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Modulation and correlation of the radial and angular motions
of a Rydberg electron in a resonance microwave field

P.A. Volkov, M.A. Efremov, M.V. Fedorov

Abstract. We discuss the physical sense and interpretation of
the Maeda— Gallagher experiment (2004) in which the
probability of ionisation of Rydberg Li atoms perturbed by
the resonance microwave field by a short half-cycle pulse was
measured. The periodic dependence of the ionisation prob-
ability w; on the delay time 7, of the half-cycle pulse with
respect to the instant of switching on the microwave field is
found. The oscillation period of the function w;(t,) is equal to
the Kepler period of a Rydberg electron. It is shown that the
interpretation of this experiment by the authors in terms of
localised wave packets has no grounds and neglects basic
processes proceeding in the microwave field. An alternative
interpretation is proposed and, as the first step, the structure
of the Rydberg wave function formed in the resonance
microwave field is studied.
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1. Introduction

The idea of formation of localised nonspreading quantum-
mechanical wave packets has attracted the attention of
researchers in fact with the advent of quantum mechanics,
beginning from the works of Schrodinger [1]. Indeed, the
states of the wave-packet type make it possible to find the
similarity in the behaviour of quantum-mechanical and
classical systems. However, as a rule, wave packets spread
due to the wave nature of quantum mechanics. One of the
exceptions is a harmonic oscillator in which localised
quantum-mechanical states can be constructed which do
not spread with time. Also, long-lived localised states
maintained by an external electromagnetic field can be
prepared. These are, for example, the so-called Troy
Rydberg wave packets formed by a circularly polarised
field and involved in the electron motion over a circular
orbit [2]. The nonspreading Rydberg wave packets of a
different type appear due to the Raman repopulation of
levels in the interference stabilisation regime [3]. Finally, the
narrow and nonspreading wave packets of the wave
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function of translational motion of atoms interacting
with the field of a resonance standing light wave can be
also produced in atomic optics [4]. According to the idea of
Maeda and Gallagher [5], another method for formation of
a narrow and nonspreading electron wave packet is the
excitation of a Rydberg atom by a resonance microwave
field. Unfortunately, in our opinion, this idea is not
adequate to the experimental conditions [5], although the
experiment itself is very interesting and its correct
interpretation requires the independent theoretical study.
Such an attempt is made in the present paper.

2. Experiment of Maeda and Gallagher

In experiment [5], the Li atoms were first excited to one of
the Rydberg states by three successive 5-ns pulses from a
dye laser according the scheme 2s — 2p — 3s — 72p. The
spectral width of exciting pulses was small enough to
provide the selective population of only the 72p level. Then,
a linearly polarised resonance microwave field of strength
¢ =1V cem™! and angular frequency o = 27 x17.258 GHz
was switched on. The microwave field frequency was
resonant with the frequency w = E;; — E;» = wg of the
n=72—n=73 transition, where E, = —1/(2n°) is the
energy of the nth level of a hydrogen-like atom and
g =1 /n3 is the classical Kepler frequency. Hereafter, if
the units of measurement are not indicated, the atomic
system of units is assumed. The period Tx = 2n/wg
corresponding to the Kepler frequency wg for n =72 is
57 ps. Within the time ¢, after switching on the microwave
field, the atoms were ionised by a subpicosecond half-cycle
pulse. The dependence of the ionisation probability w; on
the instant 7, of switching on the half-cycle pulse was
measured. It was shown that this dependence was periodic,
which is clearly demonstrated in Fig. 1 (Fig. 2 from [5]).
The measured period of the function w;(zy)) proved to be
equal to the oscillation period 27/w of the microwave field,
which in turn is approximately equal to the Kepler period
Tk Such a dependence of the function w;(#,) was observed
for more than 900 ns, which corresponds to more than
15000 Kepler periods.

3. Authors’ interpretation of the experiment
of Maeda and Gallagher

The authors of paper [5] explain the results of their
experiment by assuming that the microwave field acting on
a Rydberg atom produces a long-lived nonspreading wave
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Figure 1. Periodic dependence of the ionisation probability w; on the
time interval #, between the instants of switching on the microwave field
and half-cycle pulse. The data are taken from [5].

packet moving along the classical Kepler orbit strongly
elongated along the polarisation direction of the microwave
field.

