
Abstract. Stimulated Compton scattering of counterpropa-
gating laser beams in a moving plasma is studied theoret-
ically. It is shown that, by using Compton scattering,
picosecond or femtosecond laser pulses can be ampliéed
under certain conditions by two-three orders of magnitude.

Keywords: laser radiation, stimulated Compton scattering, amplié-
cation.

1. Introduction

Stimulated Compton scattering of two arbitrarily oriented
photon beams with frequencies o1 and o2 in a moving plas-
ma was considered for the érst time in theoretical paper [1].

In this paper, we obtained equations describing the
propagation of counterpropagating beams in a moving
plasma and solved them in different approximations. It
is shown that under certain conditions, picosecond or
femtosecond laser pulses can be ampliéed by two-three
orders of magnitude. The results are compared with
experimental data [2] in which the ampliécation of one
of the laser pulses was observed during stimulated Compton
scattering of counterpropagating laser beams in a moving
plasma. This effect can considerably increase the reêection
of intense laser radiation from the counterpropagating laser
plasma [3].

Stimulated Compton scattering was earlier considered as
one of the possible mechanisms of laser plasma heating [4 ë
9] (see also review [10] and monograph [11]). The érst
experimental observations of absorption of laser radiation
upon stimulated Compton scattering in a laser plasma were
reported in [12 ë 14].

2. General relations

We will describe the interaction of laser radiation with a
free electron gas caused by stimulated Compton scattering
by using the kinetic equation for photons, which is
invariant with respect to the choice of the coordinate
system [1, 15]:

dN

dt
� ÿc

� � �
N�1�N 0� f � p��dsdp

�c
� � �

N 0�1�N� f � p 0��dsdp. (1)

Here, f( p) is the distribution function of electrons over the
vectors of their momenta

p � mv
�
1ÿ v 2

c 2

�ÿ1=2
;

m is the electron mass; v is the electron velocity; p 0 is the
electron momentum after its interaction with a photon; c is
the speed of light; N � N(o; q) is the distribution function
of photons over frequencies o with the unit wave vectors
q � k=k; k � o=c is the wave number; N 0 � N(o 0; q 0); ds �
(1ÿ vq=c)dssp (dssp is the differential cross section of
spontaneous Compton scattering, and the factor in
parentheses describes a change in the photon êux with
respect to a moving electron [16]).

The érst term in the right-hand side of expression (1)
determines the number of photons with frequency o that
decrease upon scattering from an electron with the momen-
tum p, while the second term determines the number of
photons coming to this state.

The relation of N and N 0 with the spectral densities J
and J 0 of the energy êux of nonpolarised radiations to unit
solid angles with axes directed along the unit vectors q and
q 0, respectively, is described by the expressions

Nk �
4p 3c 2

�ho 3
Jk, N 0k �

4p 3c 2

�ho 0 3
J 0k. (2)

In particular, if the spectral densities Jk and J 0k are constant
in the frequency intervals Do and Do 0 and within the
elements of the solid angle DO, DO 05 1 (and are zero
outside), we have

Nk �
4p3c 2

�ho 3

I

DoDO
, N 0k �

4p3c 3

�ho 0 3
I 0

Do 0DO 0
, (3)

where I and I 0 are the total (integrated) intensities of the
corresponding light êuxes.

The differential cross section for spontaneous Compton
scattering dssp is described by the Klein ëNishina ëTamm
formula, which has the form [16]

dssp � s0dq
0 (4)
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in the laboratory coordinate system, where

s0 � 2r 20

�
�ho 0

mc 2

�2
u0
w 2

; (5)

u0 � 4

�
1

w
� 1

w 0

�2
ÿ 4

�
1

w
� 1

w 0

�
ÿ
�

w
w 0
� w 0

w

�
;

w � 2pk

�mc 2�2 ; w 0 � ÿ 2pk 0

�mc 2�2 ;

r0 � e 2=(mc 2) � 2:8� 10ÿ13 cm is the classical radius of an
electron. Parentheses in the numerators of expressions for w
and w 0 denote scalar products of the electron four-
momentum�

p; i
e
c

�
and the four-momenta of the incident and scattering
photons�

�hk; i
�ho
c

�
and

�
�hk 0; i

�ho 0

c

�
,

respectively. According to the laws of conservation of
energy and momentum, the relation between the frequencies
o and o 0 of the incident and scattered photons has the
form

o
�
1ÿ v

c
cos y

�
� o 0

��
1ÿ v

c
cos y 0

�
� �ho
mc 2
�1ÿ cos W�

�
. (6)

Here, y and y 0 are the angles between the electron
momentum vector p and the wave vectors k and k 0 of
the incident and scattered photons, respectively; and W is the
angle between k and k 0 (Fig. 1).

