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Abstract. The state of the art in the nonlinear dynamics of
cw solid-state ring lasers with the homogeneously broadened
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gain line is systematically analysed. Diverse lasing regimes
appearing upon variation of laser parameters are considered
and physical mechanisms determining the conditions of their
development and stability are analysed. Relaxation processes
and temporal and spectral characteristics of radiation are
studied.

Keywords: nonlinear dynamics, solid-state ring lasers, lasing regi-
mes, theoretical model of a solid-state ring laser.
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1. Introduction

Beginning with the development of the first pulsed [1-5]
and then cw solid-state lasers [6—9], solid-state ring lasers
(SRLs) continue to attract the attention of researchers
solving a variety of scientific and applied problems. Their
applications for various precision measurements in the
fields of fundamental physics and metrology are based, on
the one hand, on a high sensitivity of bidirectional ring
lasers to the presence of weak optical nonreciprocities and,
on the other, on a high stability of radiation from high-
power single-frequency travelling-wave solid-state lasers.

Along with gas ring lasers, SRLs can be used to verify
the postulates and predictions of the quantum electro-
dynamics and theory of relativity [10—13], to study
fundamental interactions and verify the parity conservation
[10], to detect nonlinear optical phenomena in vacuum
[14, 15], and to develop optical frequency standards
[16, 17]. Solid-state ring lasers and devices based on
them are also widely used in laser instrument making
(for example, in Doppler location, optical communication,
and navigation systems). The development of diode-pumped
single-frequency monoblock ring lasers (ring chip lasers)
[18 —25] has stimulated interest in SRLs and their dynamics.

Solid-state ring lasers use various active media (crystals
and glasses doped with active ions), which differ in the type
of gain-line broadening. The rate of establishment of the
polarisability of the active medium in these lasers, which is
determined by the homogeneous broadening of the active
transition, greatly exceeds the decay rate of the field in the
resonator, whereas the inverse population is established
much slower than the field. Such a relation between the
relaxation rates is typical for lasers of class B [26]. The
interaction dynamics of counterpropagating waves and
modes of different types substantially depends on the
type of gain-line broadening. In most papers devoted to
the dynamics of bidirectional SRLs, lasers with the homo-
geneously broadened gain line have been studied.

A solid-state ring laser with the homogeneously broad-
ened gain line is a complicated nonlinear system in which the
interaction between counterpropagating waves can give rise
to specific regimes of bidirectional and unidirectional lasing,
which are absent in linear lasers. The nonlinear radiation
dynamics of such lasers is very sensitive to variations in the
parameters of a ring resonator such as its frequency and
amplitude nonreciprocities, the Q factor, coupling coeffi-
cients of counterpropagating waves, dynamic inverse-
population gratings produced due the interference of
counterpropagating waves in the active medium, etc.

The results of studying the dynamics of flashlamp-
pumped SRLs of the first generation consisting of discrete
elements were systematised in paper [27]. It is impossible to
obtain stable parameters and eliminate the influence of
technical fluctuations on the radiation dynamics of such
lasers. This substantially limited and in some cases virtually
excluded a detailed study of a number of problems of
nonlinear dynamics. The instability of laser parameters also
complicated a comparison of the theoretical and exper-
imental results. The advent of highly stable diode-pumped
monolithic ring lasers (ring chip lasers) of a new generation
allowed these problems to be solved.

By using lasers of a new generation, considerable
progress has been achieved in studying the nonlinear dyna-
mics of SRLs. Among the most interesting achievements are

the investigations of transient processes in stationary and
nonstationary lasing regimes, parametric interactions of self-
modulation and relaxation oscillations, the conditions of
appearance of the dynamic chaos, and the phase radiation
dynamics of counterpropagating waves.

In this paper, we made an attempt to analyse system-
atically the state of the art in the nonlinear dynamics of
SRLs with the homogeneously broadened gain line. We
considered the physical reasons and mechanisms of the
development of various lasing regimes in cw SRLs. The
dependence of radiation characteristics on the laser param-
eters was analysed in detail. The methods for stabilising
bidirectional lasing regimes were also considered.

2. Control of parameters
of solid-state ring lasers

2.1 Modern solid-state ring lasers

In modern SRLs with the homogeneously broadened gain
line, as a rule, neodymium-doped yttrium—aluminium
garnet single crystals Nd*" :Y;Al;0;, (Nd:YAG) are
used as active elements. This is explained by a fortunate
combination of their spectral and luminescence character-
istics, rather strong absorption bands in the spectral range
0.808—0.812 um convenient for pumping, a high optical
homogeneity and excellent operation characteristics (high
thermal conductivity and high optical homogeneity, low-
thermal expansion coefficient, high hardness, etc.). It is also
important that Y3AlsOy, crystals have the cubic symmetry,
which allows monoblocks of any configurations to be used
because there is no need to take into account the
birefringence of the active medium.

The SRL parameters and their control are determined to
a great extent by the ring resonator design. Modern SRLs
can be classified into three groups according to their design:
conventional ring lasers consisting of discrete elements,
semimonolithic, and monolithic ring chip lasers.

In lasers of the first group, all the laser elements
(resonator mirrors, active element, control elements, etc.)
are spatially separated and are mounted on a hard platform.
An obvious advantage of such a design is a simple control of
the laser parameters and the possibility of introducing
various additional control elements into the laser resonator.
A disadvantage is a low stability of the output parameters
caused by an insufficient rigidness of the laser construction
consisting of many discrete elements.

Semimonolithic ring chip lasers with a composite reso-
nator [25] have a somewhat better stability. The principal
schemes of such lasers are shown in Fig. 1. Lasers of this
group consist usually of two-three rigidly coupled elements.
Semimonolithic lasers allow a broader tuning by means of
piezoelectric elements [28, 29] and also a simple optimisa-
tion of the loss ratio for counterpropagating waves, which is
required for obtaining high-power unidirectional single-
frequency lasing.

Monolithic (monoblock) SRLs (ring chip lasers) are of
most scientific and practical interest. They are characterised
by a high temporal, frequency, and polarisation stability of
radiation, a low sensitivity to external disturbances, and a
high efficiency (the efficiency of such lasers is almost an
order of magnitude higher than that of conventional
flashlamp-pumped lasers). The geometrical perimeter of
the resonator of ring single-frequency chip lasers is
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Figure 1. Principal schemes of semimonolithic ring lasers: (/) output
mirror; (2) active element; (3) partial polariser; (P,) pump radiation;
(Poyw) output radiation; HR and HT are high reflection and high
transmission coefficients at the wavelength indicated in pm.

20—50 mm and their output power can achieve tens of
milliwatts.

A monolithic ring chip laser [25] is a complex polyhedral
prism (Fig. 2) cut from an optically homogeneous single
crystal. A doped single crystal serves as the active medium
and optical resonator of such a laser. The prism configura-
tion allows one to create a planar or nonplanar ring
resonator inside the monoblock due to total internal
reflections from prism faces and from a partially trans-
mitting selective mirror deposited on one of the faces. The
only disadvantage of the monolithic laser is virtually the
difficulty to control some of its parameters because it is
impossible to introduce control elements into the resonator.

Figure 2. Principal schemes of a monolithic ring laser with planar (a) and
nonplanar (b) resonators; (1) total internal reflection faces; (2) spherical
faces.

An exotic monolithic ring laser is a laser in which a
doped single crystal in the shape of a sphere of small
diameter (from a few fractions of millimetre to a few
millimetres) is used as the active medium and resonator
[30]. In this case, lasing occurs on the so-called whispering-
gallery modes. Such lasers are characterised by a high QO
factor achieving 10° — 10° and an extremely low lasing
threshold, which can be as low as a few nanowatts [31].

This allows one, by using liquid helium temperatures, to
create a microlaser containing only several (!) active ions.
Such lasers attract considerable interest because they can be
used in fundamental experiments in the field of quantum
electrodynamics.

Detailed studies of the nonlinear dynamics of SRLs
require highly stable characteristics of the output radiation,
a low level of external technical disturbances, and good
reproducibility of the laser parameters. Also, the possibility
of a flexible control of the laser parameters determining
lasing regimes is required. These parameters are the fre-
quency and amplitude nonreciprocities of a ring resonator,
the laser frequency detuning from the gain (luminescence)
line centre, moduli and phases of the coupling coefficients of
counterpropagating waves, and the pump power and polari-
sation.

Consider some methods for controlling these parameters
by giving main attention to a diode-pumped monolithic ring
chip laser.

2.2 Ring resonator nonreciprocity

Optical nonreciprocity is a specific property inherent only in
ring lasers. In the absence of nonreciprocity, the eigen-
frequencies of a ring resonator and losses during a round
trip of light in the resonator are the same for counter-
propagating waves. Nonreciprocity means that such
invariance is violated, i.e., the eigenfrequencies and intra-
cavity losses become different for identical electromagnetic
waves propagated in the ring resonator by the same path in
opposite directions (corresponding to the frequency and
amplitude nonreciprocity, respectively). There also exist the
polarisation [32, 33] and spectral [34] nonreciprocities,
which we will not consider here because their role in the
nonlinear dynamics of SRLs is not studied at present.

Consider the possibilities to control the amplitude and
frequency nonreciprocities of a ring resonator. The effects
responsible for their appearance and widely used to control
the parameters of the ring resonator can be divided into
several groups according to their physical nature [32]. The
first group includes effects based on the use of the magneto-
optical Faraday effect, the second one — nonreciprocal
effects appearing during acousto-optic interactions, and
the third one includes effects produced during the rotation
of a ring laser.

Nonreciprocal magnetooptical effects appearing when a
magnetic field is applied to a medium through which
electromagnetic radiation propagates are used most often.
The optical anisotropy induced by the magnetic field in the
absence of absorption is manifested as a difference in the
refractive indices for light waves with different polarisations
(the Faraday effect). As a result, these waves propagate in
the medium with different phase velocities and acquire the
path difference depending on the optical path so that the
polarisation plane of linearly polarised light propagated
over the distance / in the magnetised medium rotates
through the angle @, which linearly depends on the magnetic
field strength H (& = VHI, V is the Verde constant). The
sign of the optical rotation angle in the case of Faraday
effect (unlike the case of natural optical activity) is
independent of the direction of light propagation. There-
fore, after multiple forward and backward propagations of
light through the medium placed in a magnetic field, the
optical rotation angle increases by the corresponding factor.
In the general case (taking into account absorption in the
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medium), the phase shift has the complex character and a
linearly polarised wave propagated through a Faraday
element becomes elliptically polarised.

In monolithic ring lasers, the magnetooptical properties
of active media themselves are commonly used. This method
to control the optical nonreciprocity in ring chip lasers was
proposed in [19]. The optical nonreciprocity sufficient for
obtaining stationary unidirectional lasing in such lasers
upon their optimisation can be achieved in rather weak
(~ 100 Oe) magnetic fields [35].

In the case of a nonplanar monolithic ring resonator, the
reciprocal rotation of the polarisation planes of each of the
counterpropagating waves takes place, and when an external
magnetic field is applied, the nonreciprocal rotation of these
waves also appears [36]. This gives rise both to the frequency
and amplitude nonreciprocity because losses at the output
mirror of the monolithic resonator depend on the polari-
sation of radiation. The properties of ring resonators were
analysed in detail in [36] taking into account the influence of
nonreciprocal effects appearing in monolithic ring lasers. In
lasers consisting of discrete elements, the nonreciprocal
Faraday elements are used, as a rule, in combination
with other anisotropic elements performing the reciprocal
rotation of the polarisation plane.

The ring resonator nonreciprocity in solid-state lasers
can be also controlled by using acousto-optic nonreciprocal
effects (see, for example, [32, 37]). In a transparent dielectric
(which can be the active medium itself), a refractive-index
grating is produced with the help of an ultrasonic wave.
Upon diffraction of a light wave from this grating, a number
of diffraction maxima appear at frequencies w + mQ; (o is
the incident light wave frequency, €, is the ultrasonic
frequency, and m is the diffraction order). In the case of
Bragg diffraction, the light beam diffracts only to the first
diffraction order, and the energy of the incident light beam
is distributed between the beam propagated without dif-
fraction and the diffracted beam. The amplitude non-
reciprocity appears in the case of Bragg diffraction from
a travelling ultrasonic wave. In this case, the conditions of
the interaction of counterpropagating waves with a travel-
ling refractive-index grating prove to be different. The
asymmetry appears because one of the light waves interacts
with the incident ultrasonic wave, while another interacts
with the runaway ultrasonic wave. As a result, the Bragg
angles for counterpropagating waves diffracted from a
moving ultrasonic grating are not equal to each other,
which leads to different diffraction losses, i.e., to the
appearance of amplitude nonreciprocity. The efficiency of
using acousto-optic effects to control optical nonreciprocity
can be considerably increased by employing the optical
feedback over the diffracted beam [37, 38].

Along with the amplitude nonreciprocity, the frequency
nonreciprocity also can take place upon acousto-optic
interaction in the Bragg regime. Its appearance can be
qualitatively explained as follows. The phase of a light wave
propagated through a cell without diffraction depends on
the period of the moving ultrasonic grating. The grating
periods for the counterpropagating light waves of a ring
laser and, hence, phase shifts prove to be different. This
circumstance gives rise to the frequency nonreciprocity of
the ring resonator.

The frequency nonreciprocity also appears upon the
rotation of the resonator around an arbitrary axis lying
outside its plane (see, for example, [10, 39, 40]). The differ-

ent conditions for the movement of counterpropagating
waves appearing in this case form the basis of laser
gyroscopes. Nonreciprocal effects appear in this case
because the propagation time of a electromagnetic wave
over a closed contour in the rotating noninertial coordinate
system differs from its propagation time over the same
contour in the inertial coordinate system (the Sagnac effect).
The difference in the round-trip transit times for counter-
propagating waves in the ring resonator gives rise to the
difference in the phase shifts Agp = 8ntSQ/Ac and to the
difference in the resonator eigenfrequencies (frequency
nonreciprocity) Q = Ap/T = 4nS0w/Lc, which is propor-
tional to the angular rotational velocity 6 of the resonator
(here S and L are the area and period of the ring resonator,
respectively; and 7 is the round-trip transit time for light in
the resonator).

2.3 Coupling coefficients of counterpropagating waves

Coupling between counterpropagating waves via backward
scattering is one of the main factors determining the lasing
regime of a SRL. There exist two types of sources of such
coupling. First of all, these are spatial microscopic inho-
mogeneities of the refractive indices and loss (conductivity)
coefficients inside the active medium or other intracavity
elements from which backward scattering of radiation
occurs, and also the resonator mirrors and active element
ends.

