed in fact simulta-
neously in the BEC theory and the theory of optical
solitons. For example, this model was considered in papers
[39, 40] in the development of the concept of quasi-solitons
in fibreoptic communication links with periodic variations
in the group-velocity dispersion (this field of practical
applications of solitons is discussed comprehensively in
books [33, 34, 41]). This model also appears in the study of
generation of solitons in the forbidden region of group-
velocity dispersion. In [42, 43], the situation was considered,
in particular, when a pair of solitons was used as the trap
potential. In this case, two control soliton pulses form a
nearly parabolic well for a laser pulse with a different
wavelength lying, for example, in a spectral region for-
bidden for the generation of solitons. A soliton captured in
a parabolic trap not only exists in the forbidden region of
parameters but also preserves its unique properties even in
the femtosecond time range [44].

The above examples of using the mathematical NSE
model with an external harmonic potential in the BEC
theory and problems of nonlinear fibre optics by no means
do not exhaust the list of possible applications of the model
under study. Thus, the NSE model with a harmonic
potential opens up new possibilities in simulations of
nonlinear mechanisms of energy transfer in long biological
polymer molecules. The study of these mechanisms is
important for the explanation of the appearance of soliton
waves in DNA (see, for example, pioneering works of
Davydov [45], paper of Oraevsky [46], and a recent review
in this field [47]).

From the point of view of practical applications, one of
the central problems of the theory is the search for new
possibilities to control the dynamics of solitons. This
determined the scope of problems that we considered in
this paper. The investigation of the BEC dynamics includes
the analysis of the role of boundaries of a cigar-shaped trap
whose longitudinal size is assumed comparable with the
region of variations in the order parameter of the BEC. The
nonstationary problem of the dynamics of formation and
interaction of solitons in the BEC is considered for bright,
dark, and grey solitons. From the point of view of possible
applications in high-speed soliton optical communication
links, of practical interest can be the conditions of a
complete compensation of forces between solitons discov-
ered by us.

In this paper, we study the new possibilities for con-
trolling the parameters of solitons produced in
nonstationary potentials. In particular, we predicted the
possibility of a soliton parametric resonance, when the
amplitude of soliton oscillations in a trap increases expo-
nentially with time. The effect of soliton denaturation that
we discovered can be used to construct the simplest model
for explaining the physical mechanisms of the DNA
denaturation (the detailed results are presented below).
The investigations of the dynamics of dark solitons are
summarised in the second part of the paper. By using the
mathematical apparatus developed for applications in high-
speed fibreoptic communication links [48—54], we discov-
ered a new class of mathematical NSE models, which are
exactly integrated by the method of the inverse scattering
problem. The corresponding solutions are also presented in
the second part of this paper [55].
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2. Comparative analysis of transient processes
in the model of a linear harmonic oscillator
and the NSE model with a harmonic potential

It is well known that the time dependences of the average
values of the momentum and coordinate in the model of a
linear quantum-mechanical oscillator
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(where o is the circular frequency, x is the displacement of
a particle with the mass m from the equilibrium position)
are determined by the well-known expressions [56]

x(t) = xgcoswt + Po_gin wt, (5)
mm

p(t) = py cos wt — mwxg sin wt. (6)

Let us show that by using the methods of the adiabatic
perturbation theory for solitons [57—63], we can obtain
analytic expressions for the main parameters of NSE
solitons in a parabolic potential, which are completely
mathematically equivalent to expressions (5) and (6), and
thereby approximately describe the motion of solitons as the
motion of material points in the Newton mechanics.

By considering external NSE potential (2) as a small
perturbation
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we can write the solution of Eqn (2) in the form of a soliton
with dynamically changing parameters (amplitude, the
centre-of-mass position, phase, and velocity)
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which are related by simple differential equations
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Within the framework of the adiabatic perturbation

theory for solitons, these four parameters are described

by the system of equations [57—61]
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For the parabolic interaction potential, we obtain from
Eqns (10)—(13)
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which leads to two equations for a harmonic oscillator
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where the parameters with the subscript ‘0’ correspond to
the initial values of the velocity é and the centre-of-mass
position g¢.