By substituting expressions (2) for N(o; q) and N(o 0; q 0)
into (1) and taking into account only the stimulated effect,
we obtain

1

c

qJ
qt
� q

qJ
qr
�
� � �

4p 3c 2

�ho 0 3
JJ 0
�
f � p 0� ÿ f � p)�~s�dpdq 0. (7)

Here, J � J(o; q); J 0 � J(o 0; q 0); ~s � (1ÿ vq=c)s0. Con-
sider now two counterpropagating plane electromagnetic
waves along the z axis under stationary conditions
(qJ=qt � 0) (Fig. 2)

J � J1�z;o�
1

2p
d�1� cos y� � J2�z;o�

1

2p
d�1ÿ cos y�. (8)

Here, d(y) is the Dirac delta function. In this case, only the
components of the electron momentum directed along the z
axis change, so that we will use below the one-dimensional
distribution function of electrons over momenta f ( p) as the
function f ( pz) in (7). The form of this function is presented
below.

After substituting (8) into (7) and integrating over dq 0,
Eqn (7) decomposes into the system of two equations

qJ1�z;o�
qz

� ÿ
� �

4p 3c 2

�ho 0 3
J1J

0
1

�
f � p 0� ÿ f � p��~s1!10

�
dp

ÿ
� �

4p 3c 2

�ho 0 3
J1J

0
2

�
f � p 0� ÿ f � p��~s1!20

�
dp,

(9)

qJ2�z;o�
qz

�
� �

4p 3c 2

�ho 0 3
J 01J2

�
f � p 0� ÿ f � p��~s2!10

�
dp

�
� �

4p 3c 2

�ho 0 3
J1J

0
2

�
f � p 0� ÿ f � p��~s2!20

�
dp.

The érst and fourth integrals in (9) correspond to
scattering within each of the beams. The second integral
corresponds to the scattering of photons from the érst beam
to the second one, and the third integral describes scattering
of photons from the second beam to the érst one. Subscripts
1 and 2 refer to the states of incident photons of the
corresponding beams, the same primed subscripts denote the
states of photons scattered with a change in the frequency.
According to (6), o � o 0 for the 1! 10 and 2! 20

transitions and, hence, p 0 � p. As a result, the érst and
fourth integrals in (9) are identically zero. Therefore, we
obtain énally the system of two equations

qJ1�z;o�
qz

� ÿ
� �

4p 3c 2

�ho 0 3
J1J

0
2

�
f � p 0� ÿ f � p��~s1!20

�
dp,

(10)
qJ2�z;o�

qz
�
� �

4p 3c 2

�ho 0 3
J 01J2

�
f � p 0� ÿ f � p��~s2!10

�
dp.

In the case of nonrelativistic electrons (v5 c) and soft
photons (�ho5mc 2), taking into account relations (4) ë (6),
the parameter ~s and the scattered photon frequency o 0 can
be written in the form

~s ' r 20

�
1� 3

v
c
ÿ 4

�ho
mc 2

�
, (11)

o 0 � o� o
�
� 2

v
c
ÿ 2

�ho
mc 2

�
. (12)

dp

p

p 0

y

W

y 0�hk

�hk 0
z

Figure 1. Scheme of stimulated Compton scattering.

0 l z

J2 J1

v0

Figure 2. Scheme of the interaction of laser beams with a moving
plasma. ( l ) is the plasma length.
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The expression for the momentum of an electron after its
interaction with a photon has the form

p 0 � p� �hkÿ �hk 0 � p� �h

c

ÿ
oqÿ o 0q 0�. (13)

In the scattering geometry considered here, the unit vector q
is directed along the z axis. Taking into account (12), we
obtain from (13) the change in the electron momentum

dp ' �2 �ho
c

�
1� vz

c
� �ho
mc 2

�
. (14)

The upper signs in expressions (11) ë (14) correspond to the
(1! 20) photon scattering from the érst beam to the second
one, and the lower signs ë to the (2! 10) photon scattering
from the second to érst beam.

