PACS 42.70.Hj; 32.50. + d; 32.70. -n

Спектрально-кинетические свойства кристаллов Er^{3+} , Yb^{3+} : $Y_3Al_5O_{12}$ при высоких температурах

Б.И.Галаган, Б.И.Денкер, В.В.Осико, С.Е.Сверчков

Приведены результаты исследований спектрально-люминесцентных свойств кристаллов иттрий-алюминиевого граната, активированных ионами Er^{3+} и Yb^{3+} , в диапазоне температур от комнатной до $800\,^{\circ}$ С. Установлено, что с ростом температуры время жизни уровня $^4I_{11/2}$ иона эрбия сокращается примерно в 20 раз и значительно увеличивается эффективность безызлучательного переноса возбуждений от Yb^{3+} к Er^{3+} . Предлагаются аналитические выражения для описания спектральной и температурной зависимостей сечений поглощения и испускания на переходе между уровнями $^4I_{13/2}$ и $^4I_{15/2}$ иона эрбия.

Ключевые слова: иттрий-алюминиевый гранат, иттербий-эрбиевый лазер, ИК лазер.

1. Введение

Полуторамикронные эрбиевые лазеры (переход ⁴I_{13/2} $ightarrow ^4 I_{15/2}$ иона ${
m Er}^{3+}$) привлекательны для целого ряда применений благодаря относительной безопасности их излучения для зрения, высокой прозрачности в этой спектральной области земной атмосферы и кварцевых волоконных световодов, а также наличию высокочувствительных неохлаждаемых фотоприемников - германиевых и InGaAs-фотодиодов. В настоящее время практически единственной матрицей для объемных элементов таких лазеров являются фосфатные стекла, соактивированные ионами Yb^{3+} и Er^{3+} . Иттербий, вводимый в эти стекла в концентрациях, на 1-2 порядка превышающих концентрацию эрбия, является сенсибилизатором, который поглощает излучение накачки в области 0.9-1 мкм и безызлучательно передает энергию возбуждения ионам эрбия (см. схему уровней на рис.1).

Особенностью фосфатных стекол является сочетание высокого (близкого к 100 %) квантового выхода люминесценции с верхнего лазерного уровня $^4I_{13/2}$ иона Er^{3+} (время жизни которого τ_{2Er} составляет ~ 6 мс) с весьма малым ($\tau_{3Er} \sim 1-3$ мкс) временем жизни уровня $^4I_{11/2}$. Благодаря быстрой многофононной релаксации (МФР) уровня $^4I_{11/2}$ в фосфатных стеклах резко ослаблена обратная передача возбуждений с уровня $^4I_{11/2}$ иона Er^{3+} на резонансный с ним уровень $^2F_{5/2}$ иона Yb^{3+} , а также паразитные ап-конверсионные процессы.

Недостатками фосфатных стекол как лазерной матрицы являются их низкие теплопроводность и механическая прочность, значительно худшие, чем у многих известных лазерных кристаллов. Это обуславливает сравнительную легкость теплового разрушения стекол излу-

Б.И.Галаган, Б.И.Денкер, В.В.Осико, С.Е.Сверчков. Институт общей физики им. А.М.Прохорова РАН, Россия, 119991 Москва, ул. Вавилова, 38; e-mail: galagan@ran.gpi.ru, denker@Lst.gpi.ru, osiko@Lst.gpi.ru, glasser@Lst.gpi.ru

Поступила в редакцию 20 апреля 2006 г.

Рис.1. Схема уровней ионов Er^{3+} и Yb^{3+} и процессов переноса возбуждений (I – оптическая накачка; 2 – прямой перенос; 3 – обратный перенос; 4 – $M\Phi$ P; 5 – лазерный переход).

чением накачки и ограничивает среднюю мощность генерации таких лазеров.