Therefore, the main result of the approach developed in
the paper is the conclusion that analytic results obtained for
a nonstationary quantum-mechanical harmonic oscillator
and for solitons in a harmonic trap are completely
mathematically equivalent. To be certain that this is the
case, it is sufficient to change the sign of the initial pulse in
expressions (5), (6), and (16), (17) and consider the results of
numerical experiments.

We emphasize, however, that while the results for linear
model (3) are exact [expressions (5) and (6)], expressions (16)
and (17) for nonlinear model (7) are valid only within the
framework of the adiabatic perturbation theory for solitons.
Recall that the so-called adiabaticity of perturbations, which
allows the use of the perturbation theory, means that a
change in the soliton shape remains small during character-
istic times corresponding to the period of a harmonic
oscillator and at distances corresponding to the length of
the dispersion spread of a wave packet.

Our comparative numerical analysis of the dynamics of
NSE solitons in a parabolic trap described by model (2) for
R # 0 and the dynamics of a linear oscillator [equation (2)
for R = 0) revealed a number of general qualitative proper-
ties.

Consider the typical results of numerical experiments
presented in Figs 1—5 both for single and interacting wave
packets. Figures 1 -3 compare the dynamics of a linear
oscillator, which is initially in the state with wave function
(4), whose centre of gravity is initially displaced with respect
to the equilibrium position, and the dynamics of the NSE
soliton in a parabolic potential. The nonstationary problem
for a linear oscillator, which has exact analytic solution (5),
(6), illustrates the possibilities and stability of the numerical
algorithm (calculations were performed with a double
accuracy), the contour map (equal-level lines) is represented
at the logarithmic scale. Because NSE (2) for R =0 trans-
forms to the usual Schrodinger equation for a linear
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Figure 1. Spatiotemporal dynamics of the ground state of an oscillator
with the centre of gravity initially displaced with respect to the equili-
brium position. The contour map (equal-level lines) for the normalised
wave function is presented at the logarithmic scale, beginning from the
value 107!% with the step 10°. Calculations are performed with a double
accuracy for Eqn (2) for Q = 0.1 in the absence of self-action (R = 0).
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Figure 2. Nonlinear dynamics of the NSE soliton in a harmonic
potential calculated within the framework of model (2) for @ = 0.1 and
R =1.0.
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Figure 3. Soliton dynamics presented at the logarithmic scale, beginning
from the value lg (uu™) = —9 with the step 2.

harmonic oscillator, its ground-state wave function in the
dimensionless form is described by the expression

e\’ Q Q
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Although the calculated dynamics of the NSE soliton in
a harmonic potential presented in Fig. 2 completely agrees
with analytic estimates (16), (17) obtained using the
perturbation theory (7)—(13), nevertheless it does not allow
us to make a certain conclusion about the real dynamics of
the soliton envelope. Indeed, if we consider the distortions
of the soliton shape at a ‘deeper’ logarithmic scale (Fig. 3),
we will see how the distortions of the soliton shape gradually
appear, which tend to accumulate, whereas the central part
of the pulse does not change substantially.

The dynamics of a linear harmonic oscillator found
initially in the state with the wave function representing a
linear superposition

u1(E=0,1) = uy(t — qo) + up(t + qo) exp(ip)

of the two wave functions separated is space, where the
parameter ¢ describes their relative phases, is presented in
Fig. 4. The contour maps of equal-level lines at the
logarithmic scale clearly show that the initial state can
be considered as two virtually nonoverlapping Gaussians
with parameters corresponding to the wave function of the
ground state of a harmonic oscillator. The qualitative
picture of their interaction, which is similar due to the
optical-quantum-mechanical analogy, for example, to the
interaction of two Gaussian beams in a gradient waveguide,
is determined by the initial phase difference. In the case of
in-phase initial states (¢ = 0), their interaction at the trap
centre (¢ = 0) corresponds to attraction, while in the case of
out-of-phase states (¢ = m), their interaction corresponds to
repulsion, which is clearly seen in the map in Fig. 4. Thus,
the equal-level lines in Fig. 4a intersect at the trap centre,
while in Fig. 4b they do not intersect at the trap centre, by
forming a gap.