3. Stimulated Compton scattering in a plasma
moving toward one of the laser beams

Because in the case of scattering of counterpropagating
laser beams, only the projection of the electron momentum
on the z axis changes, we will use below the one-
dimensional distribution function of electrons over the
momentum projections on the z axis (pz � p) as the
function f ( p) in (10).

It was pointed out in [1] that under certain conditions
one of the laser beams experiencing stimulated Compton
scattering in a moving plasma can be ampliéed in principle.
In this connection we will represent the distribution function
f ( p) of electrons over their momenta in the form

f ( pz� �
ne
m

�
m

2pkTe

�1=2
exp

�
ÿ �pÿ p0�2

2mkTe

�
, (15)

which takes into account the movement of a plasma layer
as a whole at the velocity v0 � p0=m along the z axis (see
Fig. 2). Here, m is the electron mass; ne is the electron
concentration in the plasma; Te is the electron temperature;
and k is the Boltzmann constant.

Let us assume that the intensity of one of the laser
beams, for example, of the érst one greatly exceeds that of
the second laser beam, i.e., I 01 � I1(z � l )4 I 02 � I2(z � 0).
Then, the inêuence of the second beam on the érst one
during Compton scattering is insigniécant and, hence, the
amplitude and spectrum of the function J1(z;o) remain
invariable:

J1�z;o� � I 01 f
0
1 �oÿ o0�. (16)

Here, o0 is the carrier frequency of laser radiation and I 01 �
I1(z � l ) is its integrated intensity at the input into a plasma
layer of thickness l. For deéniteness, we will take the
function f (oÿ o0) in the form

f �oÿ o0� �
���
2

p

r
1

Do1

exp

�
ÿ 2

�
oÿ o0

Do1

�2 �
, (17)

where Do is the width of the spectral function at the 0.6
level.

Taking expressions (11), (12), (14), and (17) into
account, the second equation in (10) after integration takes
the form

qJ2�z;o�
qz

� A�v0;Do1; kTe�I 01 J2�z;o�. (18)

Figures 3 ë 7 present the dimensionless coefécient
A(v0;Do1; kTe)=A0 calculated for different values of its
parameters. Here, A0 is the value of A for kTe � 100 eV
and Do0 � 2o0w0=c, where w0 � (kTe=m)1=2 � 4:2� 108

cm sÿ1 and o0 � 1:78� 1015 sÿ1.
Figure 3 shows the dependence of the coefécient A=A0

on the relative plasma velocity v0=w0. It follows from our
calculations that for kTe � 100 eV, the maximum value
A=A0 � 0:792 is achieved for v0=w0 � 1:12. For v0=w0 � 0,
the coefécient A=A0 is ÿ0:013 and for v0=w0 � 0:011, it is
zero.

Figure 4 presents the dependence of the coefécient A=A0

on the relative width Do1=Do0 of the spectrum of the érst
laser beam for v0 � w0, o � o0, and kTe � 100 eV. One can
see that the maximum value A=A0 � 1 is achieved for
Do1 � 0.

The dependence of the coefécient A=A0 on the laser
frequency (oÿ o0)=Do0 for Do1 � Do0 and kTe � 100 eV
shows that A=A0 achieves the maximum value equal to 0.795
for (oÿ o0)=Do0 � ÿ0:15 (Fig. 5). This means that the
spectral components of the second laser beam located in the
low-frequency spectral region experience the maximum
ampliécation. For Do1 ! 0, the coefécient A=A0 ! 1
and the shift of the gain maximum tends to zero.

The dependence of the coefécient A=A0 on the plasma
temperature for v0=w0 � 1 and Do1=Do0 � 0:05 is shown in
Fig. 6. One can see that as the plasma temperature is
decreased from 100 to 1 eV, the coefécient A=A0 increases
almost by an order of magnitude.

0

0.75

ÿ5 ÿ4 ÿ3 ÿ2 ÿ1 0 1 2 3 v0=w0

ÿ1.00
ÿ0:75
ÿ0:50
ÿ0:25

0.25

0.50

A=A0

Figure 3. Dependence of the coefécient A=A0 on the relative plasma
velocity v0=w0 for o � o0, Do1=Do0 � 1, and kTe � 100 eV.