К сожалению, среди известных лазерных матриц сколько-нибудь технологичные кристаллы с указанным выше сочетанием времен жизни возбужденных состояний ${}^4{\rm I}_{13/2}$ и ${}^4{\rm I}_{11/2}$ иона ${\rm Er}^{3+}$ до сих пор не выявлены, и поиск кристаллических лазерных $Yb^{3+} - Er^{3+}$ -сред продолжается [1-5]. Внимание исследователей периодически обращается к кристаллам иттрий-алюминиевого (YAG) граната, преимуществами которого являются высокая механическая прочность и большая теплопроводность, возможность введения высоких концентраций иттербия, большой (близкий к 100%) квантовый выход люминесценции с уровня ${}^4I_{13/2}$ иона ${\rm Er}^{3+}$. Привлекательной особенностью YAG является также сильное расщепление уровней ${}^{4}I_{15/2}$ и ${}^{4}I_{13/2}$ иона ${\rm Er}^{3+}$ кристаллическим полем, благодаря чему спектр люминесценции ионов эрбия при комнатной температуре состоит из ряда узких

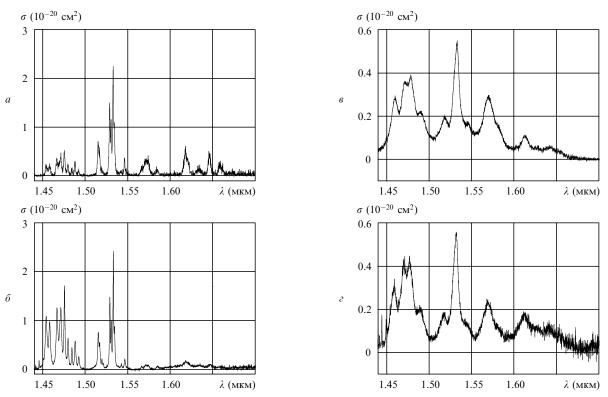


Рис.2. Спектры люминесценции (a, β) и поглощения (b, ϵ) образца YAG: $\operatorname{Er}^{3+}(0.5\%)$ при комнатной температуре (a, δ) и при 800 °C (a, ϵ) .

линий, занимающих спектральную область от 1.45 до 1.66 мкм (рис.2,а). При накачке в полосу поглощения иттербия в работе [1] была осуществлена генерация на длинах волн 1.61 и 1.64 мкм с КПД примерно 7 %. Это стало возможным благодаря квазичетырехуровневой схеме генерации, реализующейся при переходе с метастабильного уровня ${}^4I_{13/2}$ иона ${\rm Er}^{3+}$ на верхние штарковские компоненты основного уровня ${}^4I_{15/2}$. Для достижения инверсной населенности при комнатной температуре в этом случае достаточно возбудить всего 10 % – 15 % ионов эрбия. Для получения генерации на длине волны 1.536 мкм (наиболее интенсивная линия в спектре люминесценции (рис.2,а), соответствующая переходу на нижнюю штарковскую компоненту уровня ${}^4I_{15/2}$ иона Er^{3+}), требуется возбуждение уже 50% ионов эрбия. Однако при накачке в полосу поглощения Yb³⁺ созданию такой инверсной населенности при комнатной температуре препятствует наличие обратного переноса энергии с относительно долгоживущего уровня ${}^4I_{11/2}$ иона ${\rm Er}^{3+}$ $(\tau_{3\rm Er} \sim 100 \,{\rm MKC})$ на уровень ${}^2{\rm F}_{5/2}$ иона Yb ${}^{3+}$

Задачей настоящей работы является исследование изменений спектрально-кинетических свойств Yb^{3+} , Er^{3+} : YAG при повышении температуры на несколько сотен градусов с целью достижения условий, более благоприятных для получения лазерной генерации на длине волны ~ 1.5 мкм.

2. Образцы для исследований и экспериментальные методики

Для проведения исследований были выращены (методом зонной плавки [5, 6]) как одноактивированные ионами Yb^{3+} или Er^{3+} кристаллы YAG, так и концентрационные серии кристаллов, соактивированных обоими ионами. Диапазоны изменения атомных концентраций в сериях составляли: по эрбию 0.25%-1%, по иттербию

3%-12.5%. Для синтеза использовались оксиды элементов (чистота 99.99%). Выращенные кристаллы имели около 5 мм в диаметре и 50 мм в длину и характеризовались удовлетворительным оптическим качеством.

Спектроскопические исследования проводились в диапазоне температур от комнатной до 800 °С. В экспериментах изучались температурные зависимости спектров поглощения и люминесценции ионов эрбия, спектров поглощения ионов иттербия, кинетики затухания люминесценции возбужденных состояний обоих ионов. Для снижения погрешности в измерениях кинетики затухания люминесценции иттербия из-за перепоглощения излучения использовались образцы, линейные размеры которых не превышали 0.5 мм. Кроме того, при комнатной температуре образцы погружались в иммерсионную жидкость – глицерин.