It is well known that the dynamics of NSE solitons is
also determined by phase relations between pulses. The
attraction of in-phase solitons and repulsion of out-of-phase
NSE solitons are described by analytic expressions obtained,
in particular, by the methods of the adiabatic perturbation
theory (all the priority papers on the interaction of solitons
in the NSE model are cited, for example, in review [63]).
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Figure 4. Contour maps (at the logarithmic scale) illustrating the
dynamics of a linear harmonic oscillator initially in the states correspon-
ding to the in-phase (a) and out-of-phase (b) wave functions. Calcula-
tions are performed for Q@ = 1.0 and R = 0 for Eqn (2). The contour lines
begin with the value Ig (uu™) = —6 and are drawn with the step 1.

Let us compare the interaction dynamics of in-phase and
out-of-phase NSE solitons in a harmonic potential (Fig. 5)
with that of a harmonic oscillator presented in Fig. 4. The
initial state is also taken in the form of two almost
nonoverlapping functions, which are now represented not
by two Gaussians but by two hyperbolic secants, each of
them being the exact solution of the NSE in the absence of a
harmonic potential. One can see at the logarithmic scale
how the distortions of the soliton shape appear during the
interaction of solitons, out-of-phase-phase solitons never
being overlapped (by repelling). It follows from our nume-
rical experiments performed in a broad range of variations
of the parameters of the problem that the interaction of out-
of-phase solitons drastically differs from the dynamics of in-
phase solitons, being more stable (Fig. 5).
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Figure 5. Contour maps (at the logarithmic scale) illustrating the
interaction dynamics of in-phase (a) and out-of-phase (b) NSE solitons
in a harmonic potential. Calculations are performed for Q = 0.1 and
R = 1.0 for Eqn (2). The contour lines begin with the value Ig (uu*) = —6
and are drawn with the step 1.

Note by analogy that the multisoliton solutions of the
Gross — Pitaevsky equation (1) are not the multiboson wave
functions. For a harmonic oscillator (3), ¥ is the one-
particle wave function, while the function @ in the Gross—
Pitaevsky equation is a collective variable — the order
parameter reflecting the evolution of the spatial density
of the condensate, its spatial argument rather than the
coordinates of bosons in the condensate.

The mathematical formulation of the problem proves to
be completely similar to (7)—(13); however, now the soliton
pair

u (¢, 1) = ’71,2(@560}1[’11,2(5)(7 - 41,2(5))]

x expligy 5(¢) —1612(¢)1] (18)

is used as the initial condition. By substituting (18) into (7),
we obtain the perturbed NSE model for two solitons
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The three terms in the right sides of (19) and (20) describe
the confinement (capture) of solitons by a parabolic trap
and nonlinear interaction between overlapping solitons.
Note that depending on the sign of the parameter Q2
Eqns (19) and (20) describe either the confining (well) or
repulsive (barrier) potentials. Let us also emphasize that in
the absence of an external potential, the problem of the
interaction of NSE solitons within the framework of the
adiabatic perturbation theory has been already solved in
classical papers [57—61], while the model considered here is
in fact the generalisation of the previous results to the case
of an external harmonic potential. After transformations
similar to (7)—(17), we obtain finally the equation
describing the interaction dynamics for a pair of NSE
solitons in a harmonic potential

d2q

i —Q%q — 4n” exp(—21q) cos ¢,

@

where g = (¢, — ¢»)/2 is the distance and ¢ = (¢, — ¢,)/2
is the phase between solitons.

The most interesting results following from the analysis
of our analytic model are:

(1) The oscillation period of a pair of solitons in a
parabolic trap is determined by the combined action of two
forces. The first force increases linearly with distance and
dominates at large distances between solitons. The second
force is a nonlinear short-range force (exponentially decreas-
ing with distance) and depends on the phases of interacting
solitons. It begins to play the role only when the wave
functions are well overlapped and solitons closely approach
each other.

(i1) The phase dependence of forces and the sign of the
potential (attraction or repulsive external potential) allow
the efficient control of the dynamics of Schrodinger solitons.
When these two forces are exactly compensated, for
example, for out-of-phase solitons in the attraction potential
or for in-phase solitons in the repulsive potential, a sta-
tionary state can be formed. The study of the stability of the
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stationary regime by the usual method of linearisation of
equations with respect to stationary values proves to be
quite simple and shows that a stable state forms only out-of-
phase solitons in the attraction potential, while the bound
states of solitons in the repulsive potential are always
unstable.