0 2 4 6 8 Do1=Do0

0.2

0.4

0.6

0.8

A=A0

Figure 4. Dependence of the coefécient A=A0 on the relative width
Do1=Do0 of the spectrum of the érst laser beam for v0 � w0, o � o0,
and kTe � 100 eV.
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Figure 7 presents the dependence of the coefécient A=A0

on the relative width Do1=Do0 of the spectrum of the érst
laser beam for v0 � 0, o � o0, and kTe � 100 eV. This case
is interesting from the point of view of using stimulated
Compton scattering for plasma heating. The coefécient
A=A0 achieves the value ÿ0:027 when the relative width
Do1=Do0 of the spectrum of the érst laser beam is 2.8.

If the condition

Do
2o0

5
w0

c
(19)

is fulélled, where w0 � (kTe=m)1=2, the function
f ( p 0� ÿ f ( p) in the vicinity of p � 0 can be represented
in the form

f � p 0� ÿ f � p� � qf
qpz

����
p�0

dp � ne���
p
p

m 2kTe

�
p 2
0

2mkTe

�1=2

� exp

�
ÿ p 2

0

2mkTe

�
dp, (20)

where dp is the change in the electron momentum after
scattering, which is described by expression (14).

Condition (19) determines the plasma electrons whose
momenta can provide stimulated Compton scattering [the
frequency of a photon scattered by an electron with the
momentum Do should lie within the spectral band p of laser
radiation (grey region in Fig. 8)].

Let us assume, as before, that the intensity of one of the
laser beams, for example, of the érst one greatly exceeds that
of the second laser beam, i.e., I 01 � I1(z � l �4 I 02 �
I2(z � 0). Then, the inêuence of the second beam on the
érst one during stimulated Compton scattering is insignié-
cant and the spectrum of the function J1(z;o) remains
invariable. In this case, the function J1(z;o) can be
represented, as before, in the form (17). Then, taking
(11), (12), (14), (16), and (17) into account, the second
equation in (10) after integration in the limits determined by
condition (19) can be written in the form

qJ2�z;o�
qz

� A0I
0
1

�
1ÿ 2

oÿ o0

o0

�
J2�z;o�, (21)

where

A0 �
4p 3���
p
p c 2r 20 ne

o 2
0 kTe

�
mv 2

0

2kTe

�1=2

exp

�
ÿ mv 2

0

2kTe

�
. (22)

The solution of Eqn (21) is

J2�z;o� � J 0
2 �o� exp�a1z�. (23)

Expression (23) shows that in this case a weaker light pulse
is ampliéed exponentially with the gain

a1�o� � A0I
0
1

�
1ÿ 2

oÿ o0

o0

�
� a 0

1

�
1ÿ 2

oÿ o0

o0

�
,

a 0
1 � A0I

0
1 . (24)

ÿ3 ÿ2 ÿ1 0 1 2 �oÿ o0�=Do0

ÿ0:8
ÿ0:6

ÿ0:4
ÿ0:2

0

0.2

0.4

0.6

A=A0

Figure 5. Dependence of the coefécient A=A0 on the relative frequency
�oÿ o0�=Do0 of laser radiation for Do1 � Do0 and kTe � 100 eV.

1 3 10 30 kTe

�
eV

0

2

4

6

8

A=A0

Figure 6. Dependence of the coefécient A=A0 on the plasma temperature
for v0=w0 � 1 and Do1=Do0 � 0:05.
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A=A0
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ÿ0:025

ÿ0:020

ÿ0:015
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ÿ0:005

Figure 7. Dependence of the coefécient A=A0 on the relative width
Do1=Do0 of the spectrum of the érst laser beam for v0 � 0, o � o0, and
kTe � 100 eV.

ÿ2 ÿ1 0 1 2 �pÿ p0�=�mkTe�1=2
0

f� pÿ p0�

p � ÿmc
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Do
o0

p � mc

4

Do
o0

p � 0

0.2

0.4

0.6

0.8

Figure 8. Normalised electron distribution function (solid curve). The
solid straight line is the tangent to the distribution function at the point
p � 0, the dashed line is the result of possible saturation of the electron
distribution function at a high intensity of laser radiation.
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This result is independent of the speciéc form of the
function f1(o) and its spectral width if the function is even
and tends to zero for

joÿ o0j5Domax � 2o0

w0

c
� 2o0

�
kTe

mc 2

�1=2
. (25)

This means that the second laser beam with a broad
spectrum restricted by condition (25) can be ampliéed in the
interaction with a laser beam with a narrow spectrum. In
other words, upon stimulated Compton scattering in
counterpropagating beams, short laser pulses can be
ampliéed with the help of laser pulses (`pump' pulses) of
much longer duration. In this case, the gain is virtually
independent of the `pump' pulse duration.