Для регистрации спектров поглощения и люминесценции использовался монохроматор МДР-23. Возбуждение люминесценции осуществлялось полупроводниковыми импульсно-периодическими лазерами с длинами волн излучения 0.975 и 0.955 мкм, а при повышенных температурах также рубиновым лазером с модуляцией добротности ($\lambda \sim 0.69\,$ мкм). В качестве фотоприемников использовались ФЭУ-62 и германиевый фотодиод, а для записи экспериментальных данных — аналого-цифровые преобразователи, встроенные в персональный компьютер.

3. Экспериментальные результаты

Исследования показали, что с ростом температуры от комнатной до 800 °C на переходе $^4I_{13/2} \rightarrow ^4I_{15/2}$ иона Er^{3+} происходит значительное уширение отдельных линий поглощения и люминесценции. На рис.2 приведены соответствующие спектры, полученные при двух граничных температурах для образца $YAG: Er^{3+}$ (атомная кон-

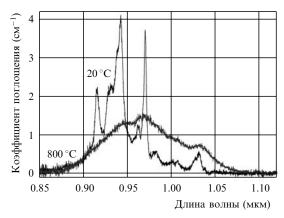


Рис.3. Спектры поглощения образца YAG : ${\rm Er}^{3+}$ (0.5 %) при температурах 20 и 800 °C.

центрация 0.5 %). Нормировка спектров люминесценции проводилась с использованием формулы (4), приведенной в разд.4. С ростом температуры вследствие уширения линий абсолютные значения сечений в отдельных максимумах падают примерно в пять раз. При 800 °C в максимуме полосы люминесценции на длине волны 1.536 мкм сечение испускания оказывается равным $\sim 5.5 \times$ 10^{-21} см², что близко к его значению в лазерных стеклах при комнатной температуре. В области 1.6-1.65 мкм максимальное значение сечения испускания снижается до $\sim 10^{-21}$ см². Кроме того, в этой спектральной области, как и для эрбиевых фосфатных стекол, можно ожидать проявления поглощения из возбужденного состояния ${}^4I_{13/2}$ иона ${\rm Er}^{3+}$ (переход ${}^4I_{13/2} \to {}^4I_{9/2}$, см. рис.1). По этим причинам в области 1.6-1.65 мкм (в отличие от 1.536 мкм) при высоких температурах получение генерации может стать затруднительным даже при высоких уровнях возбуждения верхнего лазерного уровня ${}^4I_{13/2}$ иона Er^{3+} .

На рис.3 приведены спектры поглощения образца $YAG: Yb^{3+}$ (5%) при температурах 20 и 800°С. Спектр при температуре 800°С значительно сглажен. Отметим, что в длинноволновой области, совпадающей с областью длин волн генерации неодимовых лазеров (1.05 – 1.06 мкм), появляется заметное поглощение, которое можно использовать для накачки кристаллов $YAG: Yb^{3+}, Er^{3+}$.

На рис.4 приведены температурные зависимости времен жизни возбужденных состояний Yb^{3+} и Er^{3+} , измеренные в кристаллах $YAG: Yb^{3+}$ (0.35%) и $YAG: Er^{3+}$ (0.5%). Обращает на себя внимание резкое падение с рос-

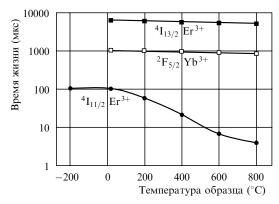


Рис.4. Температурные зависимости времен жизни возбужденных состояний $^4I_{13/2}$ и $^4I_{11/2}$ иона Er^{3+} и $^2F_{5/2}$ иона $Yb^{3+}.$

том температуры времени жизни (τ_{3Er}) уровня $^4I_{11/2}$ эрбия. При повышении температуры от комнатной до $800\,^{\circ}$ С τ_{3Er} сокращается примерно в 20 раз и оказывается сравнимым с характерными значениями этого времени для фосфатных стекол при комнатной температуре. При этом времена жизни как верхнего лазерного уровня $^4I_{13/2}$ иона Er^{3+} (τ_{2Er}), так и уровня $^2F_{5/2}$ иона Yb^{3+} (τ_{0Yb}) изменяются незначительно. Все это позволяет надеяться на то, что с ростом температуры будет заметно ослабевать влияние обратного переноса возбуждений от эрбия к иттербию и увеличиваться эффективность передачи возбуждений от иттербия на верхний лазерный уровень иона эрбия.