The value and phase of the coupling coefficients for
counterpropagating waves depend on external parasitic
couplings caused by backward scattering both from optical
elements of the excitation system and elements of the
reception channel [41]. Their contribution is especially large
when the transmission of the output mirror is considerable
(more than 1%). To obtain the maximum stability and
minimum width of the emission spectrum of chip lasers,
efforts are taken to reduce the parasitic optical feedback
between the monolithic element itself and a pump source, as
well as between the active element and a detector. The pre-
sence of parasitic couplings and their instability give rise, on
the one hand, to fluctuations of the coupling coefficients of
counterpropagating waves in the ring chip laser itself and,
on the other, to fluctuations of the spectrum and intensity of
radiation of a diode pump laser, which in turn causes the
instability of radiation from the chip laser. The influence of
these couplings is reduced by means of an additional selec-
tive mirror and optimal focusing of pump radiation with res-
pect to the spherical surface of a monolithic resonator [41].

The coupling coefficient of counterpropagating waves
can be controlled by adjusting the ring resonator. The
coupling coefficient in a monolithic ring laser can be varied
upon small displacements of the axis of the chip-laser
resonator with respect to the monoblock by changing the
pump-beam direction. Such an adjustment leads to a change
in the effective values of backscattering coefficients r| ,. For
fixed values of r| », the coupling coefficients 71, , of counter-
propagating waves in the ring laser monotonically decrease
with increasing the resonator perimeter (m;, = r|,¢/L). The
values of r| , for real lasers are determined by the quality of
optical elements used and lie usually within 107> — 107 It
is assumed in this case that backward scattering has no
specular-reflection components and has a diffusion nature.

In the presence of specular reflections, the moduli of
coupling coefficients can be rather high. Therefore, it is
obvious that the existence of interfaces between two media
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with different values of the permittivity and with the
normals coinciding with the propagation direction of the
waves is inadmissible in ring lasers in most cases.

The coupling coefficient can be efficiently varied by
using additional reflecting elements placed inside or outside
the optical cavity. An intracavity reflecting element (for
example, the ends of an active element with AR coatings)
should have a low reflection coefficient (otherwise only
reciprocal synchronisation of counterpropagating waves can
occur in the laser). A more ‘flexible’ element for controlling
the coupling of counterpropagating waves is an auxiliary
external mirror returning radiation back to the resonator (to
the oncoming wave). This method was used in [42, 43] to
control the dynamics of monolithic chip lasers.

Although the coefficients of coupling of counterpropa-
gating waves via backward scattering are rather important
parameters determining the nonlinear dynamics of radia-
tion, it is impossible to measure them directly in
experiments. However, they can be measured indirectly,
for example, from the frequency of self-modulation oscil-
lations in the absence of frequency nonreciprocity.

2.4 Laser radiation frequency and its detuning
from the gain-line centre

Because the gain linewidth in solid-state lasers usually
greatly exceeds the frequency interval between adjacent
axial modes, the relative detuning of the lasing frequency
from the line centre 6 = (w — wy)T, (T, is the relaxation
time of the polarisation of the amplifying medium) in the
case of single-mode lasing is always small. Nevertheless, the
absolute value of detuning of the lasing frequency from the
gain-line centre can vary in a broad range because the
frequency interval between adjacent longitudinal modes of
ring chip lasers is rather large and can achieve ten gigahertz.

The detuning from the gain-line centre is usually
performed by varying the perimeter of a ring resonator
because the gain-line frequency @, weakly depends on
external perturbations. Large detunings from the gain-
line centre are achieved by using intracavity selective
elements (see, for example, [26]).

If a laser consists of discrete elements, the perimeter of a
ring resonator can be easily changed. The perimeter can be
varied by different methods, for example, by displacing the
resonator mirrors mechanically or by means of a piezo-
electric element, by heating (cooling) an active element, and
with the help of an intracavity electrooptical element.
Frequency tuning by means of a piezoelectric element is
often used in semi-monolithic ring chip lasers [28]. The
tuning range in this case can achieve a few hundreds of
megahertz.

In the case of monolithic ring chip lasers, whose geo-
metrical parameters are specified by the monoblock
configuration, the situation is more complicated. However,
the perimeter of a ring resonator can be also changed, for
example, by heating the monoblock. The thermal frequency
tuning of garnet monolithic chip lasers is characterised by
the coefficient equal to 3.2 GHz grad~'. A monolithic chip
laser can be also tuned by producing controllable mechan-
ical stresses in the active element itself [44—46]. The tuning
range in a static regime can achieve 100 MHz. When the
resonator perimeter is changed, the effective values of
coupling coefficients of counterpropagating waves also
change, as a rule, due to a change in the distance between
scattering centres.

2.5 Pump radiation power and polarisation

One of the controlling parameters, which can be quite
simply varied and precisely controlled, is the pump-power
excess # over the lasing threshold. This parameter consid-
erably affects the lasing dynamics and output characteristics
of the laser, in particular, the conditions of stability of
stationary lasing regimes (travelling and standing wave
regimes), the frequencies of relaxation and self-modulation
oscillations, the number of excited modes, etc. By varying
the pump-power excess over the lasing threshold, it is
possible to control the regions of existence of parametric
resonances between self-modulation and relaxation oscil-
lations (see below). Single-mode lasing can be obtained in a
SRL only within a limited range of variation of this
parameter if the amplitude nonreciprocity is absent or
sufficiently small. If the amplitude nonreciprocity of the
resonator is sufficiently high, the single-mode travelling
wave regime can be also obtained for large values of 1. The
polarisation characteristics and nonlinear radiation dynam-
ics of solid-state lasers can be also controlled by using
polarised pumping [47].

3. Basic equations of the semiclassical theory
of a solid-state ring laser

3.1 Theoretical models of solid-state ring lasers

Despite the complexity of physical processes proceeding in
ring lasers with the homogeneous gain line, the theoretical
methods for studying their dynamics are well developed at
present. There exist several theoretical models of SRLs
which describe the properties of the active medium and
radiation field by using various mathematical approxima-
tions.

The theoretical models of lasers can be divided into
quantum and semiclassical models. Quantum models
describe the radiation field and active medium based on
the quantum theory. This is necessary, for example, for
studying natural fluctuations of laser radiation. The quan-
tum models of bidirectional ring lasers (see, for example,
[48] and references therein) have been developed for lasers of
class A characterised by a rapid relaxation of the inverse
population. In the case of bidirectional ring lasers with a
slow relaxation of the inverse population (lasers of class B),
to which almost all SRLs belong, the quantum approach has
not been applied, as far as we know.

The semiclassical theory of SRLs is based on Maxwell’s
equations for the intracavity field and the system of
quantum-mechanical equations for the density matrix of
active ions. Solid-state lasers are characterised by a rapid
relaxation of the polarisation of the medium. As a result,
polarisation follows quasi-statically the complex amplitudes
of fields and the inverse population. This allows one to
exclude it adiabatically, thereby reducing the equations of
the semiclassical theory to a system of nonlinear equations
in partial derivatives for the complex amplitudes of intra-
cavity fields and inverse population. However, the problem
proves to be so complicated that it can be solved only in
some particular cases even in the one-dimensional approx-
imation. Particular problems are usually solved in the
semiclassical theory by expanding the intracavity field in
the modes of a ring resonator, thereby reducing the problem
to a system of ordinary differential equations. Nevertheless,
in this case many simplifying assumptions should be also
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used, which although restrict the generality of analysis but
take into account the main factors inherent in the problem
under study.

Several simplified models of SRLs have been developed.
The most popular among them is the so-called standard
model in which the polarisation of counterpropagating
waves is assumed specified and the same for both waves.
In addition, the standard model assumes that the gain line is
homogeneous. The dynamics of bidirectional SRLs was first
studied within the framework of the standard model in
papers [9, 49— 54].

These studies have shown that the standard model
correctly describes qualitatively (and in many cases, quan-
titatively) the nonlinear dynamics of SRLs. However, to
obtain a more rigorous quantitative description of the
observed effects and to achieve good quantitative agreement
between the theory and experiment, the standard theoretical
model should be complicated sometimes. For example, the
real structure of the gain line in a ring Nd: YAG laser
consisting of several homogeneously broadened components
should be taken into account in a number of problems
[55, 56]. The peculiarities of the radiation dynamics related
to different polarisations of counterpropagating waves were
analysed [57—-59] by using SRL models with specified
arbitrary polarisations of counterpropagating waves. In
[60], the vector model of a ring laser with a nonplanar
resonator was developed, in which the interaction between
counterpropagating elliptically polarised waves was
described taking into account the polarisation anisotropy
induced during saturation of the inverse population.

Note also that the dynamics of unidirectional SRLs was
studied in some papers, for example, in [61—64] not
expanding the field in resonator modes (based on equations
in partial derivatives). The unidirectional lasing was also
investigated by using the model based on balance equations
[26]. This model is rather rough because it neglects phase
effects in ring lasers, and now it is not used in fact.

3.2 Derivation of basic equations of the standard model

The standard SRL model can describe all the lasing regimes
observed in experiments. It is this model that will be used
below (unless otherwise stated). The interaction of an active
atom with the intracavity electromagnetic field E is
described in the dipole approximation by the Hamiltonian
H = H, — dE (H, is the Hamiltonian of a free atom and d is
the dipole moment operator of the atom), and the system of
quantum-mechanical equations for the density matrix of
active atoms at rest can be written in the form [65]

0 . 1 i
[a‘i'lwo +Tz:|pab :%dab(pb_pa)Es (0]
ON N . 2n
o W — T +1 70 (daoPoa — Pabdva) E, (2)

where p,, and p,, are the nondiagonal elements of the
density matrix for the resonance levels a and b; p, and p,
are the diagonal elements of the density matrix; N =
ny(p, — py) 18 the inverse population density; d,, and dy,, are
the matrix elements of the dipole moment operator of an
active atom; n, is the density of active atoms; wg is the
operating transition frequency corresponding to the centre
of the homogeneously broadened gain line with the half-
width 1/T,: W is the pump rate; and T is the relaxation

time of population inversion. Here, we used for simplicity
the model in which the lower resonance level b rapidly
relaxes, thereby being virtually unpopulated.

The intracavity electromagnetic field is described by a
system of Maxwell’s equations, which has the form

rotB:la—D+4—nJ,
¢ Ot c

rotE = —l a—B
¢ Ot
3)

divB =0, divE = —4ndivP

in the inertial reference frame, and by the constitutive
equations

J=0.E, D=E+4nP, B=H. ()

Here, P is the polarisation vector of a medium and o, is the
electric conductivity which formally takes into account all
intracavity losses.

The polarisation of the medium P = P; + P, is deter-
mined by two components: the nonresonance polarisation
P, = E(¢ — 1)/4x (¢ is the dielectric constant of the medium)
and the resonance polarisation P, appearing upon inter-
action of active atoms with the field. In the semiclassical
theory, the resonance polarisation is expressed in terms of
the nondiagonal elements of the density matrix of active
atoms:

P, = n()(dabpba + dbapab)~ (5)

We will assume first that there are no intracavity
nonreciprocal elements and the only source of optical
nonreciprocity is the rotation of a ring cavity. By excluding
B and P, from Eqns (3), we obtain the wave equation

o’E oF 9P,
& a7 + ¢?rotrotE + 4na, 5 —4rn 61; .

(6)

For the transverse electromagnetic field, we have rotrotE =
—AFE and Eqn (6) takes the form

0’E 0E
s —— +4no, — — ¢*AE = —4
€ o2 + 4no, o c i

o%P,
e (7

In the case of a rotating ring laser, the coordinate system
coupled to it is noninertial and, as a result, the constitutive
equations take the form (see, for example, [40, 65])

D=E+ 41tP+%[B[9r]], H=B+ % [E[6r]]. (8)

Here, 0 is the angular rotation velocity vector and r is the
radius vector of a point inside the resonator. These
relations are written in the first approximation in v/c
(v = [0r] is the linear velocity at the point r appearing due
to rotation). Taking (8) into account, the wave equation (7)
in the rotating reference frame takes the form

a’p,

82
£ )

3E , oE
.~ 2 4 dne, — — ¢2AE — 2([0r oy
e + 4no, T ([0r]grad) 3 i

Spatial microscopic inhomogeneities of the dielectric
constant and conductivity caused by absorbing centres
and defects in the active medium, resonator mirrors, and
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intracavity elements are sources of backscattering resulting
in a linear coupling of counterpropagating waves. To take
this coupling into account, we will assume that ¢ and ¢
depend on coordinates.

Let us expand the intracavity field in the modes of an
ideal (without losses) ring resonator filled with a medium
with a constant refractive index ny, = v/¢. In the plane-wave
approximation, the spatial distribution of the intracavity
fields of counterpropagating waves for the nth axial mode
can be written in the form

Uty = exp(Fik,z), (10)
where k, = 2nnn/L is the wave number. The expansion of
the field in the modes in the case of single-mode lasing in
each direction has the form

E— Re[ZeEl‘z(t) exp(io, 1) U;g}, (11)
1,2

where E,(f) = Ej2exp(i9,); Ey,, Ey), and ¢, are the
complex amplitudes, moduli, and phases of counterpropa-
gating waves, respectively; , =k,c/\/e is the cyclic
frequency of the axial mode; ¢ is the speed of light in
vacuum; and e is the unit polarisation vector.

By multiplying the wave equation (9) by functions U7,
and integrating over the volume ¥ of the ring resonator, we
can obtain in the slowly varying amplitude approximation
E, 2(?) the truncated equations for complex amplitudes
EI,Z +”’n% EZI i% EL2+4TCiCL)n13ia’2. (12)

dEl‘z_iﬂ
dt — 20

The frequency Q in these equations determines the splitting
of the eigenfrequencies of the ring resonator for counter-
propagating waves caused by the Sagnac effect [10, 39, 40]:

_ A0 Sw

Q ,
Lc

(13)

where S and L are the area vector and perimeter of the ring
resonator. Hereafter in this section, we will omit the
subscript n at w,. The splitting of the resonator eigen-
frequencies for counterpropagating waves can be caused
not only by rotation but also by other nonreciprocal effects.
The resonance contribution of the polarisation of the active
medium to the amplification of counterpropagating waves
is

N 1 (F

Py = ZJ eP, exp[—i(wt F kz)]dz. (14)

0

The complex coefficients of linear coupling of counter-
propagating waves via backward scattering are determined
by the expressions

- r [ (. w .

1y = ?J (mc + in s> exp(F2ikz)dr. (15)
Let us represent these coefficients in the form

1y 5 = my 5 exp(£id »), (16)

where m;, and 3, are the moduli and phases of coupling
coefficients. The linear coupling appears due to the

backward scattering of counterpropagating waves by the
inhomogeneities of the dielectric constant ¢ and electric
conductivity ¢, of the elements of the optical resonator,
which always occurs in reality, and due to diffraction from
the elements of the resonator. The first term in (15)
describes coupling due to the scattering of waves by the
conductivity inhomogeneities and the second one — due to
scattering by the dielectric-constant inhomogeneities. In the
general case the moduli and phases of the coupling
coefficients for counterpropagating waves are different. If
backward scattering occurs only from the dielectric-
constant inhomogeneities (refractive-index inhomogene-
ities), the coupling coefficients are, as one can easily see,
are complex conjugated ($; = 9,). Such coupling is called
sometimes conservative, unlike the dissipative coupling
appearing due to the backward scattering of counter-
propagating waves by conductivity inhomogeneities
(absorbing centres). In the case of dissipative coupling,
the coupling coefficients are anticomplex conjugate (the
phase difference of the coupling coefficients is close to m).
The moduli of coupling coefficients are related to the
effective backscattering amplitude coefficients r;, by the
expression

c
my, = I rioa.