Let us confirm the above conclusions by particular
calculations. Consider a pair of in-phase solitons with
the centres of mass well separated by varying in numerical
calculations only one parameter of the problem — the
distance ¢, by decreasing it between initially stationary
NSE solitons. Figure 6a shows that the role of short-range
forces increases with decreasing ¢. These forces substantially
change the interaction dynamics of in-phase solitons in a
parabolic trap under the condition

4
Q< 5n3exp(—2nq). (22)
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Figure 6. Dependence of the oscillation period for in-phase (a) and out-
of-phase (b) NSE solitons in a harmonic potential on the distance
between them. The interaction dynamics of in-phase NSE solitons is
calculated within the framework of model (2) for @ = 0.05 and R = 1.0.
Scenarios of the interaction between solitons with decreasing the initial
distance between them by half (¢, = 10, 5, 2.5) are presented from top to
bottom.

Because in the canonical case (without potential), the
oscillation period of the soliton pair with parameters ¢ = ¢,
and 5 =1 is determined by the relation

T
Tso1 = 5 exp(qo) (23)

2

inequality (22) relates the main parameters of the system

T,
TSOI =2\/q,,
0

24

where Ty is the oscillation period of a harmonic oscillator.
The dynamics of out-of-phase solitons (which are repelled
in the absence of the trap potential) is shown in Fig. 6b.

The interaction forces between two solitons are exactly
compensated if

4
Q= 4 n’ exp(—2nq) cos ¢. (25)

This gives, in particular, the condition for formation of a
stable stationary state for out-of-phase solitons (Fig. 7)
with parameters ¢ = ¢, and n =1,

T
=24y (26)
0
and the critical frequency of the harmonic potential
4
Q= . n’ exp(=2q). 27)

3. Nonstationary potential. Parametric
resonance for solitons in a harmonic potential

The assumed adiabaticity of the NSE soliton dynamics in a
parabolic trap allows one to consider more complicated
processes appearing in nonstationary harmonic potentials,
when the parameter Q depends on time. By using (7)—(17),
we can easily obtain the equation for the coordinate of the
centre of gravity of a soliton:

q2

d—g +Q%(&)g=0.

(28)
It is well known that Eqn (28) appears in the theory of
unclosed oscillatory systems in which the external action is
reduced to temporal variations in the parameters of the
system [64]. A simple example of such a system is a
mathematical pendulum with the point of support experi-
encing a specified periodic motion in the vertical direction.
When the function Q is periodic, the so-called parametric
resonance can appear in the system described by Eqn (28).
This means that the state of rest of the oscillatory system in
the equilibrium position becomes unstable — an arbitrarily
small deviation from this state rapidly increases with time.
The conditions of the appearance of the parametric
resonance, when the function

Q*(&) = o (1 + hcos y¢) (29)
weakly differs from the constant wg, were studied in detail,
for example, in [64]. It was shown that the parametric
resonance is most intense when the perturbation frequency
is close to the double frequency: y = 2w, + .
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Figure 7. Formation of the stationary state of the noninteracting pair of
out-of-phase solitons in a harmonic trap potential (Q = Q). The initial
distance between solitons is ¢ = 3.5, the rest of the parameters in the
program were specified from the condition of compensation of forces
according to expression (27). When the condition of optimum Q = Q
is violated, the oscillating bound states are formed, which are shown for
Q=1Q,,and @ =2Q,,.

The solution of the Mathieu equation of motion

o’q

652 + o[l + hcos(2wy + €)¢lg =0 (30)

gives the conditions for the dppeardnce of the pardmetric
resonance in the frequency mterval ——/w)o <e<s hwo with
the parameter s> LChax /2)* — 2] of exponent1al amplifi-
cation of oscﬂlatlons (we follow here paper [64]). It is
known that the parametric resonance also takes place at the
frequencies 2wg/n, where n is an integer. However, the
widths of resonance instability regions rapidly decrease with
increasing n. The amplification parameter s also decreases
[64].