Следующим этапом исследований было изучение температурных зависимостей кинетики люминесценции Yb³⁺ в кристаллах с различными концентрациями эрбия и иттербия. Длительность возбуждающего импульса диодного лазера при изучении кинетики люминесценции иттербия составляла 30 мкс. Сразу следует отметить наблюдавшееся в этих экспериментах увеличение скорости переноса возбуждения от иттербия к эрбию с ростом температуры. Практически во всех случаях (кроме оговоренных ниже) затухание люминесценции носило экспоненциальный характер. Поэтому для оценки эффективности передачи возбуждения в системе $Yb^{3+} \to Er^{3+}$ её скорость определялась по формуле $W(T) = 1/\tau_{Yb}(T)$ $1/\tau_{0Yb}(T)$, где τ_{Yb} – время жизни возбужденного иттербия в образцах, содержащих Er^{3+} ; T – температура образца. На рис.5 приведены зависимости скорости W от концентрации ионов эрбия при комнатной температуре в нескольких сериях образцов с различным содержанием ионов иттербия. Видно, что зависимости имеют практически линейный характер, т.е. скорость безызлучательного переноса энергии возбуждения прямо пропорциональна концентрации акцепторов энергии – ионов эрбия.

Существенно сложнее выглядят зависимости W от концентрации ионов иттербия. На рис.6 приведены результаты исследований этих зависимостей в образцах с концентрацией ионов эрбия $9.66\times10^{19}~{\rm cm}^{-3}~(0.7~\%)$ при трех различных температурах. Как видно из рисунка, в YAG не наблюдается монотонного роста скорости переноса энергии возбуждения с увеличением концентрации иттербия, как это имеет место в фосфатных стеклах [7]. Здесь можно говорить лишь о некотором оптимальном с точки зрения достижения максимальных значений W содержании иттербия. Из рис.6 следует, что оптимальная концентрация иттербия в области температур $600-800~{\rm C}$ составляет $(10-14)\times10^{20}~{\rm cm}^{-3}$. В этой области

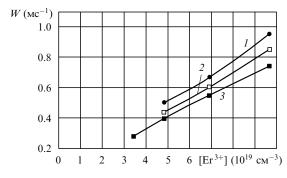


Рис.5. Зависимости скорости безызлучательного переноса возбуждений $Yb^{3+} \rightarrow Er^{3+}$ от концентрации Er^{3+} при комнатной температуре в образцах с атомным содержанием Yb^{3+} 7 % (1), 10 % (2) и 12.5 % (3).

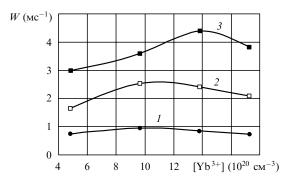


Рис.6. Температурные зависимости скорости безызлучательного переноса возбуждений Yb $^{3+}$ \rightarrow Er $^{3+}$ от концентрации Yb $^{3+}$ в образцах с атомным содержанием Er $^{3+}$ 0.7 % при комнатной температуре (I), а также температуре 600 (2) и 800 °C (3).

температур и концентраций активаторов квантовая эффективность безызлучательного переноса ($\eta=1-\tau_{Yb}/\tau_{0Yb}=W\tau_{Yb}$) достигает 70 % – 80 %. Наблюдаемый значительный рост скорости безызлучательного переноса возбуждения от ионов иттербия к эрбию при повышении температуры мы связываем, в первую очередь, с ускорением процесса МФР уровня $^4I_{11/2}$ иона Er^{3+} и с уменьшением влияния обратного переноса энергии с уровня $^4I_{11/2}$ иона Er^{3+} на уровень $^2F_{5/2}$ иона Yb^{3+} .

Еще один эффект, обусловленный влиянием повышенной температуры на кинетику люминесценции иттербия, уверенно наблюдался нами лишь в области максимальных температур, при которых проводились эксперименты (800°C). На рис.7 приведены кривые затухания люминесценции иона Yb³⁺ в образце с атомным содержанием ${\rm Er}^{3+}$ 0.7 % и ${\rm Yb}^{3+}$ 10 % при различных длительностях импульсов лазерного диода накачки (30, 500 и 3000 мкс). Спустя \sim 400 мкс после окончания импульса накачки обычное экспоненциальное затухание (с постоянной времени в сотни микросекунд) «затягивается» и переходит в затухание с постоянной времени в несколько миллисекунд. Этот эффект становится особенно заметным при больших длительностях импульса накачки. Все три приведенные на рис. 7 кривые хорошо аппроксимируются суммой двух экспонент с временами 160 мкс и 4.4 - 4.8 Mc.