(17

As mentioned above, the system of equations of the
semiclassical theory in the case of solid-state lasers can be
solved by assuming that the polarisation of the active
medium (and, therefore, p,,) follows quasi-statically the
complex field amplitudes E;, and the inverse population.
The solution of Eqn (1) in the quasi-static approximation is

idabe Pa — Pv

Pab = " o 1= 10

x [Ey exp(ikz) + E5 exp(—ikz)| exp(—iot). (18)

By using (18) and expression (14) for the polarisation
vector, we can write the system of equations of the standard
model for a single-mode SRL in the form

dE o - Q. i - ol .
d;,z = —m E,+i 3 E,+ 3 my B + ﬁ(l —i0)
X JN[EL2 + E, exp(%i2kz)]dz, (19)
dN N a 2 2
—=Ww-=11 Ef +E
de T1{+1+52[1+2
+2ReE| E; exp(—i2kz)]] } (20)

where / is the active medium length; ¢ = a,/(1 + 0%); ay is
the laser transition cross section at the gain line centre; and
a= |dab|2T1 T,/2h? is the saturation parameter. Equations
(19) take into account that in the general case the resonator
losses (and, therefore, Q;, factors of the resonator) can be
different for counterpropagating waves. The difference of
losses for counterpropagating waves determines the ampli-
tude nonreciprocity of the ring resonator
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A specific property of bidirectional SRLs is a nonlinear
coupling of counterpropagating waves on spatial inverse-
population gratings in the active medium. The appearance
of these gratings is qualitatively explained as follows. Due to
the interference of counterpropagating waves in the optical
resonator, the energy density of the light field periodically
changes in space (along the resonator axis) and in time (if
the frequencies of counterpropagating waves are not equal).
Due to the inverse population saturation by the intracavity
field, dynamic periodic structures (gratings) are induced in
the active medium, which are analogous to gratings pro-
duced upon hologram writing. The presence of such gratings
is manifested in variations in the gain of counterpropagating
waves (amplitude gratings) and in the refractive index of the
active medium (phase gratings). The self-diffraction of
radiation from induced gratings leads to a nonlinear
coupling (competition) of counterpropagating waves. The
competitive interaction between counterpropagating waves
proves to be the strongest in the case of the homogeneous
broadening of the gain line, which is typical for most solid-
state lasers.

Equations (19) and (20) represent the system of integro-
differential equations. This system can be reduced to a
system of ordinary differential equations by expanding the
expression for the population inversion in a series in spatial
harmonics:

N(z) = Ny + N, exp(i2kz) + N_exp(—i2kz)+. .. (21)
In the case of a small excess of the pump over the lasing
threshold, we can retain in (21) only two spatial harmonics
of the inverse population: the zero (N,) and second
harmonics (N,). The consideration of higher harmonics
does not result in the appearance of any qualitative
peculiarities in the lasing dynamics [26]. By using expression
(21) we obtain from (19) and (20) the system of ordinary
differential equations

dEl-,zfi w
e 20,

i
2

. Q.
El‘zﬂ:l*El‘2+

m E;
2 l )

Lo

T —ié)(NoEi]Tz +N;EZ,1)9

dn, 1

T, — = Ny (1 —Ny—— 22
4T w(l+1) = No e (22)

x [Noa(|Er[* + |Eo]*) + NyaE By + N_aE{'E,],

dnN 1 2 2
T, —=-N, ——— [N «(|E E NyaE[ E,],
' 4T n H_(Sz[ﬂ(\ 17+ |E]7) + NoaE B, |
where

1t 1t
Ny = _J Ndz; N, = —J Nexp(Fi2kz)dz.
L 0 L 0

(23)

The system of equations (22) represents the standard
mathematical model of a SRL. A somewhat different

derivation of the basic equations of the standard model is
presented in paper [66].

Let us emphasise that the equations of the standard
model were derived by using the following assumptions:

(1) only one type of oscillations is generated in each
direction;

(ii) the plane wave approximation is used;

(iii) spatial inhomogeneities of the pump radiation and
inverse population in the transverse (with respect to the
resonator axis) direction are neglected;

(iv) diffraction effects (diffraction frequency splitting,
diffraction nonreciprocity, etc.) are neglected;

(v) polarisation of counterpropagating waves is assumed
the same and linear.

A solid-state ring laser is a rather complicated nonlinear
dynamic system with characteristics depending on many
controlling parameters. The nonlinear dynamics of the SRL
is described in the standard model by a system of ordinary
differential equations (22) for complex variables (complex
amplitudes of counterpropagating waves and complex
harmonics of inverse population). In real variables, this
system consists of seven first-order differential equations.
All the parameters (coefficients in equations) of an auton-
omous laser are independent of time. The number of degrees
of freedom of this model shows that an autonomous SRL
(even single-mode one) is a complicated dynamic system
admitting the appearance of dynamic chaos regimes.

It will be shown below that, depending on the parame-
ters of a SRL and their combination, the following lasing
regimes are possible:

(i) stationary regimes with constant intensities and equal
frequencies of counterpropagating waves (standing wave
regimes and unidirectional lasing);

(ii) periodic nonstationary regimes (the self-modulation
regime of the first kind and in-phase modulation regime);

(iii) regime of beatings of counterpropagating waves;

(iv) quasi-periodic regimes (self-modulation regime of
the second kind, regimes with the self-modulation period
doubling);

(v) dynamic chaos regimes.

4. Interaction of counterpropagating waves
in stationary lasing regimes

4.1 Peculiarities of the nonlinear dynamics

The diversity of lasing regimes in SRLs is determined by the
nonlinear coupling of counterpropagating waves in the
active medium on inverse-population gratings and by the
linear coupling between counterpropagating waves, which is
described by the complex coupling coefficients. The linear
and nonlinear couplings of counterpropagating waves
substantially affect the existence and stability of various
lasing regimes, resulting in the appearance of self-modu-
lation oscillations and other nonstationary regimes.

We consider first the peculiarities of the nonlinear
dynamics in stationary lasing regimes, when counterpropa-
gating waves have identical frequencies and their amplitudes
(intensities) are independent of time. In ring lasers, the
stationary states of two types are possible. For the states of
the first type, the intracavity field forms a standing wave (the
intensities of counterpropagating waves are comparable,
E, = E,). The states of the second type correspond to
unidirectional lasing, when the intensity of one wave greatly
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exceeds that of the counterpropagating wave (for example,
E| > E)).

Consider qualitatively the main physical factors deter-
mining the stability of stationary states. The nonlinear
coupling of counterpropagating waves on inverse-popula-
tion gratings causes a strong competition between these
waves: the self-diffraction of counterpropagating waves on
induced gratings leads to the inequality of their gains. In the
case of small detunings of the lasing frequency from the
gain-line centre (|0| < 1), which can be neglected, the gains
of counterpropagating waves in the presence of self-dif-
fraction of radiation from gratings induced in the active
medium, are

al E
Ki» :ﬁ<NO +N:F i)

Expression (24) in the weak-field approximation, when
the pump excess # over the lasing threshold is small (7 < 1),
can be written in the form

24

K12 =Kol — 0aEdy — PaEs),

where i is the unsaturated gain; o and f are the self- and
cross-saturation coefficients. In the case of the homoge-
neously broadened gain line and the identical frequencies of
counterpropagating waves, we have « =1 and =2. The
difference of the gains for counterpropagating waves is
determined by the expression

K| — Ky = (ﬁ — cx)a(E12 — Ezz)Ko. (25)

For > o, the gain of the more intense wave is higher.
This leads to the instability of the standing wave regime and
competitive suppression of one of the counterpropagating
waves in the case of a sufficiently weak linear coupling and a
small detuning of the lasing frequency from the gain-line
centre (|0| < 1). Then, the unidirectional lasing regime
proves to be stable. The linear coupling of counterpropagat-
ing waves via backward scattering destabilises the
unidirectional lasing regime. As the linear coupling
increases, unidirectional lasing becomes unstable and the
nonstationary regime of self-modulation oscillations of the
first kind appears, which in the case of a sufficiently strong
linear coupling is changed by the stable stationary standing-
wave regime. Therefore, the linear coupling of counter-
propagating waves stabilises the standing-wave regime.

In the presence of detuning from the gain-line centre
satisfying the condition

T]T’]UJ)_I/2

26
0 (26)

|5|>5cr:<1+n>(

the type of nonlinear coupling changes [53, 54]. In the
absence of detuning o, the induced inverse-population
gratings are purely amplitude gratings, while in the presence
of detuning the phase shift of the scattered wave occurs,
which leads to the instability of unidirectional lasing even in
the absence of linear coupling [53, 54].

The stability of stationary regimes is usually studied by
considering weak perturbations with respect to stationary
states and linearising the dynamic equations with respect to
these perturbations. As a result, a system of linear differ-
ential equations with constant coefficients is obtained. This

system of equations gives the characteristic equation for 4
for solutions depending on exp (4¢). In the case of lasers with
a slow relaxation of the population inversion, the weak
perturbations of dynamic variables with respect to their
stationary values experience relaxation oscillations, whose
frequency is determined by the imaginary part of A. The
condition for stability of stationary solutions is the negative
value of the real parts of the roots of the characteristic
equation. In the general case, three relaxation frequencies
can be observed in a SRL because the order of the cha-
racteristic equation is Six.

In the unidirectional lasing regime, transient processes in
a SRL are characterised by three relaxation frequencies
[67—69]. The main relaxation frequency

12
naw
W, = —_
(QT1>

is independent of the frequency nonreciprocity of the
resonator, whereas the two other frequencies depend on Q
and are described by the expression

(,0(1'2): w_r2+Q_2 l/zig
! 2 4 2"

@27

(28)

In the absence of the frequency nonreciprocity of the
resonator, the relaxation frequencies ol are degenerate:
wr(l = (ur(2> = m,/+/2. The degeneracy also takes place when
the frequency nonreciprocity Q of the resonator is equal to
,/2. In this case, the frequency oV coincides with the
main relaxation frequency. In the case of the degeneracy of
frequencies, a parametric resonance appears between two
branches of relaxation oscillations [69—72]. The critical
value of a linear coupling resulting in the instability of
unidirectional lasing proves to be minimal in regions of
parametric resonance [69].

Along with the coupling of counterpropagating waves
via backward scattering, the optical nonreciprocity of the
ring resonator plays an important role in the lasing
dynamics of the SRL. Consider qualitatively the influence
of the frequency (phase) nonreciprocity on the SRL
radiation dynamics. In the standard model of a ring laser
described by the system of equations (22), the optical
frequencies of counterpropagating waves are determined
by the expression

do,,
Wy =W, + a

(29)

where d¢, ,/dr are the frequency shifts of counterpropagat-
ing waves with respect to w, (the eigenfrequencies of a ring
resonator in the absence of frequency nonreciprocity).
These shifts can be found by solving the system of
equations (22). In an empty resonator (in the absence of
an active medium and coupling between counterpropagat-
ing waves), the frequencies w;, prove to be equal to the
eigenfrequencies of the optical resonator: w;, = w, £ Q/2.
In the presence of a linear optical coupling, the frequency
synchronisation of counterpropagating waves appears in
the ring laser and, as a result, both counterpropagating
waves oscillate at the frequency o = (w; + w,)/2. Fre-
quency synchronisation can appear both in the bidirectional
lasing regime (standing-wave regime) and in regimes with
substantially different intensities of counterpropagating
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waves (unidirectional lasing regime). The optical non- dn, 5 )

reciprocity noticeably affects the intensity ratio of T dr —na(1 +aEf" + aE5) — mak Eycos ¥,
counterpropagating waves in stationary lasing regimes. In

the presence of the amplitude nonreciprocity 4 of the ring do » ) E, E

resonator, even rather small difference AQ = Q; — Q5 in the a 20 T S1 lp(a + Ez) (30)

resonator Q factors for counterpropagating waves consid-
erably expands the region of SRL parameters at which the
stable travelling-wave regime exists. Experiments show that
the difference in the Q factors of a few percent is sufficient
for obtaining stable unidirectional lasing [35].

The synchronisation band in a single-mode SRL in the
synchronisation regime can be unlimited. If in the absence of
the frequency nonreciprocity, the standing-wave regime is
stable, then the synchronisation regime is preserved with
increasing the frequency nonreciprocity Q for all its values
(unlimited synchronisation band) [73]. As Q is increased,
one of the counterpropagating waves is gradually sup-
pressed and the standing-wave regime passes to the
unidirectional lasing regime. The frequencies of counter-
propagating waves can be different (see below) in
nonstationary lasing regimes (self-modulation regimes, beat-
ing regime, and dynamic chaos regimes). In the presence of
frequency and amplitude nonreciprocities, the dependence
of the intensity of counterpropagating waves on €2 consid-
erably changes (loop dependences of the intensity of
counterpropagating waves on the frequency nonreciprocity
appear) [27, 74].

4.2 Unidirectional lasing in the absence of nonreciprocity

One of the practically important stationary regimes, which
can exist at a sufficiently weak linear coupling between
counterpropagating waves, is the unidirectional lasing
regime (travelling-wave regime). It is this regime that
allows one to provide the maximum stability of the output
parameters of the laser and to obtain high-power single-
frequency lasing.

The stationary travelling-wave regime in a SRL can be
analysed with the help of the system of equations (22). It is
convenient to pass from complex variables to the real ones
by using the expressions

~ . ol o\
Eyy = Ejyexp(ip,), ny= T No(g) ,
ol o\

?N¢<§) =myexp(£iyy).

Consider the case when the optical nonreciprocities of a
ring resonator are absent (4 =0, Q =0), the lasing fre-
quency coincides with the gain-line centre (6 = 0), and the
moduli of the linear-coupling coefficients of counterpropa-
gating waves are identical (m; = m, = m). The system of
equations (22) in new variables E,,, ny, ny, @ = ¢, — ¢y,
and ¥ = &+, takes the form

dE 2 w
d; =30 [(ng — 1)E\ 5 + ny cos WE, ]

m .
5 sin(® + 91 ,)Es 5,

d
T, it“ =1+n—ny(1 +aE} + aE3) — 2nyak, Eycos P,

m|E E
+ 7 [E_; cos(P+ ) — F? cos(® + 91)],

—=—+—EF Y.
dl dl + T1n2 152 81m

The order of this system of equations is smaller by unity
than that of the initial system in complex variables. This is
explained by the fact that the phase of any of the travelling
waves can be chosen arbitrarily, and only the phase
difference of counterpropagating waves is important in
analysis of stationary regimes.