Therefore, Eqn (28) and the mathematical analogy with
the parametric resonance suggest the possibility of excita-
tion of parametric resonances also in the NSE model with a
nonstationary harmonic potential (29). To verify this
conclusion, we performed numerical calculations in a broad
range of variations of parameters within the framework of
the NSE model with potential (29). Typical results of these
calculations are presented in Fig. 8.

e=10 e=0.5 e=0
¢l c”""’_:- . o o -
e ceem o
<l cee..
200 200 | oTeeeea. 200 - -
— heaeo=""
- bt
C’,,_.
150 150 150 F >
100 100 | 100 |
50 | 50 + 50
0 1 1 1 0 1 1 1 0 1 1 1
-20 0 207 20 0 201 -20 0 20t

Figure 8. Parametric instability of a soliton in the time-dependent
harmonic potential (30). The soliton dynamics is shown for the parame-
ter of detuning from resonance ¢ = 1.0, 0.5, and 0.

4. Nonstationary potential.
Denaturation of bound soliton states

It is well known that Eqn (28) with the time-dependent
potential of the form

Q*() = aexp(49) (31)
has a set of exact analytic solutions expressed in terms of

the Bessel functions of the first [J,(z)] and second [Y,(2)]
kinds

q(&) = C1Jy [2‘[ exp< 5 ﬂ + G Y, [2\/{3 eXp(%)].

The function of type (31) can be used to simulate the
switching on and off of the harmonic potential of a trap
depending on the sign of the parameter A. Typical results of
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numerical calculations of the soliton dynamics in this case
are presented in Fig. 9. As expected, the period of
oscillations of the NSE soliton in a harmonic trap decreases
with increasing the effective frequency of the oscillator in
time and, on the contrary, the amplitude and period of
soliton oscillations increase when the potential is switched
off.

A=-0.05

80

60

A =0.05

20

-20 0 20 1t

Figure 9. Soliton dynamics upon the adiabatic ‘switching off’ and
‘switching on’ of the harmonic potential according the exponential law
Q%) = aexp (A&) for @ = 0.1, R = 1.0, 2 = —0.05 and 0.05.

Let us show that the so-called Miura transformation in
the soliton theory (see, for example, [28])

(32)

allows one to obtain simple analytic solutions for Eqn (28)
in the form

4(&) = exp { - [ (33)

v(z)dz} ,
Jo
where an arbitrary control function v (&) should satisfy the
conditions of integrability and differentiability. Indeed, it is
easy verify that the substitution of (33) into (28) gives the
identity under the condition (32).

Exact solutions (32), (33) allow us to propose the
method to control the dynamics of breathers — the bound

states of NSE solitons in the time-dependent harmonic
potential of the trap (32). Let us emphasise that the
parameters of the system should satisfy the condition reverse
to inequality (22).

The adiabatic variation of the trap potential with time
permits the realisation of the effect of reversible and
irreversible denaturation of solitons, in which the period
of NSE soliton oscillations changes in a controllable way in
the nonstationary potential up to the complete decompo-
sition of the bound state (Fig. 10). We used in calculations
the functions Q2(¢) in the form exp(—p&), 1—
exp[—p(¢ — &)"], and tanh? (& — &)). They simulated the
switching on and off of the harmonic trap and also the time-
limited action on the attraction potential. We will consider
the possible application of the effect of soliton denaturation
for the construction of the simplest nonlinear model of the
DNA denaturation in the next paper. Similarly to the
destruction of the secondary and tertiary structures of
protein upon its denaturation with the preservation of
the primary structure, the process that we investigated
preserves the primary properties of the model — soliton
properties.

Note in conclusion that in practically interesting cases,
as a rule, different potentials can be expanded near the
minima of the potential energy in a series corresponding to
the harmonic approximation, so that the dynamics of
solitons near the minimum of the potential energy will
obey the laws considered above.

¢ F ¢ F
100 100 +
80 80

a 60 60 b
40 40 +
20 20
0 — : 0 — :

20 0 20« 20 0 20t

Ay

400 400

300 300
200 200

100 100

Figure 10. Effect of soliton denaturation: (a, b) the decay dynamics of
the bound state of two in-phase NSE solitons in the harmonic potential
calculated for Q =0.5, R=1.0,¢ =35, f = —0.5 (a) and —0.1 (b); (c, d)
the dynamics of reversible denaturation of a soliton pair in the case of
temporal switching off of the harmonic potential for Q@ =0.1 and
R =1.0.
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