Причину наблюдаемого явления мы видим в установлении термодинамического равновесия между населенностями уровней $^4I_{11/2}$ и $^4I_{13/2}$ ионов Er^{3+} в совокупности с известным эффектом «пленения» возбуждения между уровнями $^4I_{11/2}$ иона Er^{3+} и $^2F_{5/2}$ иона Yb^{3+} [8]. В сущ-

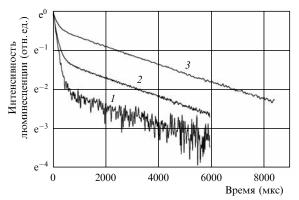


Рис.7. Кинетика затухания люминесценции Yb³⁺ в образце YAG: Yb³⁺ (10 %), Er^{3+} (0.7 %) при длительностях импульса возбуждения 30 мкс (*I*), 500 мкс (*2*) и 3 мс (*3*).

ности, в этом случае мы имеем дело с «пленением» возбуждений между тремя возбужденными состояниями: уровнем $^2F_{5/2}$ иона Yb^{3+} и уровнями $^4I_{11/2}$ и $^4I_{13/2}$ иона Er^{3+} , которые релаксируют одновременно и с одинаковым временем релаксации. Так, в рассматриваемом случае измеренное при $800\,^{\circ}C$ время жизни уровня $^4I_{13/2}$ составило 4.8 мс, что меньше $\tau_{2Er}=5.3$ мс для образца без иттербия.

Разумеется, с точки зрения обеспечения эффективного заселения уровня ${}^4I_{13/2}$ иона Er^{3+} наблюдаемый эффект носит «отрицательный» характер, т. к. фактически в результате него происходит обратный перенос энергии возбуждения с верхнего лазерного уровня ${}^{4}I_{13/2}$ иона ${\rm Er}^{3+}$ на ионы иттербия. Имеющихся экспериментальных данных достаточно для того, чтобы оценить распределение возбуждений по уровням Er³⁺ и Yb³⁺ в установившемся режиме при температуре 800 °C. Отношение населенностей ионов эрбия на уровнях ${}^4I_{11/2}$ (N_3) и ${}^4I_{13/2}$ (N_2) может быть найдено из распределения Больцмана: $N_3/N_2 =$ $\exp(-\Delta E/kT)$. Это отношение составляет $\sim 1\%$. Если считать, что все энергетические потери в системе Yb³⁺-Er³⁺ связаны только с радиационными потерями с уровней ${}^4\mathrm{I}_{13/2}$ иона Er^{3+} и ${}^2\mathrm{F}_{5/2}$ иона Yb^{3+} , то для возбужденных ионов, находящихся в режиме «пленения», можно записать следующее уравнение:

$$\frac{N_2}{\tau} + \frac{N_{Yb}}{\tau} = \frac{N_2}{\tau_{2Er}} + \frac{N_{Yb}}{\tau_{0Yb}}.$$

Здесь $\tau=4.4-4.8$ мс – общее время релаксации возбужденных ионов эрбия и иттербия; $N_{\rm Yb}$ – концентрация возбужденных ионов иттербия; $\tau_{\rm 2Er}=5.3$ мс и $\tau_{\rm 0Yb}=0.86$ мс – соответствующие времена жизни возбужденных ионов ${\rm Er}^{3+}$ и ${\rm Yb}^{3+}$ в отсутствие соактиваторов. Тогда отношение населенностей уровней ${}^4{\rm I}_{13/2}$ иона ${\rm Er}^{3+}$ и ${}^2{\rm F}_{5/2}$ иона ${\rm Yb}^{3+}$ для исследованного образца ${\rm YAG}:{\rm Er}^{3+}$ (0.7%), ${\rm Yb}^{3+}$ (10%) будет таково:

$$\frac{N_{\rm Yb}}{N_2} = \frac{1/\tau - 1/\tau_{\rm 2Er}}{1/\tau_{\rm 0Yb} - 1/\tau} = 0.03 \pm 0.01.$$

Другими словами, для данного образца в установившемся режиме при температуре $800\,^{\circ}\mathrm{C}$ концентрация возбужденных ионов иттербия составляет $2\,\%-4\,\%$ от концентрации ионов эрбия, находящихся на верхнем лазерном уровне.