In the case of weak coupling (m < w/Q), the stationary
solutions of equations (30) and their stability can be studied
by the method of successive approximations in a small
parameter p = m(m/Q)f1 [9, 68—72, 75]. In the zero-order
approximation, corresponding to m =0, the stationary
solutions describing the travelling-wave regime, can be
represented in the form (we assume for definiteness that
E > E)

\/EEl(O) — /i, Ez(o) —0, n® =1, n2(0> =0. (31)

Taking into account the terms of the order p? in the next
approximation, we write the stationary solution in the form

1+7
akbf =n—mp’, m =——=[2+ (1 +n)cos 9
3=39,-9,,
2 (1+’7)2 2 :
aEZ =P, nmh=p, Sln(q)_‘gl) = 1’ (32)
n
cos¥V = —1,

1+
no=1+mp’, n :Tn(l +cos ).

Note that because the backward scattering of counter-
propagating waves always takes place in real lasers,
bidirectional lasing in the travelling-wave regime occurs,
strictly speaking, with substantially different intensities of
counterpropagating waves. The necessary condition for the
existence of the travelling-wave regime is a weak coupling of
counterpropagating waves due to their backward scattering
(p<1).

In the case under study, the characteristic equation splits
into the quadratic and fourth-order equations (see [68, 70]).
The quadratic equation has the roots

2
. 71—&—11[17214-17 p—}ii( nw

1/2
2= 2+n) p 2QT1> > 9

while the approximate values of the roots of the second
equation are determined by the expressions
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34 = — )
2T, Pgr 20T,
(34)
49 0’ ne 12
A — 1+—(2 +il —
o=+ i i 37 )
where
ol = (I +mn Y
O 24n)[l +cos($ = )] T

The roots A5 4 correspond to the main relaxation frequency,
and the roots A, and A;4 to the degenerate frequencies
w,/V/2. The strong wave oscillates at the frequency .,
while the weak wave and the phase difference of counter-
propagating waves oscillate at the frequency w,/v/2. It
follows from expressions (33) and (34) that the necessary
and sufficient condition for the stability of the travelling-
wave regime is the inequality

(I+ny o 1
2+}’] QT] 1 +COS(91 — \92).

m < (m)* =

(35)

One can see that the stability of the travelling-wave regime
depends not only on the moduli of coupling coefficients m; ,
but also on the phase difference 9; — 3,. In the case of
dissipative  linear  coupling, when the condition
cos (3 — F) = —1 is fulfilled, the travelling-wave regime
in a SRL is stable in the entire region of its existence. It is
reasonable to assume that a linear coupling in monolithic
solid-state lasers is mainly determined by backward
scattering for inhomogeneities of the dielectric constant
of the active element. In this case, the feedback coefficients
prove to be close to the complex conjugate ones
(3 — 3 < 1), and for a small pump excess of the lasing
threshold (7 < 1), the condition (35) for stability of
unidirectional lasing can be written in a simple form
m < w,/2. This condition, as a rule, is not fulfilled in
monolithic SRLs (because of a small perimeter and, hence,
a large linear coupling coefficient m). In this case, the
instability of unidirectional lasing gives rise to self-
modulation oscillations of the first kind. Nevertheless,
the stationary unidirectional regime can be easily obtained
in such lasers in the presence of the optical nonreciprocity
of the resonator (see below).

4.3 Stationary standing-wave regime

The linear coupling of counterpropagating waves via
backward scattering stabilises the standing-wave regime
[8, 9, 76]. Consider the influence of the linear coupling on
the standing-wave regime in the absence of the frequency
nonreciprocity of the resonator (2 =0) and for a small
detuning of the lasing frequency from the gain-line centre
(0 = 0). In the case of a small excess of the lasing threshold
(n < 1) and equal moduli of the coupling coefficients (m; =
m, = m), the stationary amplitudes of the intracavity field
in the standing-wave regime are independent of the linear
coupling and are determined by the expression

me:ﬂﬁzg. (36)

Two standing-wave regimes can exist in a SRL, for which
the phase differences for counterpropagating waves differ
by

9+
2

9+
2

¢l N @2 + . (37)

The positions of the nodes and antinodes of a standing
wave in these regimes are displaced by one fourth of the
wavelength. The characteristic equation for the standing-
wave regime splits into three equations: linear

Ty +1=0, (38)
quadratic
9, -9
iMﬂ+le<g—mst7—3>:Q (39)
and cubic
uTr+UPz—nf+qﬁcm2i§%§}+4A—n)
9, — 9
x(gfmgn122>g:m (40)

where I is the stationary value (¢//T)Ny, — w/Q. For the
two standing-wave regimes [see (37)], the values of IT prove
to be different:

al o on m| . $—%
m,=2nN, 221"
1277 0 30 3" 2
2m . 9, -9
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The roots of linear and quadratic equations (38) and (39)
have the negative real parts. According to the Routh-
Hurwitz criterion for the roots of cubic equation (40), we
obtain the stability condition

w
30"

9 —%

msin
2

(42)

for the standing-wave regime. Only one of the two
stationary standing-wave regimes proves to be stable.
From the physical point of view, the standing wave
becomes stable due to a change in the effective gains of
counterpropagating waves in the presence of feedback:

ol E21>
(Al,z)eff > < 0 + Er

E
:I:mlg TSln((P — 91‘2) 2;;12 R

(43)

where @ is the phase difference of counterpropagating
waves. While in the absence of coupling, a more intense
wave had a higher gain, in the presence of a sufficiently
strong coupling satisfying condition (42), the situation
changes and a more intense wave has a lower efficient gain,
resulting in the stability of a standing wave.

Therefore, by increasing coupling between counter-
propagating waves, the competitive suppression of
counterpropagating waves can be eliminated and a stable
standing wave can be generated. The feedback stabilises the
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standing-wave regime most efficiently in the case of anti-
complex conjugate coupling coefficients. In this case, the
stability condition for a standing wave has a simple form
m > nw/(30).

The inverse population in the standing-wave regime is
burnt spatially inhomogeneously. This favours excitation of
many axial modes in a solid-state laser with increasing pump
power. Single-mode lasing in the standing-wave regime can
be obtained only by introducing special selecting devices
into the resonator. In the absence of selection, the multi-
mode standing-wave regime appears. In the multimode
standing-wave regime, the inverse population is spatially
burnt more homogeneously than in the single-mode regime.
As shown in [76], this reduces the rise increment of the
standing-wave perturbations. This can be qualitatively
explained as follows. As the inverse population is spatially
smoothed, the reflection of waves from its inhomogeneities
decreases, reducing the difference in the gains of counter-
propagating waves, which causes the standing-wave
instability.

Due to a decrease in the rise increment of perturbations,
the multimode standing-wave regime becomes stable at a
weaker coupling than in the single-mode regime. The
stability condition for the two-mode standing-wave regime
has the form [76]

lg{‘l - ‘92”

i 44
m| sin 5 (44)

> 2 (1 4
an 5—sinx/x /)

Here, x =2nl/L; 9{, are the phases of the coupling
coefficients of the counterpropagating waves for the nth
mode; and //L is the filling factor of the resonator.

Note that the linear coupling in monolithic ring lasers, as
a rule, is insufficient for condition (42) to be fulfilled, and
the stationary standing-wave regime is unstable in such
lasers. In lasers consisting of discrete elements, the standing-
wave regime can be readily realised if the ends of the active
element are oriented normally to the resonator axis [9, 27].
It has been shown experimentally in [77] that, according to
(44), upon excitation of several longitudinal modes, the
standing-wave regime can be stabilised at a weak linear
coupling.

4.4 Influence of the resonator nonreciprocity
on stationary lasing regimes

The study of the influence of the optical nonreciprocity of a
ring resonator on stationary lasing regimes is both of
scientific and practical interest. It is important, for example,
to investigate the width of the frequency-locking region for
counterpropagating waves in bidirectional lasing regimes,
the conditions for the beating-regime existence, and the
conditions for considerable suppression of a weak wave in
the unidirectional lasing regime.

Consider first the influence of the frequency nonreci-
procity on the standing-wave regime. The analytic study of
the stability of the stationary bidirectional regime in the
presence of the frequency nonreciprocity of a ring laser can
be performed in the case of a strong coupling between
counterpropagating waves via backward scattering with the
coupling coefficients close to the complex conjugate ones
[78]. We assume for simplicity that the moduli of coupling
coefficients are equal (m; =m, =m). In this case, the
method of successive approximations in small parameters

9 -9

(45)
can be used.

The intensities of counterpropagating waves in the
stationary bidirectional lasing regime under study depend
on the frequency nonreciprocity Q as

2
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Ei=__"__ | ol
@k 22v2—|—m2{ +s1gnuv},

46
2ot G ? ()
a = — — — 1,

2T 202 m? g 'uv

where v = (m> + Qz)l/z.

In the absence of the frequency nonreciprocity, these
expressions describe the standing-wave regime considered
above. In the presence of the frequency nonreciprocity €,
the phase difference of counterpropagating waves changes,
which in the case of a feedback via scattering leads to the
inequality of their intensities. The dependence of the
intensities of counterpropagating waves on Q has the
characteristic x-shaped form (Fig. 3). As Q is increased,
one of the counterpropagating waves is suppressed, and the
standing-wave regime passes to unidirectional lasing at large
Q. In the absence of the frequency nonreciprocity, the
intensities of counterpropagating waves are different if
the moduli of coupling coefficients are not equal. In this
case, the intensities of counterpropagating waves become
equal (a pure standing wave) when the frequency non-
reciprocity is Qq = (m, — my)/2.

ED(Q)
E2(0)

1.5

1.0

0.5

Q
80 5 /kHz

Figure 3. Theoretical (solid curves) and experimental (circles) dependen-
ces of the relative intensities of counterpropagating waves on the
frequency nonreciprocity of a ring resonator in the stationary regime of
synchronisation of counterpropagating waves [73] in the case of stable
standing wave for mQ/w = 0.8, 9; — 3, = 0.1, and n = 0.1.

The stability condition for the stationary bidirectional
lasing regime under study (as the stability condition for the
standing-wave regime for Q =0) is determined by the
inequality

ol w
II1=— Ny——<0.
T 0
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In the case of equal moduli of linear coupling coefficients
(m; = my, = m), it has the form

wn

Sin(91 — 92)
m| 2L T2 .
0(3m? +2Q?)

5 2m(m2+92)1/2

. (@7)

In the absence of the frequency nonreciprocity (2 = 0),
this condition coincides with the stability condition (42) for
a standing wave. It follows from (47) that in the case of a
stable standing wave [i.e., when inequality (42) is fulfilled],
the bidirectional stationary lasing is stable for any values of
Q. Therefore, the frequency locking regime for counter-
propagating waves exists in a SRL which does not pass to
the beating regime with increasing frequency nonreciprocity.
In this case, one of the waves is suppressed with increasing Q
without leaving the frequency-locking region. This conclu-
sion well agrees with experimental results [8, 9, 73].

If the linear-coupling strength is insufficient to stabilise a
standing wave at Q =0, i.e., the inequality

w

E’?

\91 — 92
2

msin

(48)

is fulfilled, then for frequency nonreciprocities satisfying the
inequality |Q| < Q,, the stationary bidirectional lasing is
unstable and the self-modulation lasing regime of the first
kind appears in a SRL, which passes for |Q2| > Q; to the
stable stationary bidirectional (or unidirectional) lasing
regime. The boundary value ©; can be found from the
equation

wn

Sin(lgl — 192)
m——s (32 L1202\
0(3m? +297)

2 =m(m® +07)'"?

. (49)

The propagation direction of a strong wave is determined
by the sign of Q and the sign of the phase difference for
coupling coefficients: if 2 >0 and 9§, —3 >0, then
E? > E7.

Consider now the influence of the frequency nonreci-
procity of a ring resonator on the nonlinear dynamics for an
arbitrary linear coupling. The asymptotic study of sta-
tionary lasing in the region of large frequency
nonreciprocities (for |Q| > m;,, nw/Q) was performed in
[79]. In this region, a stable stationary regime exists with
substantially different intensities of counterpropagating
waves. The regime with a strong wave E; (E12 > E22) is
stable when Qsin(9, —3;) <0. In the case Qsin(3—
91) >0, the regime with a strong wave E, is stable
(E? > E?). Therefore, the propagation direction of radia-
tion in a SRL operating in the travelling-wave regime can be
switched by changing the sign of Q.

Consider now the influence of the frequency nonreci-
procity on the stability of unidirectional lasing in the case of
a weak linear coupling. As mentioned above, in the absence
of the frequency nonreciprocity (2 =0) and frequency
detuning from the gain-line centre, the travelling-wave
regime is stable at a rather weak coupling, m < m,, [see
(35)]. The critical value of coupling m, depends non-
monotonically on the frequency nonreciprocity of the
resonator [69]. Figure 4 shows the dependence of
Por = M@/ on Q. For p > p,,., the stationary regimes
of unidirectional lasing are unstable. The values of p., are
minimal for the frequency nonreciprocities corresponding to
the degenerate relaxation frequencies [as mentioned above,

the degeneracy appears for Q=0 (p, = p(?r) and
Q =+w,/2). For p < p,, both travelling-wave regimes,
corresponding to the opposite propagation directions of
radiation, are stable, i.e., bistability takes place. In the
presence of such bistability, the propagation direction of
radiation in a ring laser can be spontaneously switched due
to the technical fluctuations of laser parameters, which is
inadmissible in practical applications. This disadvantage can
be easily eliminated by producing unequal intracavity losses
for counterpropagating waves. In this case, the unidirec-
tional lasing regime for which losses are minimal in the
propagation direction of a strong wave becomes stable.

—w,/2 0 ;)2 Q

Figure 4. Theoretical dependence of the critical value p of a linear
coupling on @ in the unidirectional lasing regime in the absence of the
frequency detuning from the gain-line centre for 7T7w/Q = 5000 and
n = 0.4[69].

The unidirectional lasing regime in the presence of the
amplitude and frequency nonreciprocities was studied theo-
retically and experimentally in papers [69—72]. The depen-
dences of the relaxation frequencies and their decay decre-
ments on the frequency nonreciprocity of a ring resonator
were investigated. Figure 5 shows the dependences of the
relaxation frequencies on @ in the absence of a linear
coupling. The presence of a linear coupling leads to a
considerable change in the relaxation frequencies and decay
decrements in the vicinity of the point Q = w,/2 (Fig. 6)
where the main relaxation frequency coincides with the
frequency wr( D In this case, the degeneracy of the relaxation

w, wr(l) wr(z)

o an o /K

35

Wy

30

[oN

25 F

2 -
0 e
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0 5 10 15 — /kH
211/ z

Figure 5. Theoretical dependences of the relaxation frequencies w,, wr@ ,

and wr(]) on Q in the unidirectional lasing regime in the absence of the
linear coupling for 7w/Q = 5000 and n = 0.2 [72].
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frequencies [w, = oM ] takes place within a finite interval of

values of Q, and we can speak about the mutual synchro-
nisation (frequency locking) of relaxation oscillations. The
width of the frequency-locking band increases with increas-
ing m. One can see from Fig. 6 that the decay decrements [J;
at the main relaxation frequency w, and J, at the frequency
cur“)] change their sign in the vicinity of the point Q = w,/2,
which means that the travelling-wave regime becomes
unstable. In the locking region of relaxation frequencies
in the presence of the amplitude nonreciprocity, the chaotic
self-modulation of the lasing intensity can appear [71].