When the spectrum of the function J 0
2 (o) is Gaussian,

J 0
2 �o� � I 02 exp

�
ÿ 2

�
oÿ o0

Do2

�2 �
, (26)

we can show that

I 02 �z;o� � I 02 exp

�
ÿ 2

�
oÿ o0 � a0z�Do2�2=�2o0�

Do2

�2�

� exp

�
a0z
�
1ÿ a0z

�
Do2

2o0

�2 ��
. (27)

One can see from (27) that during ampliécation the
spectrum shifts to the red by

do
Do2

� Do2

2o0

a0z,

without changing its shape. This means that the temporal
shape of the laser pulse does not change during amplié-
cation. In practically important cases, the spectral shift do
proves to be much smaller than its spectral width Do2, i.e.,
we can assume that the spectra of the interacting laser
beams do not change during stimulated scattering. There-
fore, we can assume that

J1�z;o� �
I1�z�
Do eff

1

, J2�z;o� �
I2�z�
Do eff

2

, (28)

where I1(z) and I2(z) are the integrated intensities of the érst
and second laser beams; and Do eff

1 and Do eff
2 are the

effective spectrum widths of the corresponding laser beams
determined from the integral relations

I1�z� �
�1
ÿ1

J1�z� f 0
1 �oÿ o0�do

and

I2�z� �
�1
ÿ1

J2�z� f 0
2 �oÿ o0�do.

Then, taking expressions (11), (12), (14), (15), and (17)
into account, we can represent Eqns (10) in the form

dI1�z�
dz

� A0I1�z�I2�z�,
(29)

dI2�z�
dz

� A0I1�z�I2�z�.

Note here that the form (29) of beams I1 and I2 is
determined by their propagation in opposite directions. The
system of equations (29) and expression for A0 (without
derivation) were presented earlier in [2].

Let us make some remark. If all plasma electrons are
involved in scattering, the condition

Do
o0

4
2v
c
�
�
kTe

mc 2

�1=2
is fulélled, which is opposite to condition (19). In this case,
only the two érst terms can be retained in expansions of
functions J 01(o

0), J 02(o
0) in a Taylor series:

J 01�o 0� � J1�o��
do
1!

qJ1�o�
qo

� �do�
2

2!

qJ1�o�
qo 2

� :::;

J 02�o 0� � J2�o��
do
1!

qJ2�o�
qo

� �do�
2

2!

qJ2�o�
qo 2

� ::::

For v0 � 0, Eqns (9) can be written after integration in the
form

qJ1�z;o�
qz

� ÿne
16p 3r 20
mo

qJ2�z;o�
qo

J1�z;o�,

qJ2�z;o�
qz

� ne
16p 3r 20
mo

qJ1�z;o�
qo

J2�z;o�.

These equations were érst presented and analysed in [10]
(see also [11]). It was shown, in particular, that in this case
the intensities of both beams in the érst-order approxima-
tion at the output of a plasma layer decrease, i.e., the beams
are absorbed in plasma, which coincides with the results
obtained here (see Fig. 7).

4. Solution of Eqns (29) for an arbitrary relation
between the intensities of interacting beams
at the input to a plasma layer

The integral relation between I1(z) and I2(z) can be
obtained by dividing the érst equation by the second one
and integrating the relation obtained:

I1�z� � I2�z� � c1, (30)

where c1 is the integration constant.
By using relation (30), we can express I1(z) in the second

equation in (29) in terms of I2(z) and then integrate this
equation to obtain

I2�z� �
c1

exp
�ÿ �A0zc1 � c1c2�

�ÿ 1
. (31)

Let us introduce a new constant c0 � exp (ÿ c1c2). Then,
expression (31) can be written in the form

I2�z� �
c1

c0 exp�ÿA0zc1� ÿ 1
. (32)

Integration constants c0, c1, and c2 are determined from
the boundary conditions
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I1�z � l � � I 01 Ë I2�z � 0� � I 02 (33)

by the system of two transcendental equations

I 01 � I2�l � � c1, (34)

I 02 �
c1

c0 ÿ 1
, (35)

where

I2�l � �
c1

c0 exp�ÿA0lc1� ÿ 1
.