4. Аналитические выражения для спектроскопических характеристик Er^{3+} в YAG

Как видно из приведенных выше экспериментальных данных, спектроскопические характеристики иттербий-эрбиевой системы в YAG в исследованном диапазоне температур значительно меняются. В данной части работы мы поставили задачу аналитической оценки сечений люминесценции, поглощения и усиления ионов эрбия в YAG в зависимости от температуры. К сожалению, имеющиеся в литературе данные относительно перехода $^4I_{13/2} \leftrightarrow ^4I_{15/2}$ иона Er^{3+} в YAG неоднозначно описывают как положения штарковских компонент, так и их количество. Общее число переходов между семью штарковскими компонентами верхнего и восемью компонентами нижнего уровня в YAG должно составлять 56, но из-за

их спектрального перекрытия разделение отдельных компонент усложняется.

В своей модели мы взяли за основу результаты детальных исследований спектров поглощения Er³⁺ в кристалле $Y_2Al_5O_{12}$ при комнатной температуре, приведенные в работе [9]. В частности, мы воспользовались схемой уровней из этой работы, а также значениями сил осцилляторов и ширин полос для отдельных межштарковских переходов между уровнями ${}^4I_{13/2}$ и ${}^4I_{15/2}$. Кроме того, следуя данным работы [10], посвященной изучению свойств Er³⁺ в различных гранатах при низких температурах, мы приняли, что седьмая штарковская компонента уровня ${}^4I_{13/2}$ иона ${\rm Er}^{3+}$ (отсутствующая в схеме уровней, приведенной в [9]) при комнатной температуре должна находиться выше шестой на 5 см⁻¹. В результате была составлена таблица вероятностей межштарковских переходов A_{ii} (см. табл.1). Следует сказать, что формальное представление спектров поглощения в виде разложения на отдельные линии с использованием данных работы [9] дает хорошее совпадение с экспериментом. Однако для более точного описания также и спектров люминесценции пришлось внести некоторые изменения для отдельных переходов (см. примечание к табл.1). Методика вычислений вероятностей A_{ii} была аналогична методике работы [9]:

$$A_{ji} = \frac{8\pi^2 e^2 n^2 g_i}{m c \chi g_i} v_{ji}^2 f_{ij}. \tag{1}$$

Здесь $v_{ji}=E_{2j}-E_{1i};\ E_{2j},\ E_{1i}$ – энергии штарковских компонент (в обратных сантиметрах) уровней $^4\mathrm{I}_{13/2}$ и $^4\mathrm{I}_{15/2}$ иона Er^{3+} соответственно; $g_j,\ g_i$ – статвеса этих компонент; f_{ij} – силы осцилляторов для соответствующих переходов; $m,\ e$ – масса и заряд электрона; c – скорость света; n=1.82 – показатель преломления YAG; $\chi=9n\times(n^2+2)^{-2}$ – поправка на действующее поле для электро-

дипольных переходов (для магнитодипольных переходов $\chi=1/n$, и различие между этими величинами составляет всего 5 %).

Учитывая, что статвеса отдельных штарковских уровней $g_i=g_j=2$, значения сечений поглощения и испускания для лоренцевой линии с шириной Δv_{ij} можно представить как

$$\sigma_{ij} = \sigma_{ji} = \frac{A_{ji}}{4\pi^2 n^2 v_{ij}^2 \Delta v_{ij}}.$$
 (2)

Соответственно для спектральные зависимостей сечений поглощения и испускания получим

$$\sigma_{\text{abs}}(v,T) = \sum_{i,j} \frac{\sigma_{ij} F_{ij}(v) \exp(-E_{1i}/kT)}{B_1},$$
(3)

$$\sigma_{\text{emiss}}(v, T) = \sum_{i,j} \frac{\sigma_{ji} F_{ji}(v) \exp[-(E_{2j} - E_{21})/kT)]}{B_2},$$
 (4)

$$F_{ij} = F_{ji} = \frac{\Delta v_{ij}^2 / 4}{(v - v_{ij})^2 + \Delta v_{ii}^2 / 4},$$
(5)

гπе

$$B_1 = \sum_i \exp\left(-\frac{E_{1i}}{kT}\right); \ B_2 = \sum_j \exp\left(-\frac{E_{2j} - E_{21}}{kT}\right).$$

Радиационное время жизни уровня ${}^4I_{13/2}$ определяется из формулы

$$\frac{1}{\tau_{2\text{Er}}} = \sum_{i} \frac{A_{ji} \exp[-(E_{2j} - E_{21})/kT]}{B_2}.$$
 (6)

Если принять, что значения A_{ji} не зависят от температуры, но с ее ростом однородно уширяются линии от-

Табл.1. Вероятности (A_{ji} (c $^{-1}$)) и ширины линий (Δv_{ji} (см $^{-1}$)) спонтанных переходов между штарковскими компонентами уровней $^4I_{13/2}$ (энергии E_{2j}) и $^4I_{15/2}$ (энергии E_{1i}) иона Er^{3+} в кристалле YAG: Er^{3+} при комнатной температуре.