The investigations of fluctuations of the radiation
intensity and relaxation frequencies in the regime of sta-
tionary unidirectional lasing [56, 70—72, 80] have shown
that all the experimental results well agree with the
theoretical results obtained within the framework of the
standard model.

W, )
2n’ 2n
27 | )

/kHz

26
25
24
23

22

o
n
T

e
-1.0
(1

Figure 6. Theoretical dependences of the relaxation frequencies w,, w;, )
(a) and decay decrements J; (at the frequency ) and 0, [at the
frequency wr(l)] (b) on Q in the region of the parametric resonance at
Q = w,/2 in the unidirectional lasing regime for Tjw/Q = 5000 and
n=02 p=2x 10~ and 91 — 9, =0 [71]. The dashed straight lines
show the decay decrements 6; and 0, away from the parametric
resonance region.

The stationary regime of unidirectional lasing in cw
Nd : YAG lasers was experimentally studied in many papers
(see, for example, reviews [14, 25, 27] and references
therein). The detailed analysis of the technical characteristics
of SRL radiation in the stationary unidirectional lasing
regime (the radiation amplitude and frequency stability, the
generation of high-power single-frequency radiation, etc.) is
beyond the scope of this review. We consider here only
several papers illustrating different methods for obtaining
stationary unidirectional lasing.

The travelling-wave regime in a laser consisting of
discrete elements is usually obtained by introducing a

nonreciprocal element into the resonator [6, 70, 81] or by
applying a magnetic field directly to the active element [82].
One of the methods is based on the use of an external
retroreflecting mirror [83]. Unidirectional lasing can be also
obtained by employing acousto-optic nonreciprocal ele-
ments [37, 84]. Unidirectional lasing in a ring resonator
in the presence of frequency nonreciprocity produced by the
rotation of the resonator was demonstrated in [73].

The travelling-wave regime in monolithic ring chip lasers
is usually achieved by applying a magnetic field to the active
element [18—25]. Unidirectional single-frequency lasing
appears in this case due to the use of a nonplanar resonator
providing the reciprocal rotation of polarisation planes. The
spatiotemporal and polarisation characteristics of radiation
from a ring laser with a nonplanar resonator were studied in
[85, 86].

4.5 Influence of the gain-line structure
on the unidirectional lasing regime

As mentioned above, in the presence of the laser-frequency
detuning from the gain-line centre, the type of nonlinear
coupling of counterpropagating waves on inverse-popula-
tion gratings changes, resulting in a change in the stability
conditions for stationary lasing regimes. In the case of
sufficiently large relative detunings (6 ~ 1), even in the
absence of a linear coupling between counterpropagating
waves, bifurcations can appear which cause the instability
of unidirectional lasing and produce regular and chaotic
self-oscillations of the intensities of counterpropagating
waves [87]. Such detunings, however, are possible only after
introducing special selecting elements into the ring reso-
nator.

The unidirectional lasing regime in the absence of a
linear coupling between counterpropagating waves is unsta-
ble for the relative detunings [53, 54]

Tﬂ]w)l/z
Q .

If inequality (50) is fulfilled (|d] < J;), then in the presence
of detuning, the critical linear coupling p. = m,Q/w
decreases, resulting in the instability of stationary unidirec-
tional lasing [69]. In addition, regimes that differ in the
propagation direction of a strong wave have different
values of p. (in the presence of detuning and frequency
nonreciprocity). Figure 7 shows the dependences of p . on
Q for two stationary lasing regimes for the relative

—w,/2 0

/2 Q

Figure 7. Theoretical dependences of the critical values of the linear
coupling on @ in two unidirectional lasing regimes in the case of the
frequency detuning from the gain-line centre for 6 = 0.1, Tyw/Q = 5000,
and 1 = 0.4 [69].
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frequency detuning é = 0.1. In regions I and II between
curves (/) and (2), only unidirectional lasing is stable: in
region I, the wave E| is strong, while in region II, the wave
E, is strong. Below regions I and II, both unidirectional
lasing regimes are stable (bistability).

The numerical solution of the system of equations of the
standard model (22) shows that the nonstationary regime of
low-frequency switching of the propagation direction of
radiation (the self-modulation regime of the second kind)
appears in a SRL at the relative frequency detunings
|0] > ;. Although this condition is usually not fulfilled
in the case of single-mode lasing, such a stationary regime
was observed during single-mode lasing in ring Nd : YAG
lasers [7, 9]. This contradiction was explained in the SRL
model taking into account the real structure of the gain line
[55, 56]. The luminescence spectrum of Nd : YAG crystals
has two closely spaced lines: a strong line at 1.0639 pm and
a weaker line at 1.0643 pum. The distance between these lines
at room temperature is of the order of their half-width and
their intensities differ approximately by a factor of three.
The weak component causes the asymmetry to the total gain
line, which is equivalent to the wave frequency detuning
from the gain-line centre.

The system of equations describing the nonlinear
dynamics of the SRL with two closely spaced gain lines
has the form [55, 56, 68, 71]

dE;,
de 20,

. Q- 1. =
E,+i= E, +§ my 1k,

2

ol - B
+ 3T [(No + L'Ng)E > + (N + L'N%)E, ],

dn

Ty —— a7 = Np(1+1n) -

No[l +a(|E, I+ \Ez|2)]

—N+aE1E2* — N_LlEl*Ez,

N, _

hgr =

N [1+a(|E [+ |E]*)] — NoaE Ey,  (51)

dNg

Ty —— ar = Ny (1 +’7,)

— N§ — ReL'[Nga(|E\[* + |E|?)

+N.aE\E5 + N aE/'E,],

dnN’,

U

= —N —ReL'[N}a(|E\[* + |E,|*) + NgaEf E,].

Along with variables used in equations (22) of the
standard model, these equations also contain variables
N{ and N., which are the constant component and the
complex amplitudes of the spatial harmonics of the inverse
population related to the weak line, L' = 1/(1 +id’), and
the relative distance between the centres of the lines 6’ =
(wy — wq)/ T». The different intensities of luminescence lines
are simulated by different pump rates Ngo/7; and
NLhDC ,/Tl .

In the absence of the linear coupling of counterpropagat-
ing waves, the stationary solution of this system of
equations corresponding to unidirectional lasing is described
by the expressions

1+6" 4
E} =
e 2 { {14—5’2

(x+o'ReL’ — 1)+

1/2
+[1— (o' — 1)ReL/ﬂ —[1—(a4a' - I)ReL/]},

aR12 = O,

alNy (@ ! o
nn=—1\4 =3
T \Q 1+ aFE;

n/,GlN(I) ) _1_ o
0= " 1+ ReL’aE}’

where « =1+n and o' =1+7n".

The study of the stability of unidirectional lasing in the
absence of linear coupling between counterpropagating
waves leads to the characteristic equation [68]

(52)

TP+ [2+ aEZ (1 + ReLl")| 22T + 2T, (53)

x| (14 aE7)(1 + ReL'aEs) + oh

0 akE3 (ng +nyL'ReL’)

+% aEs [ng(1 + ReL'aEs) +ngL'ReL’ (1 + aE5)] = 0.

The unidirectional lasing regime (52) proves to be unstable
(ReA > 0) if the condition

O E2nf(ReL')F5' > F*[2 + a2 (1 + ReL')]
20

(54)
- ‘%1 aE2[no(1 + ReL'akR) + nj(ReL")* (1 + aE?)]

is fulfilled, where
oT Wiy
20

Figure 8 shows the dependence of the stability-region
boundary for stationary unidirectional lasing (solid
curve) on the parameters o’ and &' calculated in [68]
from (52) and (54). The point R with the coordinates 6’ = 1
and o’ = a/3 corresponding to the parameters of a weak

F?= [no + nO(ReL ) ]aEQZ.

04 R,

03 |

02 |

0.1

0 0.4 0.8 12 9

Figure 8. Stability boundaries of unidirectional lasing in the (5', a')
plane of the SRL model parameters with the two-component gain line
for Tyw/Q = 5000, 7 =0.2, p = 1073, and §; — 9, = 0 [68].
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line in a Nd : YAG laser is located in the instability region.
Therefore, if the real structure of the gain line is taken into
account, the unidirectional lasing in a ring Nd : YAG laser
proves to be unstable in the absence of optical non-
reciprocity and linear coupling. In the standard SRL model,
such instability takes place for tunings |J| > J . In the
instability region (above the boundary), the self-modulation
regime of the second king appears (see below).

5. Periodic self-modulation lasing regimes

The analysis performed in the previous section shows that
there exist the regions of laser parameters where all the
stationary lasing regimes prove to be unstable. For
example, in the case of lasing at the gain-line centre
(6 =0) and a small pump excess over the lasing threshold
(n < 1), all the stationary regimes are unstable if the

inequalities
\91 — 92 1 nw ]/2
m COST > E (ﬁ s
(55)
il sin(dy = 9] < 55

are fulfilled. Recall that these inequalities are written in a
particular case of equal moduli of the linear coupling
coefficients (m = || = |ri1,]) in the absence of the ampli-
tude and frequency nonreciprocities (0/Q = /0, = w/Q>,
Q = w;— w, = 0). In the case of sufficiently large frequency
detunings satisfying the condition |d] > J,, all the sta-
tionary states are unstable even in the absence of linear
coupling between counterpropagating waves (see Section
4.5). In these regions, nonstationary lasing regimes appear,
among which the most interesting are self-modulation
regimes of the first and second kinds, quasi-periodic
regimes, beatings of counterpropagating waves, and the
dynamic chaos regime.

5.1 Self-modulation of intensity of counterpropagating
waves

The simplest nonstationary regimes are periodic regimes,
among which the most important is the self-modulation
regime of the first kind, in which the intensities of
counterpropagating waves experience out-of-phase sinus-
oidal oscillations. This regime was first studied by solving
numerically equations (22) of the standard model in [52]
and was experimentally observed in [9]. The frequency w,,
of self-modulation oscillations is determined by the strength
of the linear coupling of counterpropagating waves and the
nonreciprocity of the ring resonator. In the absence of
optical nonreciprocities, the frequency w,, can vary from
tens of kilohertz to a few megahertz.

Consider first the features of the nonlinear dynamics in
the self-modulation regime of the first kind in the absence of
the amplitude nonreciprocity of the resonator (4 = 0). The
region of existence of the self-modulation regime of the first
kind in the plane of parameters mQ/nw and 9%, — 3,
characterising the value and phase of the linear coupling
coefficients is shown in Fig. 9. This region is widest when
the coupling coefficients are close to the complex conjugate
ones (|3; — %| < 1). The region narrows down with increas-
ing the phase difference of the coupling coefficients, and the
existence of self-modulation oscillations of the first kind
becomes impossible when |3 — 9,| — =.

mQ

nw

1.5

1.0 11

111

0 1 1
/2 b

9 — 9,

Figure 9. Regions of existence of stationary standing-wave (IT) and uni-
directional lasing (III) regimes and the self-modulation regime of the first
kind (I) in the plane of parameters 3, — $,, mQ /wn [27].

The system of equations of the standard model in the
case of periodic regimes can be solved analytically
[74, 78, 88—90] assuming that the self-modulation fre-
quency ., is high compared to the main relaxation
frequency w, = (wn/QTl)1 2. In this case, the method of
successive approximations in a small parameter

(56)

can be used.

In the zero-order approximation, the inverse-population
modulation at the frequency w,, is neglected and only the
constant components N, and N, of the spatial harmonics
Ny and N, of the inverse population are taken into account.
In this approximation, the complex amplitudes are described
by the system of two first-order differential equations with
constant coefficients

dElAz _ W
dt 20

~ Q- i ~
E,+i 3 E, +5 my 2By

+ ;—;(1 —10)(NoEy 2+ N1Es). (57)
The constant components N, and N, can be determined
from Eqns (22) for the spatial harmonics N, and N, of the
inverse population, which are reduced to algebraic equa-
tions in the zero-order approximation. The complex fields
of counterpropagating waves in the zero-order approxima-
tion in ¢ can be written in the form

E, exp(io,t) = A; exp(io 1) + By exp(imy1),
(58)

E; exp(iw,t) = A, exp(iw 1) + B, exp(im,1),

where A; and B; (i = 1, 2) are constant coefficients and w,, is
the eigenfrequency of the ring resonator in the absence of
the linear coupling between counterpropagating waves.
According to (58), the emission spectrum of each of the
counterpropagating waves contains two spectral compo-
nents with frequencies ®w; and w,. The self-modulation
oscillations of the first kind can be treated as beatings
between two eigenfrequencies appearing in the ring
resonator in the presence of the linear coupling between
counterpropagating waves [57, 58]. The self-modulation
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frequency w,, proves to be equal to the difference between
these eigenfrequencies.

The frequencies w; and w, of the spectral components in
the established periodic regime should be real quantities. By
solving the zero-order equations and taking into account
that w; and w, are real, we can obtain the following
expressions for these frequencies and the self-modulation
oscillation frequency w,, [88]:

ow o v o
wl:wnfaf%a wZanfz“i’Tms (59)
o = (020 + Q%) (60)

where o is the self-modulation oscillation frequency in
the absence of the optical nonreciprocity of the resonator,
which is described by the expression

(14 6%)mim3 sin*(9, — 9,)
mi +m3 + 2mymy cos($; — 9,)

ko = mym, cos(3; — %) +

fémlmz sin(31 — 82) (61)
According to the above expressions, the self-modulation
frequency w,, depends on the moduli and phases of the
linear coupling coefficients of counterpropagating waves,
the relative detuning of the lasing frequency from the gain-
line centre § = (w — wy)T», and the frequency nonreciproc-
ity Q of the ring resonator. As Q is increased, the self-
modulation frequency w,, increases, approaching Q. In the
case of a symmetric feedback, when m; =m, = m, the
expression for wp, is considerably simplified:
9 — 9 -9

3 .
-0
sin —

Wmo = M| COS (62)

By taking into account small terms of the order of &2, we
obtain the correction to the self-modulation frequency, and
the expression for w,, takes the form [89, 90]

o = (020 + Q)" + Aoy, (63)
where
2702 2
Q
Ao, = M (64)

3
4y,

According to (63) and (64), the self-modulation oscillation
frequency depends on the pump excess 1 over the lasing
threshold.