As shown above [see expression (23)], when I 02 =I
0
1 5 1

and, hence, c1 ' I 01 , expression (31) can be written in the
form

I2�z� � I 02 exp�a 0
1 z�. (36)

If the condition I 02 =I
0
1 4 1 is fulélled and, hence, c1 ' I 02 ,

expression (31) can be written in the form

I1�z� � I 01 exp
�
a 0
2 �zÿ l ��. (37)

Here, a 0
2 � A0I

0
2 . Expression (37) shows that under

assumptions made above, a light beam propagating toward
the plasma decays exponentially.

Therefore, the laser beam propagating in the direction of
plasma movement is ampliéed. In this case, the inequality
d f ( p�=dp > 0 takes place in the vicinity of p � 0. If the
direction of plasma movement is changed to the opposite,
the érst beam will be ampliéed, while the second one will
decay. Then, we will have d f ( p�=dp < 0 in the vicinity of
p � 0.

Of special interest is the case when the relation

I 02
I 01
� 1

1� A0I
0
1 l

(38)

if fulélled. In the given case, c1 � 0, and expression (29)
takes the form I1(z) � I2(z). This means that, under
condition (38), the intensities of interacting beams are
identical in each cross section of the interaction region, and
the solution of Eqns (29) takes the form

I1�z� � I 01
1

1ÿ A0I
0
1 �zÿ l � , I2�z� � I 02

1� A0I
0
1 l

1ÿ A0I
0
1 �zÿ l �. (39)

5. Comparison of the calculated laser-pulse gains
with experimental data [2]

In [2], the ampliécation of a laser beam propagating in the
direction of the plasma layer movement was experimentally
observed. Experiments were performed for the initial
intensity ratio of interacting beams I 02 =I

0
1 � 0:2 and

I 02 =I
0
1 � 0:7 obtained for I 01 � 3� 1014 W cmÿ2. It was

found that the gain in the érst and second cases was
1:32� 0:03 and 1:12� 0:03, respectively.

By using relations (32) ë (35), we énd the dependence of
I2(l )=I

0
2 on I 02 =I

0
1 in the range [I 02 =I

0
1 � 0:1; I 02 =I

0
1 � 1]. By

introducing the dimensionless variables ~I 01 � I 01 =I
0
1 � 1,

~I 02 � I 02 =I
0
1 , and ~c1 � c1=I

0
1 , we can represent Eqns (34)

and (35), which are used for calculations of a number of
values of the integration constant ~c1 � c1=I

0
1 depending on

~I 02 � I 02 =I
0
1 , in the form

1 � ~c1
c0 exp�ÿa 0

1 ~c1l � ÿ 1
� ~c1, ~c1 � �c0 ÿ 1�~I 02 , (40)

where a 0
1 � A0I

0
1 . We will calculate the gain a 0

1 (in cmÿ1)
for the experimental conditions in [2]: kTe � 100 eV,
ne � 1:2� 1019 cmÿ3, v0 � 108 cm sÿ1, l � 5� 10ÿ2 cm,
o0 � 2:73� 1015 sÿ1 (the radiation frequency of a ruby
laser).

For this purpose, we will use expression (22) for A0

written in the form convenient for calculations:

a�cmÿ1� � 3� 105
ne�1020 cmÿ3�I�1014 Wcmÿ2�

o 3�1015 sÿ1�kTe�eV�
�

mv 2
0

2kTe

�1=2

� exp

�
ÿ mv 2

0

2kTe

�
, (41)

mv 2
0

2kTe

� 2:85
v 2
0 �108cm sÿ1�
kTe�eV�

.

By substituting the numerical values presented above
into (41), we obtain a 0

1 � 8:75 cm, a 0
1 l � 0:44.

Figure 9 shows the dependence I2(l)=I
0
2 � f (I 02 =I

0
1 )

calculated for a 0
1 l � 0:44. A discrepancy between the calcu-

lated and experimental values is explained by the fact that
not all parameters required for calculations are known with
the required accuracy. In addition, analytic expressions were
obtained for a stationary process, whereas stimulated
Compton scattering was observed under transient condi-
tions.