	A/ A A A A A A						
$E_{1i} (\text{cm}^{-1})$	$E_{21} = 6543.4$	$E_{22} = 6593.5$	$E_{23} = 6600.5$	$E_{24} = 6777.2$	$E_{25} = 6796.7$	$E_{26} = 6877.2$	$E_{27} = 6882.2$
	$A_{j1} = 9$	13.9	30.2	29.9 (25)	48.0 (45)	58.5 (50)	20
$E_{11}=0$	$\Delta v_{j1} = 5.5$	5.5	6.4	5.1	6.6	8.0	8.0
	$A_{j2} = 60.6$	2.14	5.27	24.3	35.5 (33)	53.7 (50)	10
$E_{12} = 18.5$	$\Delta v_{j2} = 3.3$	3.7	4.7	5.2	4.5	7.6	7.6
	$A_{j3} = 2.56$	28.4	49.8 (40)	12.4	16.6	79.8	10
$E_{13} = 58.6$	$\Delta v_{j3} = 5.1$	3.7	3.9	4.9	4.2	7.6	7.6
	$A_{j4} = 10.3$	28.1	3	10.4	21.7	43.6	15
$E_{14} = 75.3$	$\Delta v_{j4} = 6.9$	4.1	3.9	4.8	5.5	6.4	6.4
	$A_{j5} = 3.3$	30.4	8.0	40.1	31.0	5	_
$E_{15} = 410.3$	$\Delta v_{j5} = 8.8$	10.2	11.0	13.2	10.9	5	_
	$A_{j6} = 17.2$	22.2	16.5	32.9	12.4	4.4	_
$E_{16} = 423.1$	$\Delta v_{j6} = 15.6$	14.3	20.5	17.7	11.4	12.0	_
	$A_{j7} = 6.8$	27.2	24.5	11.9	6.6	53.2	_
$E_{17} = 520.8$	$\Delta v_{j7} = 10.8$	15.4	10.7	15.5	11.9	14.2	_
	$A_{j8} = 7.5$	18.7 (16)	4.85 (10)	19.5	7.8	74.4	_
$E_{18} = 565.5$	$\Delta v_{j8} = 8.8$	13.0	8.4	22.8	14.7	15.6	_

Примечание. Приведенные значения рассчитывались по формуле (1) с использованием данных [9]. В случае отсутствия в [9] соответствующих данных или явного их несоответствия нашим экспериментальным результатам значения A_{ji} и Δv_{ji} (выделены жирным шрифтом) подгонялись под наблюдавшиеся нами спектры поглощения и люминесценции.

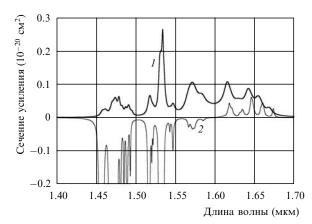


Рис.8. Примеры расчета спектральной зависимости сечений усиления на переходе $^4{\rm I}_{13/2} \leftrightarrow ^4{\rm I}_{15/2}$ иона Er $^{3+}$ в YAG при уровне возбуждения x=0.65 и температуре $600\,^{\circ}{\rm C}$ (I), а также при x=0.2 и комнатной температуре (2).

дельных переходов и имеет место некоторое смещение положений уровней, то в расчетные формулы (2)-(5) должны быть введены корректирующие множители, учитывающие эти температурные изменения:

$$\Delta v_{ji}(T) = \Delta v_{ji}[1 + 4.5 \times 10^{-3}(T - T_0)],$$

$$E_{1i}(T) = E_{1i}[1 - 6 \times 10^{-5}(T - T_0)],$$

$$E_{2j}(T) = E_{2j}[1 - 7 \times 10^{-5}(T - T_0)],$$

$$E_{21} - E_{11} = (E_{21} - E_{11})[1 - 7 \times 10^{-7}(T - T_0)].$$

Здесь $T_0 = 300 \text{ K}$ – комнатная температура.