Taking into account expressions (58) for the fields, we
can represents the dimensionless intensities 1}, = aElﬁz E{l
of counterpropagating waves in the form

I, = ]10,2 + I/ cos(omt + ¢4 ,), (65)
where 1102 are the constant components (average values) and
I}, are the intensity modulation amplitudes of counter-
propagating waves. In the absence of the amplitude
nonreciprocity of the ring laser in the self-modulation
regime of the first kind, the intensities of counterpropagat-
ing waves are modulated strictly out of phase, which
corresponds to ¢@; = ¢, in (65). In the presence of the
amplitude nonreciprocity, the additional phase shift

Ap = ¢, — ¢, of self-modulation oscillations appears,
which is described by the expression [89]

. 2w, 4

sinAg = O (66)

(2% - 03 + 47) + 44%02]"*

where 4 is the amplitude nonreciprocity of the ring
resonator. In the case of a sufficiently small amplitude
nonreciprocity (4 < wy,), expression (66) is simplified to

20,4

2
m0

sinAgp =

(67)

For A¢ # 0, the intensity modulation is no longer
strictly out of phase (Fig. 10). By measuring the phase shift
A@ of self-modulation oscillations, we can determine from
(66) the amplitude nonreciprocity 4 because the self-mod-
ulation frequencies w,, and w2 are measured directly in
experiments. This was demonstrated in [91]. The amplitude
and frequency nonreciprocities were controlled in [91] by
applying an external magnetic field to the single crystal of a
ring chip laser. It is reasonable to assume that the frequency
and amplitude nonreciprocities of the ring laser are related
to its parameters and the magnetic field strength H as

Q=FkH, (68)
1 CU] 0)2)

A== (202 o4 4, 69
2(Q1 0,) =fH T (&)

where w; and w, are the lasing frequencies for counter-
propagating waves; k; and k, are the coefficients depending
on the magnetic-field orientation with respect to the
resonator contour, its nonplanarity, and other parameters;
and 4, is the amplitude nonreciprocity of the ring resonator
for H=0. Note that the coefficients k;, k,, and 4, for a
particular resonator can be calculated by using the
formalism of Jones matrices.

0 1 2 3 1/ps

Figure 10. Oscillograms of the intensities of counterpropagating waves
in the self-modulation regime of the first kind in the presence of the
amplitude nonreciprocity of the resonator [91].

It follows from (67) that

sinAg  2(4y + k,H)

2 5
Wy wmo

(70)

i.e.,, the ratio (sinAg)/w, linearly depends on H. A
comparison of the experimental and calculated dependences
of sinAp on the magnetic field strength in Fig. 11
demonstrates their good agreement.
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Figure 11. Experimental (squares) and theoretical (solid curve) depen-
dences of Ap on the magnetic field strength H [91].

The average values IEZ and the intensity modulation
amplitudes I for counterpropagating waves depend on the
linear coupling coefficients, the pump excess over the
threshold, and the optical nonreciprocity of the ring
resonator. Because in the general case the expressions
determining this dependence are rather cumbersome (see,
for example, [89, 92]), they are not presented here. As the
frequency nonreciprocity € is increased, the difference of the
average intensities of counterpropagating waves increases
and the modulation depth monotonically decreases. As a
result, for sufficiently large values of Q satisfying the
inequality |Q| > Q;, where Q; is determined by expression
(49), the self-modulation regime of the first kind passes to
the stationary regime with unequal intensities of counter-
propagating waves.

Figure 12 shows the average intensities of counter-
propagating waves and the region of intensity variation
during self-modulation oscillations as functions of the
frequency nonreciprocity of the resonator. These depend-
ences were calculated in [92] for the typical parameters of
ring Nd : YAG lasers. Note that Fig. 12 also shows the
dependences of the average intensities on 2 when pola-
risations of counterpropagating waves are different.
Figure 13 presents the experimental dependences [60] of
the average intensities and the depth of out-of-phase

Figure 12. Theoretical dependences of the average intensities of coun-
terpropagating waves I; (/) and I, (2) and the ranges of their variation
L 1" (3)and I, = ;" (4) during self-modulation oscillations on the
frequency nonreciprocity Q of the resonator for m/2m = 200 kHz,
91 -3 =03,1=0.1, =0, and 4 =0 in the case of the same pola-
risation of counterpropagating waves (e; = e,) and similar dependences
for I} (5) and I, (6) for e;e; = 0.8 [92].

intensity modulation of counterpropagating waves on the
solenoid current producing a magnetic field (the frequency
nonreciprocity of the resonator) in the monolithic ring
Nd : YAG laser. In the presence of the amplitude non-
reciprocity of the ring resonator, more complicated (loop)
dependences of the average intensities of counterpropagat-
ing waves on the frequency nonreciprocity of the resonator
are observed [27, 74].

I, » (arb. units)
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Figure 13. Influence of the solenoid current (the frequency nonrecipro-
city of a ring resonator) on the average intensities (a) and depths (b) of
the out-of-phase modulation of counterpropagating waves in the self-
modulation regime of the first kind for # = 0.06 [60].

Aside from the self-modulation regime of the first kind,
another periodic lasing regime is possible in a SRL, in
which, unlike the self-modulation regime of the first kind,
the in-phase intensity modulation of counterpropagating
waves takes place [88, 93]. In the absence of the amplitude
nonreciprocity of the resonator, the in-phase self-intensity
modulation is possible when the inequality

(14 6%)mim3 sin*(9, — 9,)
I’Vllz + I’Vl22 + 2m1m2 003(91 — 82)

QOZ = —mpmy COS(91 — 92) —

+5m1m2 Sin(91 — 92) > 0 (71)
is fulfilled. For 6 = 0, this inequality can be fulfilled only
when the moduli of the linear coupling coefficients are
different (m; # m,) and the phase difference for the
coupling coefficients is |3 — 9,| > n/2. The presence of
the amplitude nonreciprocity of the resonator considerably
alleviates the appearance of the in-phase regime. The in-
phase self-intensity modulation exists within a limited
region of frequency nonreciprocities |Q| > Q,. The self-
modulation frequency in this regime is determined by the
expression

on = (Q° — Qé)l/z.

(72)

The difference between the coupling coefficients of
counterpropagating waves appearing in the scheme with
an additional external mirror leads under certain conditions
to the passage from the self-modulation regime of the first
kind to the periodic regime with in-phase self-modulation
[93]. As a rule, the average intensities of counterpropagating
waves in this regime are substantially different because of
the inequality of the moduli of coupling coefficients or
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Figure 14. Oscillograms of the intensities /; and I, of counterpropaga-
ting waves in the periodic in-phase modulation regime [27].

resonator Q factors (Fig. 14). Note that the in-phase self-
modulation regime remains inadequately studied at present.

5.2 Self-modulation of optical phases of
counterpropagating waves

In most of the papers on the nonlinear dynamics of SRLs,
the temporal and spectral characteristics of the intensity of
counterpropagating waves were studied. However, the
phase dynamics of counterpropagating waves was studied
inadequately. This is explained by the fact that the direct
measurement of optical phases of counterpropagating
waves and their difference is a rather complicated technical
problem. Nevertheless, the phase dynamics of ring lasers in
nonstationary lasing regimes was experimentally studied in
some papers. Such studies were performed by two methods:
either by mixing (heterodyning) the radiation under study
with radiation from another laser [94] or by mixing the
optical fields of counterpropagating waves [95, 96].

The phase dynamics of SRLs in periodic nonstationary
lasing regimes can be analysed by using standard model
(22). Consider the dynamics of the phase difference
® = @, — ¢, for counterpropagating waves in the self-
modulation regime of the first kind. It follows directly
from the equation for the phase difference of counter-
propagating waves that the instant phase difference
d@/dz of counterpropagating waves depends on the optical
nonreciprocity of the ring resonator and the linear and
nonlinear couplings of counterpropagating waves. In the
self-modulation regime of the first kind, both linear and
nonlinear couplings lead to the self-modulation of the phase
difference of counterpropagating waves. In the case of a
sufficiently strong linear coupling, when the self-modulation
oscillation frequency is much higher than the relaxation
oscillation frequency w,, the phase modulation is mainly
determined by the linear coupling of counterpropagating
waves. In this case, by neglecting the nonlinear coupling on
inverse-population gratings and assuming that the linear
coupling coefficients are close to the complex conjugate ones
(my=my=m, |9, — | <1), we obtain from (22) the
equation for @

do m E{ — E}

2 cos(® + 9), (73)

where 3 = (3 + 9,)/2.

In the self-modulation regime of the first kind, we can
obtain from (22) in the approximation used here the
following expressions [78]

(B* - Az)]/2 I Asin(wnt + @) |,

2 B
El,2 - = :l:
2 wm wm

) (74)
E\E)sin(®+ 9) = 5 cos(wn! + ¢).

Here, o, = (m*>+ Q*)'/?; ¢ is an arbitrary constant, and
constants 4 and B are determined from the expressions

aB=2(1-K), a(B*—4%)"" = 4K, (75)
where
_m% = 9
2(w/O)n
By substituting (74) into (73), we obtain
(]
‘(11_1 - A{AQ —m(B* = A7) sin(wnt + 0)
(76)
Q m Nt
x{32 - {— (B* - Az)l/2 +— Asin(wy! + (p)} } }
v v

According to (76), d®/dt is an oscillating function of
time. By averaging expression (76) in time, we obtain the
average difference of frequencies of counterpropagating
waves (d®/dr) (beat frequencies) in the form

42\ 12
"

2\ 1/2
(d@/dt) = wysign Q, if |Q| > wm(l f?> .

(dd/ds) =0, if Q| < o, <1
(77)

One can see from the above expressions that in the case
of sufficiently small frequency nonreciprocities in the self-
modulation regime of the first kind, the average frequencies
of counterpropagating waves are synchronised. In this case,
the phase difference of counterpropagating waves is an
oscillating function of time and changes within a finite
range. As the frequency nonreciprocity is increased, the
nonzero average frequency difference increases jumpwise,
while the phase difference of counterpropagating waves
increases infinitely with time. If the coupling coefficients
are close to the complex conjugate ones, the critical value
Q. at which the average frequency difference experiences a
jump is determined by the expression

m?|9 — 9|
Y= s 79

Figure 15 shows the time dependences of the intensity
and phase difference of counterpropagating waves in the
regime of self-modulation oscillations of the first kind for
@ = 0. One can see that the intensity and phase difference of
counterpropagating waves are periodic functions of time.
The phase difference @ remains constant during a greater
part of the period of self-modulation oscillations and
drastically changes by m (or —m) in the time interval
when the intensity of one of the waves is close to zero.
Figure 16 shows the dependences of the intensity and phase
difference of counterpropagating waves for the frequency
nonreciprocity Q exceeding Q.

Figure 17 presents the dependence of the average fre-
quency difference (d®/d¢) for counterpropagating waves on
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Figure 15. Theoretical time dependences of the intensities /; and I, and
the optical phase difference ® = ¢, — ¢, for counterpropagating waves
in the self-modulation oscillation regime of the first kind for Q =0
(numerical simulation).
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Figure 16. Theoretical time dependences of the intensities /; and I, and
the optical phase difference ® = ¢, — ¢, for counterpropagating waves
in the self-modulation oscillation regime of the first kind in the presence
of the frequency nonreciprocity Q exceeding Q. (numerical simulation).
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Figure 17. Dependence of the average frequency difference (d®/d7) of
counterpropagating waves on the frequency nonreciprocity (numerical
simulation).

the frequency nonreciprocity Q obtained by solving numeri-
cally the system of equations of the standard model. One
can see from these results that the jump of the frequency
difference is observed at the frequency Q. /2m approxi-
mately equal to 100 Hz, in good agreement with expression
(78).

5.3 Relaxation oscillations in the self-modulation regime

of the first kind

Because of a slow relaxation of the inverse population, the
establishment of self-modulation oscillations has an oscil-

latory character. Relaxation oscillations in a SRL operating
in the self-modulation regime of the first kind noticeably
differ from relaxation oscillations during stationary uni-
directional lasing.

To analyse relaxation processes in the self-modulation
regime, it is necessary to consider the dynamics of small
perturbations with respect to the established periodic
regime. In the linear approximation in small perturbations,
we obtain a system of linear differential equations with
periodic coefficients. These equations can be solved by the
method of successive approximations in a small parameter
¢=w;/o, <1. In this case, as shown in [97, 98], the
periodic coefficients of the equations can be replaced by
their average values to obtain a system of equations with
constant coefficients. It follows from the characteristic
equation for the system of equations obtained in this
way that there exist three characteristic frequencies in the
case under study. One of the frequencies is equal to the
frequency of self-modulation oscillations and the two others
to the relaxation frequencies. One of the relaxation fre-
quencies (main) is determined by the expression

(79)

and coincides with the main relaxation frequency in the
stationary unidirectional lasing regime. The second relax-
ation frequency is determined by the expression

0f =5 [on + oh - (0h +2050%)"7). (80)

The frequency w,; is always lower than the main
relaxation frequency w,. In the absence of the frequency
nonreciprocity (2 = 0), the frequency w,; has the maximum
value (wrl)max = wr/\/i

Note that in the SRL model [60] taking into account the
peculiarities of the interaction of elliptically polarised
counterpropagating waves in lasers with a nonplanar
resonator (the so-called vector model), the expression for
the relaxation frequency w,; is somewhat different. In
particular, the maximum value ()., achieved in the
absence of the frequency nonreciprocity of the resonator
(2 =0) depends on the polarisation of radiation, and
according to [60], (w;)max = @;/1.6 for elliptically polarised
waves. Figure 18 presents the theoretical and experimental
dependences of the relaxation frequencies w, and w,; on the
frequency nonreciprocity of the ring laser [60]. One can see
that the dependence of w,; on Q in the vector model well

[
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Figure 18. Theoretical and experimental dependences [60] of the relaxa-
tion oscillation frequencies w, and w,; on the frequency nonreciprocity
of a ring resonator. The dashed curve shows the dependence of w;; on Q
described by expression (80).
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agrees with dependence (80) obtained within the framework
of the standard model.

The relaxation frequencies w, and w, are usually
observed in the emission spectra of SRLs operating in
the self-modulation regime of the first kind. Figure 19
presents the output emission spectra in the presence and
absence of the frequency nonreciprocity Q. In the absence of
the frequency nonreciprocity, the frequency ., is not
observed in the spectra, as a rule, and the spectrum (Fig.
19a) exhibits in this case three peaks at the frequencies w;,
., and the combination frequency w,, — w,. The frequency
w,; in the absence of the frequency nonreciprocity can be
observed in the emission spectrum upon the periodic
modulation of laser parameters. In the presence of the
frequency nonreciprocity, the frequency w,; can be also
observed without modulation of laser parameters, which is
demonstrated in Fig. 19b, where the emission spectrum is
shown in a narrower frequency range and exhibits peaks
only at the frequencies w,; and w,.
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Figure 19. Output emission spectra in the absence (a) and presence (b) of
the frequency nonreciprocity. Peak (/) in Fig. 19a corresponds to the
main relaxation frequency ,, peak (2) — to the combination frequency
o, — o, and peak (3) — to the self-modulation oscillation frequency
oy, Peak (1) in Fig. 19b corresponds to the frequency w,; and peak (2)
— to the frequency w, [97].