The spatial distribution of the probability density (the
square of the wave-function modulus) in such a state
corresponds qualitatively to the picture shown in Fig. 2
(fragment of Fig. 1 from [5]). Within the framework of this
model, the role of a half-cycle pulse is that it adds the
momentum pycp = jsHCp(t)dt to the electron. If the
directions of the microwave field and half-cycle pulse
field coincide, the momentum pycp is summed with the
electron momentum on the Kepler orbit, resulting in the
detachment of the electron from the ion, i.e. ionisation. If
the electron momentum in the microwave field and the
momentum pycp are oppositely directed, they are mutually
quenched, the electron movement slows down and no
detachment of the electron from the ion (ionisation) occurs.
This means that the ionisation probability depends on the
microwave-field phase at which the half-cycle is switched on,
which explains the observed oscillations of the ionisation
probability depending on the instant of switching on the
half-cycle pulse.

Electron
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Figure 2. Probable picture of the motion of a localised electron wave
packet along the Kepler orbit (fragment of Fig. 1 from [5]);
eMwWE = &g coswt is the microwave field strength, p is the electron
momentum at the Kepler orbit.

Let us emphasise that the described scheme concerns
only the situation when the electron packet is strongly
localised so that its dimensions are much smaller than the
size of the Kepler orbit. It is well known [6—8] that such a
localisation is possible only in the case of coherent pop-
ulation of many (An > 1) closely spaced Rydberg levels with

different principal quantum numbers n (then, the packet
width will be An times smaller than the Kepler orbit size).
This requirement could not be fulfilled under experimental
conditions [5]. For the microwave field strength of
~1Vem™, only levels with An=1—2 interact (are
repopulated) efficiently, which agrees with the estimates
made in paper itself [S]. Under such conditions, no local-
isation of the wave packet can occur, and the model of a
localised nonspreading wave packet moving along the
elongated Kepler orbit is invalid.

To support their interpretation, the authors [5] mention
theoretical papers on the Floquet states of a one-dimen-
sional Rydberg atom in a resonance field [9, 10]. They assert
that one of the considered Floquet states corresponds to the
model of a localised wave packet described above. They also
affirm that the microwave field excites the incoherent
superposition of approximately four most closely spaced
Floquet states (see Fig. 4 in [5]). We believe that all this has
little in common with the physics of processes proceeding in
the Rydberg atom in the microwave field of such a low
strength as in experiments [5].

Indeed, the Rydberg states of a hydrogen atom and
hydrogen-like atoms are multiply degenerate (or almost
degenerate) in the quantum numbers of the angular
momentum /. The basic process proceeding in the Rydberg
atom in a moderate resonance field is the population
migration over /, i.e. over the degenerate sublevels of
resonance levels (Fig. 3). This process cannot be taken
into account within the framework of a one-dimensional
model and, therefore, this model cannot describe the physics
of effects observed in experiments [5]. Note also that the
number of closely spaced Floquet states in the real situation
of resonance at degenerate levels with n = 72 and 73 will be
of the order of seventy rather than four. Because these levels
are very closely spaced, they will be coherently (but not
incoherently, as assumed in [5]) populated virtually at any
method of switching on a resonance microwave field. It is
clear that in this situation the description of the appearing
state of the Rydberg electron in terms of the Floquet states
will be very cumbersome, hardly realisable and unsuitable.
Therefore, we do not use the theory of Floquet states in the
formulation of the problem described below but find the
direct solution of the initial problem. In other words, we
find the solution of the nonstationary Schrodinger equation
satisfying the correctly specified initial conditions and
describing the evolution of the wave function of the
Rydberg electron in the resonance microwave field.

Figure 3. Diagram of the resonance levels degenerate or nearly
degenerate in /, whose repopulation determines the population migration
in the resonance microwave field. The positions of the E7; o and Eo,
levels take into account the quantum-defect corrections (2, 4 and 4, are
the characteristic Rabi frequency and resonance detunings determined in
section 4).




Modulation and correlation of the radial and angular motions 715
4. Formulation of the problem P(r,0,1) = exp(—iEqp 1) Ci(t)o,(r, 0)
Consider the nonstationary Schrodinger equation for a odd /=1
Rydberg electron in a resonance microwave field )
texp(—iEpnt) Y Dy(Dq (r,0), C))
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ot where C; and D; are the probability amplitudes of finding