Полученные выражения позволяют аналитически оценить температурные изменения спектроскопических характеристик переходов между уровнями $^4I_{13/2}$ и $^4I_{15/2}$ иона Er^{3+} в кристаллах YAG. Так, например, расчет радиационного времени жизни уровня $^4I_{13/2}$ по формуле (6) дает значения 6.55 и 6.06 мс для комнатной температуры и 800 °C соответственно, что довольно близко к экспериментально полученным нами значениям 6.4 и 5.3 мс. Несколько большее сокращение времени жизни τ_{2Er} , полученное в эксперименте, может быть связано как с некоторым температурным увеличением вероятностей переходов A_{ji} , так и с ускорением тушения люминесценции на неконтролируемых примесях.

Предложенная модель позволяет также представить аналитически температурную зависимость такого важного параметра активной среды, как сечение усиления $\sigma_{\text{ampl}}(v, x, T) = x\sigma_{\text{emiss}}(v, T) - (1 - x)\sigma_{\text{abs}}(v, T)$, где x – доля

возбужденных ионов эрбия. На рис.8 приведены примеры расчетных значений сечения усиления при $600\,^{\circ}$ С и x=0.65, а также при комнатной температуре и x=0.2.

5. Выводы

В результате проведенных исследований установлено, что в кристалле YAG:Yb $^{3+}$, Er $^{3+}$ при увеличении температуры от комнатной до 800 °C происходит значительное сокращение времени жизни возбужденного уровня $^4I_{11/2}$ иона Er $^{3+}$ и увеличение эффективности безызлучательного переноса возбуждений от Yb $^{3+}$ к Er $^{3+}$. Эти результаты позволяют надеяться на получение эффективной генерации в кристалле YAG:Yb $^{3+}$, Er $^{3+}$ на длине волны $\sim\!1.54$ мкм при повышенных температурах с накачкой в полосу поглощения иттербия.

На основании анализа спектров поглощения и люминесценции получены аналитические выражения для расчета сечений поглощения, испускания и усиления ионов Er^{3+} в кристаллах YAG при переходах между уровнями $^4I_{13/2}\,$ и $^4I_{15/2}\,$ в области температур от комнатной до $\sim\!800\,^\circ\text{C}.$

Авторы выражают благодарность В.А.Смирнову за полезные обсуждения результатов работы. Настоящие исследования выполнены при поддержке РФФИ (грант № 05-02-17502).

- Schweizer T., Jensen T., Heumann E., Huber G. Opt. Commun, 118, 557 (1995).
- Simondi-Teisseire B., Viana B., Lejus A.M., Benitez J.-M., Vivien D., Borel C., Templier R., Wyon C. *IEEE J. Quantum Electron.*, 32, 2004 (1996)
- Sokolska I, Heumann E., Kuck S., Lukasiewicz T. Appl. Phys. B, 71, 893 (2000).
- Tolstik N.A., Trosnin A.E., Kisel V.I., Kuleshov N.V., Matrosov V.N., Matrosova T.A., Kupchenko M.I. Techn. Digest ASSP2006 (Lake Tahoe, Nevada, USA, 2006, TuB22).
- 5. Balbashov A.M., Egorov S.K. J. Cryst. Growth, **52**, 498 (1981).
- Denker B., Galagan B., Osiko V., Sverchkov S., Balbashov A., Hellstrom J., Pasiskevicius V., Laurell F. Techn. Digest ASSP2006 (Lake Tahoe, Nevada, USA, 2006, Tu B22).
- Алексеев Н.Е., Гапонцев В.П., Жаботинский М.Е., Кравченко В.Б., Рудницкий Ю.П. Лазерные фосфатные стекла (М.: Наука, 1980, с. 144).
- Басиев Т.Т., Воронько Ю.К., Осико В.В., Прохоров А.М., Щербаков И.А. ЖЭТФ, 70, 1225 (1976).
- Багдасаров Х.С., Федоров Е.А., Жеков В.И., Лобачев В.А., Мурина Т.М., Попов А.В., Прохоров А.М., Студеникин М.И., Тимошечкин М.И., Агладзе Н.И., Попова М.Н. Труды ИОФАН, 19, 112 (1989).
- Gruber A.J., Quagliano J.R., Reid M.F., Richardson F.S., Hills M.E., Seltzer M.D., Stevens S.B., Morrison C.A., Allik T.H. *Phys. Rev. B*, 48, 15561 (1993).