6. Ampliécation of ultrashort laser pulses upon
stimulated Compton scattering

It can be shown that the coefécient A0 achieves its
maximum at

v0 � w0 �
���
p
8

r
�v �

��������
kTe

m

r
,

where �v is the average thermal velocity of electrons in
plasma, and v0 is measures in cm sÿ1. In this case,

0.8

1.0

1.2

1.4

I2�l �=I 02

0 0.2 0.4 0.6 0.8 I2=I
0
1

Figure 9. Dependence of the second-beam ampliécation I2�l �=I 02 on the
ratio I 02 =I

0
1 (solid curve). Squares are experimental data [2].
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A0 � Amax �
4p 3������
2p
p

e

c 2r 20 ne
o 3

0 kTe

. (42)

The gain amax
1 � AmaxI

0
1 can be calculated from the

expression

amax
1 �cmÿ1� � 1:35� 105

ne�1020 cmÿ3�I�1014 Wcmÿ2�
o 3

0 �1015 sÿ1�kTe�eV�
. (43)

We will calculate the gain amax
1 for the following values

of parameters entering (43): o0 � 1:78� 1015 sÿ1,
I 01 � 2� 1013 W cmÿ2, Dt1 � 10ÿ10 s, Dt2 � 10ÿ12 s,
kTe � 100 eV (v0 � w0 � 4:2� 108 cm sÿ1), ne � 0:4� 1020

cmÿ3. In this case, the gain amax
1 � AmaxI

0
1 is 96 cmÿ1.

The theoretical results obtained in the stationary
approximation can be used only when the interaction
time of laser beams with a plasma layer is shorter than
the duration of the ampliéed laser pulse: l=c4Dt2. We
assume in this case that the `pump' pulse duration exceeds
the ampliéed pulse duration. This condition restricts the
thickness of a plasma layer by the inequality l4 cDt2 � 0:03
cm. As a result, we have amax

1 l � 2:88.
By using relations (31) ë (34), we determine the depend-

ence of I2(l )=I
0
2 on I 02 =I

0
1 in the range [I 02 =I

0
1 �0:1; I 02 =I

0
1 �

1:2] for the above value of amax
1 l. This dependence is

presented in Fig. 10. One can see that the gain considerably
decreases when the initial intensity of the ampliéed laser
pulse approaches the `pump' pulse intensity. The maximum
gain equal to 17.8 is achieved for I 02 =I

0
15 1.

Figure 11 presents the dependences I1(z)=I
0
1 and I2(z)=I

0
1

for three values of the ratio I 02 =I
0
1 .

Figure 12 shows the change in the amplitude of the
second laser pulse propagating through éfteen 0.03-cm thick
plasma layers (the process is stationary in each of the layers)
calculated for three values of the gain amax

1 . One can see
that, when the value of amax

1 l is large, the intensity of the érst
beam decreases to zero after propagation through each
plasma layer, while the amplitude of the second laser beam
increases by I 01 . Beginning from this instant, after prop-
agation through remaining plasma layers, the intensity of
the ampliéed pulse can be calculated from the expression

Im2 � I n2 � �mÿ n�I 01 . (44)

Here, n is the number of a plasma layer, beginning from
I1(z � 0) ' 0, and m is the total number of plasma layers.
The correctness of expression (44) is conérmed by the data
presented in Fig. 12c. In this case, already beginning from
the second plasma layer, the gain can be calculated from
expression (44). The corresponding value differs by 2%
from the value determined from Fig. 12c.

Note that, according to expression (30), we have c1 ' I 02
and I2(l ) � I 01 (1� I 02 =I

0
1 ) for I 02 4 I 01 . This means that the

ampliécation of a short laser pulse occurs at any relation
between the intensities of the ampliéed laser pulse and
`pump' pulse.