The theoretical and experimental dependences of the
self-modulation frequency w,, and relaxation frequency w;,
on the frequency nonreciprocity of the resonator are
presented in Fig. 20. Note that expressions (79) and (80)
for relaxation frequencies are approximate because they
were obtained in the limiting case of ¢ = w,/w,, < 1. For an
arbitrary relation between w,, and w,, the expression for the
main relaxation frequency has the form [99]

1 2 1/2
ot =3 {0d+ 0~ [(03 +0d) +oh — 40h03] 7} 6D

Om Orl
2n’ 2n
400

/ kHz

300

200

100

Q
300 5 /kHz

Figure 20. Theoretical and experimental dependences of the self-modu-
lation oscillation frequency w,, and relaxation frequency w,; on the
frequency nonreciprocity of the resonator [97].

According to this expression, the frequency w, depends on
the self-modulation frequency w,,. In the case ¢ = w,/wy,
< 1, it follows from (81) that w, = w,y, in agreement with
expression (79).

The theoretical and experimental dependences of the
main relaxation frequency on the self-modulation oscillation
frequency [99] are compared in Fig. 21. Two series of data
obtained for two different pump levels are presented. One
can see that expression (81) well describes the dependence of
the main relaxation frequency on the self-modulation
oscillation frequency over the entire region of w,,, except
two regions of parametric resonances where the self-modu-
lation regime of the first kind proves to be unstable. One of
the regions of the parametric resonance is observed for
Wy, = 2. In this region, the parametric synchronisation of
the frequencies of relaxation and self-modulation oscilla-
tions takes place at the frequency w, = w,/2 and self-
excitation of relaxation oscillations occurs at the main
relaxation frequency [curve (6)]. In the second region,
the instability of self-modulation oscillations appears
upon the parametric resonance wp, = 2w, = 2w.0/V2,
which also causes the synchronisation and self-excitation
of relaxation oscillations. In this case, the main relaxation
frequency is determined by the expression w, = wyv/2/2
[curve (5)].

As the linear coupling coefficients decrease, the self-
modulation regime of the first kind passes to the stationary
unidirectional lasing in the region m < m.. In this case,
relaxation oscillations in the self-modulation regime at

wl‘ -
I /kHz
80

70

ll 1 1 1
wm
25 /kHz

60
75 125 175

Figure 21. Experimental ( /, 2) and theoretical (3, 4) dependences of the
main relaxation frequency on the self-modulation oscillation frequency
for n = 0.46 (1, 3) and 0.56 (2, 4) and the dependences v2w, = w,, (5)
and 20, = o, (6) [99].
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frequencies w, and w,; pass to the relaxation oscillations at
frequencies w, and w; ’ in the travelling-wave regime, while
the self-modulation oscillation frequency passes to the
relaxation frequency wr(z

5.4 Frequency stabilisation and narrowing
of the self-modulation oscillation spectrum

The flactuations of the frequency w, of self-modulation
oscillations of the first kind are mainly due to the instability
of the linear coupling coefficients of counterpropagating
waves. The fluctuations of w,, can be substantially reduced
by eliminating feedbacks appearing upon parasitic reflec-
tions from the elements of a photoreception channel and
focusing lenses of a pump system [100]. According to
expressions (63) and (64), w, depends on the relaxation
oscillation frequency, so that fluctuations of the self-
modulation frequency are also caused by the pump
instability (variations in the power, spectral, and spatial
characteristics of a pump diode laser). The presence of
several spectral components at the relaxation frequencies in
the emission spectrum allows the stabilisation of the self-
modulation oscillation frequency by stabilising the fre-
quency of relaxation oscillations. This method was used to
stabilise w, in paper [101], where the main relaxation
frequency was stabilised by means of an external highly
stable radio engineering generator.
Figure 22 presents the time dependences of the self-
modulation oscillation frequency in the absence and
presence of stabilisation.

Experimental studies show that the width of the main
peak at the frequency w,, in the self-modulation oscillation
spectrum is rather large, of the order of one kilohertz. Note

[
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Figure 22. Time dependences of the self-modulation oscillation fre-
quency in the absence (/) and presence (2) of stabilisation [101].
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Figure 23. Self-modulation oscillation spectra of a ring chip laser in the
absence (/) and presence (2) of frequency locking in the case of pump
modulation at the frequency w,, [102].

that the mechanism of this broadening has not been studied.
We can assume that the broadening of the peak is caused by
fluctuations of inverse-population gratings in the self-modu-
lation regime of the first kind. The considerable narrowing
(almost by a factor of three) of the self-modulation
oscillation spectrum caused by periodic modulation of
the pump at the frequency close to w,, was demonstrated
in paper [102]. In this case, self-modulation oscillations are
synchronised (locked) by an external signal. This is clearly
illustrated in Fig. 23 where the emission spectra of a ring
chip laser are shown in the absence and presence of
frequency locking.

6. Beating regime and methods
for its stabilisation

6.1 Beating-regime-stability condition

We considered above periodic lasing regimes appearing in a
SRL in the case of the homogeneous gain line and the
presence of a strong competition between counterpropagat-
ing waves caused by their nonlinear coupling on inverse-
population gratings. By introducing into the ring resonator
the additional devices (elements) reducing the competition,
we can expand the region of parameters in which periodic
lasing regimes are observed and obtain the beating regime
of counterpropagating waves important for practical
applications.

In the beating regime of counterpropagating waves with
different frequencies, their average intensities prove to be
virtually equal, while the intensity modulation amplitude at
the beat frequency (the frequency difference of counter-
propagating waves) is small compared to the average
intensity. The beating regime is similar in many respects
to the self-modulation regime of the first kind. In both
regimes, the intensity and phase difference of counter-
propagating waves are periodically modulated at the beat
frequency (self-modulation frequency).The main difference
between these regimes is that the radiation intensity and the
instant difference of frequencies of counterpropagating
waves in the self-modulation regime of the first kind are
strongly modulated, while such a periodic modulation in the
beating regime is rather weak and the intensity and
frequency of the waves can be considered virtually constant.

The methods for reducing the competition of counter-
propagating waves (methods for stabilising the beating
regime) are based on the introduction of additional intra-
cavity losses depending on the intensity of counter-
propagating waves so that the losses for a stronger wave
should exceed those for the counterpropagating wave. The
difference of the additional losses proportional to the
difference in the intensities of counterpropagating waves
can be written in the form

A= qa(Ef - E5)0/Q, (82)
where ¢ is the proportionality coefficient and aEﬁz are the
dimensionless intensities of counterpropagating waves.
Additional losses should compensate for the inequality of
the gains x; — ky = (B — 0)a(E — Ef)i of counterpropa-
gating waves [see expressions (24) and (25)] appearing due
to their competitive interaction. Under the condition

4] > [ — 12 (83)
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the effective gain for a weak wave proves to be higher than
that for a strong wave, and the competitive suppression is
eliminated. The condition for stabilisation (appearance) of
the beating regime (83) can be written in the form

Ko Q.

_ M X 84
0T o (84)

q >

Consider some methods for reducing the competition
between counterpropagating waves to stabilise the beating
regime.

6.2 Methods for stabilising the beating regime

The use of a feedback circuit. The beating regime can be
stabilised by using a feedback circuit [103, 104] producing
inside the resonator the difference of losses for counter-
propagating waves, which is proportional to the difference
of their intensities (82). Such intracavity losses can be
introduced by using a nonreciprocal amplitude Faraday
element controlled by a signal proportional to the difference
of the intensities of the waves. The radiation dynamics of a
SRL with a feedback circuit can be described by the system
of equations of the standard model assuming that losses per
time unit are described by the expressions

2 2
o _o, B -B)o (85)
O, 0 2 0

where w/Q are losses per time unit in the absence of a
feedback circuit. These equations can be solved by the
method of successive approximations assuming that the
laser operates in the beating regime with approximately
equal intensities of counterpropagating waves and a weak
amplitude modulation of each of the waves at the beat
frequency. The approximate solution in the case of
sufficiently large frequency nonreciprocities |Q| > 1/T)
and the equal moduli of coupling coefficients has the form

(86)

-1
Lbh=n(14+——) .
(e ”( 1-+Qsz)

1 —1
—HQZTIZ)} C®)

2
<d_qj>:9+m2cos(9 92)1 o

]l — 12 m Sln(91 — 92) [g Q(Zq —

dt o (8)

where [}, = aEﬁz are the dimensionless intensities of
counterpropagating waves; (d®/dr) is the average beat
frequency; and o] = nw/QT); is the square of the relaxation
oscillation frequency. This solution is valid if |I} — I,| <
I, + I,. The stability condition for the beating regime in the
presence of an inertialless feedback circuit has the form

1

— 89
14+ Q2T (89)

2q >

According to the above expressions, a sufficiently strong
feedback can equate the average intensities of counter-
propagating waves and stabilise the beating regime. If in the
absence of a feedback circuit (¢ = 0) one of the counter-
propagating waves is suppressed in the region of rather
large frequency nonreciprocities, the switching of the

feedback equates the average intensities of counterpropa-
gating waves.

Due to the inertia of the feedback circuit, the instability
of bidirectional lasing can appear with increasing its transfer
coefficient, which causes the out-of-phase oscillations of the
intensities of counterpropagating waves. The conditions for
the appearance of such instability were studied in [103].

The use of the intracavity second harmonic generation.
The beating regime can be also stabilised by using nonlinear
losses appearing upon the intracavity second harmonic
generation (SHG). The SRL operation regimes upon intra-
cavity SHG were studied theoretically and experimentally in
[105]. The system of equations (22) in this case changes as
follows: instead of the resonator bandwidth w/Q describing
linear loses in the resonator, we introduce the complex
quantities

w

o 90
0O ©0)

=1+ (¢ + iqi)aEfz} g

The expression q,aFE| 2w/ Q determines nonlinear losses per
time unit due to SHG. The i imaginary part w/Ql 2 equal to
qiaEf zw/ Q describes the additional phase nonreciprocity of
a ring resonator produced upon SHG. The explicit
expressions for the parameters ¢, and ¢; are presented in
[105].

The average intensities of counterpropagating waves in
the beating regime in the case of intracavity SHG in the
asymptotic region of large frequency nonreciprocities
(12 » my,|) are determined by expressions (86) and (87)
in which ¢ is replaced by ¢,. The beating regime is stable
when the inequality

-1

1
%>§U+Q%ﬂ 1)

is fulfilled. The averaged intensities of counterpropagating
waves (|1} — | < I} + ) are equated when

Q| >

m?|sin(9, — 9,)|T ©2)
K B

where k are losses of the fundamental radiation for each of
the waves (for the round-trip transit time 7') due to SHG.
When conditions (91) and (92) are fulfilled, the beating
regime with almost equal intensities of the waves appears in
a SRL with the intracavity SHG.

Stabilisation of the beating regime in a laser with a
nonlinear absorber. In the presence of a nonlinear absorbing
element in the resonator, the difference between the
absorption coefficients of counterpropagating waves is
described by the expression

I -1
]Sa ’

X1 — X2 = (ﬁa - I)XO (93)

where y, is the absorption coefficient of the unbleached
absorber; f, =1+ 1/(1 +Q>T?; and I, and T, are the
bleaching intensity and the relaxation time of the absorber.
It follows from this expression that losses introduced by the
nonlinear absorber are higher for a stronger wave. If the
difference of the absorption coefficients |y, — y»| exceeds
the difference of the gains |k; — Kk,|, a weaker wave has a
higher gain, which results in the equating of intensities of
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the waves and in the stability of the beating regime. The
condition |y, — y»| > |k — k3| can be written in the form
[106, 107]

L QTiy (94)

]s Ko
In this case, it is assumed that the inequalities Q7; > 1 and
QT, <1 are fulfilled, i.e., the absorber is inertialless. It
follows from (94) that the use of even a weakly bleaching
nonlinear absorber (I, > I,) can provide the stability of the
beating regime in the region of a sufficiently large difference
of the frequencies Q of counterpropagating waves.

The fulfilment of condition (94) is necessary but not
sufficient for the existence of the beating regime with the
equal amplitudes of counterpropagating waves. To elimi-
nate the suppression of one of the waves, it is also necessary
to compensate the inequality of losses caused by their
coupling. The beating regime with virtually equal intensities
of counterpropagating waves [|I; — I,| < (I; + I,)] will exist
if the inequality

TI, <1

mymy| sin(9; — 92)'197 p
sE= A0

95)

is fulfilled [106, 107]. Inequalities (94) and (95) determine
the parameters of a laser with a nonlinear absorber at
which the intensities of counterpropagating waves are
efficiently equated and the beating regime is stable.
Therefore, by using a nonlinear absorber, we can obtain
in a certain range of coupling coefficients the self-
modulation and beating regimes existing for any values
of the frequency nonreciprocity Q. The stability condition
for the beating regime in a SRL with a nonlinear absorber
has the form [107]

nxoTiis <%' 96)
LT 3

If condition (96) is violated, stationary lasing in the SRL
becomes impossible due to instability with respect to
excitation of relaxation oscillations. A similar instability
also takes place in linear solid-state lasers with a nonlinear
absorber.

Except the methods for stabilising the beating regimes
considered above, there also exist other methods, in partic-
ular, the use of self-illumination waves [27, 108]. The self-
illumination waves are produced after the return of a part of
the output radiation to the active medium at an angle to the
resonator axis, which can be achieved without introducing
any additional elements into the resonator. The studies
performed in [27] have shown that this method is efficient
when a laser operates in the mode locking regime, however,
it has not been realised in the free running regime so far.

6.3 Anomalies in the frequency characteristics
of a solid-state ring laser

The beating regime in a SRL has a number of specific
features, one of which is the anomalous behaviour of the
beat frequency in the region of small frequency non-
reciprocities. This feature is caused by the nonlinear
coupling of counterpropagating waves on moving
inverse-population gratings. In the region of sufficiently
large @, the dependence of the beat frequency on the

frequency nonreciprocity of the resonator (frequency
characteristic) is determined by expression (88). According
to this expression, the deviation of the frequency character-
istic from the ideal one ((d®/d7) = Q) is determined by the
linear and nonlinear coupling of counterpropagating waves.
The nonlinear coupling changes the frequencies of counter-
propagating waves due to the Doppler frequency shifts
from moving inverse-population gratings. In the case of a
sufficiently small linear coupling, when m? < w2, the main
contribution to the deviation of the frequency characteristic
from the ideal one is introduced by the nonlinear coupling.
In this case, the frequency characteristics of a SRL can have
anomalies in the region of sufficiently small frequency
nonreciprocities.