Condition (19) restricts the duration of the ampliéed
laser pulse:

Domax

2o0

� 2

o0

1

D~t
4

w0

c
,

or

D~t5
2c

o0w0

. (45)

0 0.2 0.4 0.6 0.8 1.0 I 02 =I
0
1

1

4

7

10

13

16

I2�l�=I 02

Figure 10. Dependence of the ampliécation of the second beam on its
relative intensity.
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~c1 � 0:316

~c1 � 0:034

~c1 � ÿ1:182

Figure 11. Changes in the intensity of ampliéed and `pump' laser pulses
propagating in a 0.03-cm thick plasma layer for I 02 =I

0
1 � 0:12 (a), 0.24

(b), and 1.2 (c) and different values of ~c1. The pulse amplitudes are
normalised to I 01 � 1014 W cmÿ2.
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For kTe � 100 eV, w � 4:2� 108 cm sÿ1, and o0 �
1:78� 1015 sÿ1, we obtain from (42) that the duration of
the ampliéed pulse is restricted by the value Dt2 5D~t �
3:2� 10ÿ13 s. To amplify shorter pulses, it is necessary to
use higher-temperature plasmas.

The main advantage of using plasma for amplifying
intense short laser pulses is that plasma is a renewable
medium, which almost does not change its properties during
the interaction process. This circumstance was pointed out
in [17]. On the contrary, the application of condensed media
to amplify ultrashort laser pulses is complicated by optical
damages that can be produced by laser radiation in them.

Ampliécation effects upon stimulated Compton scatter-
ing considered above were studied by using the kinetic
equation for photons. In the case of large photon occupa-
tion numbers, these effects can be described classically.
However, the calculation method, which requires the
statistical approach, proves to be complicated and less
illustrative than the quantum-mechanical description [18].
The interaction of radiation with plasma can be also
accompanied by collective effects [8]. Under experimental
conditions in [2], stimulated scattering of laser radiation by

ion ë sound waves could be the most probable process
because spectral variations observed in experiments were
small. However, as follows from analysis performed in [19],
the ion ë sound waves have no time to develop during the
action of laser radiation. Therefore, this type of scattering
can be neglected in the interpretation of experimental results
[2]. This conclusion also concerns the problem considered
here, in which it is assumed that plasma electrons interact
with laser radiation as free particles.

Note that the possibility of amplifying ultrashort laser
pulses in a plasma upon the three-wave interaction of
counterpropagating electromagnetic waves with plasma
oscillations is considered in paper [17], where quite complete
relevant references are also presented.

There exists another circumstance that should be taken
into account in the study of the interaction of intense laser
radiation with electrons. The matter is that the velocity
distribution function of electrons can be deformed in this
case so that a `shelf' (shown by the dashed line in Fig. 8) can
be formed in the interval of velocities of electrons involved
in scattering. The formation of the `shelf' is prevented by
collisions of electrons with plasma particles, so that the
velocity distribution function tends to return to its initial
shape. To avoid the formation of the `shelf', the eféciency of
the second of the above-mentioned process should be
higher. By using the classical description of stimulated
Compton scattering, it can be shown [19] that the `shelf'
will not form if the condition

�I1I2�1=2 < Icr (46)

is fulélled, where

Icr � 0:22� 10ÿ33o 2
0

�
veff
o0

�2=3� vTe

v

�
�vTe

c�2=3.

Here, veff is the effective collision frequency of electrons
with plasma particles; vTe

is the average thermal velocity of
electrons; v is the velocity of electrons involved in
scattering; and c is the speed of light. In the examples
considered above, Icr ' 1:3� 1016 W cmÿ2, and condition
(46) is fulélled. Therefore, we can conclude that in this case
the proéle of the electron distribution function is not
distorted during stimulated Compton scattering.

7. Conclusions

The results obtained in this paper have shown that
stimulated Compton scattering of counterpropagating
laser beams in a laser plasma can be used for the efécient
ampliécation of ultrashort laser pulses. This possibility can
be realised based on the theoretical results obtained in the
paper.
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Figure 12. Ampliécation of the second laser pulse (of short duration)
propagating through éfteen 0.03-cm thick plasma layers for amax

1 � 9:6
cmÿ1, I 01 � 1013 W cmÿ2, Im2 =I

0
2 � 60:4 (a); amax

1 � 19:2 cmÿ1, I 01 � 2�
1013 W cmÿ2, Im2 =I

0
2 � 310 (b); and amax

1 � 96 cmÿ1, I 01 � 1014 W cmÿ2,
Im2 =I

0
2 � 600 (c). ( 1 ) pump laser pulse, ( 2 ) ampliéed laser pulse with the

initial amplitude I 02 � 0:024I 01 . The pulse amplitudes are normalised to
I 01 .
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