Because of nonlinearity, the dependence of the beat
frequency on Q becomes ambiguous, and three branches of
the frequency characteristic appear in the region of suffi-
ciently small frequency nonreciprocities (2 < w,). The two
of them are determined by the expressions [109]

d—(p = signQ2 @i Q—2+&3 "
ar /T R '

The beat frequencies on these branches in the region of
small frequency nonreciprocities are close to the relaxation
oscillation frequency. The third branch of the frequency
characteristic is approximately described by the equation

do
(&)

where the coefficient k = —2(T wn/ 0)~' proves to be
anomalously small and has the negative sign. Figure 24
presents the typical dependence of the frequency difference
of counterpropagating waves on the frequency nonreci-
procity Q for a weak linear coupling. In the region of small
frequency nonreciprocities, the beat frequency changes
jumpwise and the frequency characteristic exhibits the
hysteresis. As the competition between counterpropagating
waves is weakened by means a nonlinear absorber, the
additional distortions of the frequency characteristic
appear, which are caused by the Doppler frequency shifts
on moving gratings induced in the nonlinear absorber [110].
The anomalous behaviour of the frequency characteristics

CL)

(98)

e 9
dt o
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Figure 24. Dependence of the normalised frequency difference d®/d¢
(Q/w) of counterpropagating waves in the beating regime on the
normalised frequency nonreciprocity QQw’] in the case of the reduction
of competition between counterpropagating waves by introducing addi-
tional nonlinear losses ®/Q, = w/(anEI%Z) for m=10"w/Q,
3 —9,=0.08, n=0.1, y=0.1, and Ty®w/Q =200 (numerical simula-
tion) [109].
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was studied experimentally in a ring Nd : YAG by reducing
the competition between counterpropagating waves with
the help of a Nd : YAG crystal inserted into the resonator
[109].

7. Quasi-periodic and chaotic lasing regimes

7.1 Regimes with self-modulation oscillations
of a complicated shape

Aside from periodic lasing regimes, a number of stationary
regimes with a more complicated type of radiation
modulation can exist in SRLs. One of such regimes is
the self-modulation lasing regime of the second kind in
which spontaneous quasi-periodic variations in the propa-
gation direction of laser radiation occur at frequencies not
exceeding a few kilohertz (low-frequency out-of-phase self-
intensity modulation of counterpropagating waves). Such
low-frequency switchings of the radiation-propagation
direction are usually accompanied by a faster intensity
modulation of counterpropagating waves at the relaxation
oscillation frequency. The typical intensity oscillogram for
counterpropagating waves in the self-modulation regime of
the second kind is presented in Fig. 25.

lll U U U UTW T
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Figure 25. Oscillogram of the intensity of counterpropagating waves in
the self-modulation regime of the second kind [9].

Even more complicated and irregular self-modulation of
radiation takes place in dynamic chaos regimes. In these
regimes, radiation is emitted as a series of pulses with
amplitudes and repetition periods changing irregularly in
time. The irregularity appears in the absence of technical or
quantum noises and is caused by the specificity of the phase
space of a nonlinear dynamic system. The possibility (or
impossibility) of existence of chaotic regimes in a nonlinear
dynamic system (such as a SRL) is determined by the
dimensionality of a mathematical model describing the
nonlinear system or by the dimensionality of the corre-
sponding phase space [111—113]. In the case of single-mode
SRLs with bidirectional lasing, the dimensionality of the
phase space (a system of the seven-order differential
equations in the standard model) admits the existence of
not only periodic and quasi-periodic but also chaotic
oscillations.

The self-oscillations established in the phase space are
represented geometrically by a phase attractor — a trajectory
(or a set of trajectories) located within a limited region of the
phase space and attracting all the neighbouring trajectories.
The attractor is a limiting set of trajectories, which attracts
all the trajectories located in some vicinity of the phase

space. If the limiting set corresponds to a stable stationary
regime, the attractor is a fixed point. If the lasing regime is
periodic, the attractor is a closed curve called the limiting
cycle. In the case of dynamic chaos excitation, an attractor
also takes place; all the trajectories in the phase space are
located within a limited region, where, however, neither
stable states nor limiting cycles are present. Such an
attractor is called a strange attractor [111—113]. It repre-
sents an attracting set of trajectories, each of them being
unstable. The strange attractor has two substantial dis-
tinctions, its trajectories being nonperiodical and unclosed.

It is sometimes difficult to distinguish the quasi-periodic
regimes from the dynamic chaos regime by their time
realisations. However, a number of methods have been
developed in the nonlinear dynamics which allow the unique
identification of lasing regimes. Consider some criteria
allowing the identification of the dynamical chaos regime
in SRLs. An important characteristic used for the classifi-
cation of operating regimes of ring lasers is the radiation
power spectrum of counterpropagating waves. While the
power spectrum in the periodic or quasi-periodic regime
exhibits a set of discrete spectral components, the power
spectrum in the dynamic chaos regime is characterised by a
relatively broad band. The power spectrum of chaotic
oscillations may contain intense discrete components against
a broad noise background. In some cases, the power
spectrum can be completely of the ‘noise’ type. Note
that the power spectra of counterpropagating waves can
be both identical and different (i.e., the spectral non-
reciprocity can take place). When the spectrum contains
discrete components, the components having the maximum
intensity may have different frequencies in counterpropaga-
ting waves.

Lasing regimes can be also classified by using phase
portraits and Poincare sections. The criterion indicating the
presence of chaotic oscillations is also the shape of the
correlation function K = (I(t + 7)I(¢)), which exponentially
decays with increasing t in the case of dynamic chaos.

One of the important characteristics allowing one to find
out the existence of a strange attractor is the presence of the
positive Lyapunov coefficients [111—113], whose spectrum
can give quantitative information on the average stability of
a phase trajectory. The type of lasing can be determined by
calculating Lyapunov coefficients from experimental data.

Lasing regimes with a complicated shape of self-mod-
ulation oscillations appear in the regions of parametric
resonances between different characteristic frequencies
(relaxation frequencies and self-modulation oscillation fre-
quencies). One of the regions of a parametric resonance
exists only in the case of a weak linear coupling (m < m,,)
and in the absence of the frequency nonreciprocity. In this
case, the resonance appears between two relaxation fre-
quencies: @y ' = ol = V2 [see (27), (28)]. In the vicinity
of this parametric resonance, the self-modulation regime of
the second kind and dynamic chaos can appear.

7.2 Self-modulation regime of the second kind

The self-modulation regime of the second kind can exist in
a ring laser only in the case of a sufficiently weak linear
coupling (m < m,) and sufficiently large detunings of the
laser frequency from the gain-line centre. This regime, as
the self-modulation regime of the first kind, is excited in the
instability region of stationary unidirectional lasing. How-
ever, the instability mechanisms resulting in the appearance
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of these regimes are different. In the case of the self-
modulation regime of the first kind, stationary lasing
becomes unstable with increasing coupling via backward
scattering, while the instability mechanism for the self-
modulation regime of the second kind is determined by the
nonlinear coupling of counterpropagating waves in an
amplifying medium. In this case, the phase shift upon Bragg
reflections of counterpropagating waves from inverse-
population gratings plays an important role. The necessary
condition for the appearance of instability is the nonzero
real part of the susceptibility of the active medium at the
lasing frequency. This can take place when the laser-
frequency detuning from the gain-line centre exceeds the
critical value determined by expression (26). The same
inequality can be obtained in the case of the asymmetric
gain line (see Section 4.5).

The features of the nonlinear radiation dynamics of a
SRL in this regime can be analysed by using either the
standard model [the system of equations (22)] or a system of
equations taking into account the real structure of the gain
line in a Nd : YAG laser. Note that attempts to obtain the
analytic solution in the case of the self-modulation regime of
the second kind have failed, and this regime was studied
only by numerical calculations.

The influence of the linear-coupling strength on the self-
modulation regime of the second kind in the absence of the
optical nonreciprocity of a ring resonator was analysed in
papers [71, 72] by using the system of equations (52).
Figure 26 shows the dependence of the leading Lyapunov
index A = AT; on the dimensionless coupling parameter
0= m(w/Q)’1 calculated in [71]. One can see that in the
case of a weak linear coupling, the self-modulation regime of
the second kind is quasi-periodic (A = 0). The time depend-
ences of the intensities of counterpropagating waves in the
self-modulation regime of the second kind, calculated by
integrating numerically the system of equations (52), are
shown in Fig. 27a in the absence of linear coupling and in

1.25

1.00

0 1 2 3

p/107°

Figure 26. Dependence of the leading Lyapunov index A = AT} on the
dimensionless coupling parameter p = m/(w/Q) [72].

Fig. 27b in the presence of linear coupling with p = 1073 As
the coupling strength is increased, the period of low-
frequency switchings of the propagation direction of radi-
ation decreases and a periodic chaotic modulation of the
low-frequency envelopes of the intensity of counterpropa-
gating waves appears. As the coupling strength is further
increased (Fig. 28), the self-modulation regime of the second
kind is replaced by dynamic chaos. In the region of linear
coupling coefficients p > pcor, the dynamic chaos regime
passes to the self-modulation regime of the second kind.
Self-modulations of intensity of counterpropagating
waves in self-modulation regimes of the second kind are
accompanied by the modulation of the phase and frequency
difference of counterpropagating waves. The frequency
dynamics of a ring laser operating in the self-modulation
regime of the second kind was studied in papers [114, 115].
The linear coupling coefficients in monolithic SRLs
prove to be quite high due to a small perimeter of the
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Figure 27. Time dependences of the intensities /; and I, of counterpropagating waves in the self-modulation regime of the second kind calculated by
integrating the system of equations (52) in the absence (p = 0) (a) and presence (p = 107) (b) of a linear coupling.
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Figure 28. Time dependences of the intensities /; and /, of counterpro-
pagating waves in the dynamic chaos regime calculated by integrating the
system of equations (52) for the linear coupling p = 2 x 107>,

ring resonator. The coupling strength in such lasers, as a
rule, satisfies the condition p > pcor, which corresponds to
the right region with A =0 in Fig. 26. In this case,
according to the theory, the self-modulation regime of
the second kind is absent.

7.3 Parametric interactions between self-modulation
and relaxation oscillations

Apart from the parametric resonance between relaxation
frequencies wr(l) and wr(z), the resonance between the main
relaxation frequency and frequency wr(2> is also possible. It
takes place when the optical nonreciprocity Q of the
resonator is equal to /2. The possibility of the
appearance of dynamic chaos in this region was demon-
strated in papers [70, 71].

In the case of a sufficiently strong linear coupling
(m > m), when a laser operates in the self-modulation
regime of the first kind, the parametric resonances of
another type can appear, which are caused by the inter-
action between self-modulation and relaxation oscillations
[99, 116, 117]. Such parametric resonances can appear when
the frequencies of self-modulation and relaxation oscilla-
tions are related by the expression iw, = jo, + fo, (@ J,
f=0,1,2..)).

Let us explain qualitatively the mechanism of appear-
ance of the parametric resonance at the self-modulation
oscillation frequency close to the doubled relaxation oscil-
lation frequency (i=1, j=2, f=0). In the presence of
perturbations, the amplitude of self-modulation oscillations
proves to be modulated at the relaxation oscillation fre-
quency w,, and spectral components appear in the emission
spectrum at frequencies w, and the combination frequency
o, — o.. When these frequencies coincide (v, = 2w,), the
parametric resonance appears, which was studied theoret-
ically and experimentally in [99].

Experimental studies were performed with a monolithic
ring Nd : YAG laser. As a rule, the self-modulation
oscillation frequency in such lasers greatly exceeds the

relaxation oscillation frequency, and the self-modulation
oscillation regime is stable (Fig. 29a). To obtain the
conditions for appearing parametric resonances at a fixed
relaxation oscillation frequency, the self-modulation oscil-
lation frequency was tuned by varying the amplitude and
phase of the coefficient of backward scattering from an
auxiliary external mirror. As the self-modulation frequency
was decreased, the passage to the parametric resonance
region was observed, which was accompanied by the
oscillation frequency locking at the frequency /2 and
by a change in the decrement sign (the decay of relaxation
oscillations was changed by their rise).

The self-excitation of relaxation oscillations in the
parametric-resonance region leads to the passage of the
self-modulation regime of the first kind to the quasi-periodic
lasing regime, in which the period of self-modulation
oscillations is doubled and the low-frequency envelope
appears (Fig. 29b). As the self-modulation frequency was
further decreased, the frequency came out from the para-
metric-resonance region, and the quasi-periodic regime
passed again to the self-modulation regime of the first
kind (Fig. 29¢c). Another region of the parametric resonance,
in which the self-modulation oscillation frequency is close to
the doubled frequency ., was observed for w,/2n <
90 kHz. In this case, the frequency locking at the frequency
;) = oy, /2 also occurred and the sign of the decrement of
relaxation oscillations changed, which was accompanied by
passing to the dynamic chaos regime (Fig. 29d). These
experimental results agree with theoretical predictions of
the standard SRL model [98, 99, 118].

8. Conclusions

Let us sum up the results presented above. Solid-state ring
lasers attract the considerable attention of the researchers in
the field of laser physics due to their applications in
fundamental laser physics (the search for gravitational
waves, the verification of the fundamental concepts of
quantum electronics and the relativity theory, fundamental
quantum metrology, etc.) and in laser technologies (Dop-
pler measuring systems, optical communication, laser
gyroscopes, etc.). Solid-state ring lasers offer wide func-
tional possibilities because they can operate in a variety of
stationary and nonstationary regimes [117, 118].

The travelling-wave regime and self-modulation lasing
regime of the first kind are especially interesting from the
practical point of view. It is the travelling-wave regime that
provides the highly stable amplitude and frequency of
output radiation and the laser linewidth close to the
quantum limit. The use of solid-state ring lasers in optical
frequency standards and very precise measurements opens
up a new page in fundamental metrology. The radiation
dynamics of such lasers is characterised by a high sensitivity
to the frequency nonreciprocity of the resonator, which
allows precision investigations to be made of various
nonreciprocity effects.

Solid-stage ring lasers are a complicated nonlinear
system in which the linear and nonlinear interactions of
counterpropagating waves lead to a rather intricate radia-
tion dynamics. The investigation of the nonlinear dynamics
of such lasers attract great interest because the obtained
results can be used for studying the general properties of the
behaviour of complex nonlinear systems of different types,
in particular, the conditions and reasons for the appearance
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of self-oscillations, various and
dynamic chaos in them.

We have analysed the state of the art in the theoretical
and experimental studies of the nonlinear dynamics of solid-
state ring lasers. It has been shown that the standard model
well describes all its basic properties, which make it possible
to use modern solid-state ring lasers not only as an object
for fundamental studies but also as a very efficient tool for
precision measurements in various fields of physics.

Despite the apparent completeness of investigations
performed up to now, we believe that a number of
inadequately studied problems still remain in the nonlinear
dynamics of solid-state ring lasers. These are the radiation
dynamics with arbitrarily polarised counterpropagating
waves, a very interesting case of orthogonal polarisations,
when both the nonlinear and linear couplings of counter-
propagating waves can be weakened, and also the lasing
dynamics in regions of parametric resonances related to
relaxation and self-modulation oscillations. In addition, the
further development of the methods for reducing the
competition between counterpropagating waves and stabil-
ising periodic lasing regimes is undoubtedly important.

parametric processes,
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