where H, is the Hamiltonian of a free atom; d is the dipole
moment of the atom; ¢, is the microwave field strength
amplitude; and r and 0 are the modulus of the radius vector
r of the Rydberg electron and angle between r and |z,
respectively. We assume also that, as in experiment [5], the
angular frequency of the microwave field v = 2.664 x 1076,
which corresponds to the linear frequency v = w/2n =
17.528 GHz and the field variation period 7T =
2n/w = 57 ps. For the resonance levels with n =72 and
73, the Kepler frequency is wx = 2.624 x 107°. Taking the
quantum defect into account, the energies of Rydberg levels
are E, ;= —1/[2(n— 5,)2}. The corrections d, for a lithium
atom are well known [11]. They are not small only for the s
and p states for which J, = 0.4, §; =0.047. In fact the
correction J, provides so large a shift of the levels E,
(compared to the hydrogen levels E,) that transitions to the
s levels and from them become nonresonant and are
excluded in our calculations (see the energy level diagram
taking the quantum defect into account and the scheme of
quantum transitions in Fig. 3). The correction d; is not so
large but also not too small. The shift of the level E;,
determined by this correction is 3E, = —1.26 x 1077 and
should be taken into account in calculations. As for
corrections ¢; with /> 2, they are so small that can be
neglected, i.e. we can assume that E, , = E, = —1/(2n2) for
all 1> 2.

Due to the selection rules Al = +1 for dipole transitions
and the initial population of the level with /=1 (n = 72),
only the E7, ; levels with odd / and the E7; ; levels with even
{" are populated during interaction with the microwave field.
For transitions between these levels (72,/ = 73,/+ 1), the
resonance detuning is

Aj=w+ Eqp — Ep

_Jo—ox=4=41x10"1>2,
w—og —8E,=4—-3E, =4, =-85x 107 1=1.

2

The difference between 4 and 4, is clearly seen in Fig. 3.
We will consider transitions between Rydberg levels with
n < 72 and n > 73 as nonresonant ones because the corre-
sponding detunings are smaller than the Rabi frequency
(estimates are presented below).

We solve the Schrodinger equation (1) by expanding the
wave function ¥ in a series of free-atom Hamiltonian
eigenfunctions:

2+ 1\'?
lpn,l,m,:o('ﬂ) = l//n,l = <T+> P[(COS H)RnJ(r): (3)

where Pj(cosf) are Legendre polynomials; R, ,(r) is the
radial part of the wave function V¥, ;. According to the
approximations made above, we take into account only
resonance terms in the expansion of ¥ in y, ,, i.e. the terms
with n =72 and 73:

n,l>

an atom in the states |72, /) and |73, /), respectively.

The matrix elements of dipole transitions between the
states |72, /) and |73,!') can be approximated by quasi-
classical expressions found in [12]. It is convenient to
introduce the reduced matrix elements of the dipole moment
by expressions

<I/l+],l— lldz|n7l>

N )
i / )
S ORI L ST
yt— (n+ 1,1|d.|n,1—1)
: n(n+1)
i

=i )@@ 0L ©

where Jj(x) is the first-order Bessel function; Ji(x)=
dJy(x)/dx is its derivative; ¢, = {1 — (/+1)*/[n(n + 1)]}'/%;
[ > 1; and n =72 in the case under study.

The dependence of matrix elements V;*(/) on / is shown
in Fig. 4. One can easily see that V;" > ¥, forall /> 1, i.e.
the Bethe rule is fulfilled for Coulomb dipole matrix
elements: as the principal quantum number n changes,
the orbital momentum / changes most likely in the same
direction as n. One can see from Fig. 4 that the values of V;°
for small / are approximately equal to 0.2, which corre-
sponds to the characteristic Rabi frequency Q=
0.1n(n + 1)ey ~ 107", This value is larger than the resonance
detuning (2) for all the states under study, ie. Q > |4,].
Therefore, all the sublevels E, ; of the Rydberg levels with
n =72 and 73 are strongly coupled with each other. On the
other hand, the resonance detuning for the n=2n+1
transition with n# 72 can be estimated as A" ~
—3(n—72)/n* ~ (n—72) x 107" > Q. This inequality jus-
tifies our assumption that transitions to the levels with
n > 73 and n < 72 can be approximately neglected. Never-
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Figure 4. Dipole matrix elements ¥, (5) and V;" as functions of /.
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theless, the levels located close to the resonance levels (with
n = 74 and 71) can be populated to some degree even in the
field of strength ~ 1V em™'. These processes will be
considered separately. However, we believe that such an
extension of the basis for the expansion of the wave function
¥ will not change qualitatively the results and conclusions
obtained in this paper.

Finally, note that the decrease in the matrix element V;
with increasing / (Fig. 4) restricts the growth of the angular
momentum during population migration in the direction of
greater values of /.

By using the rotating wave approximation, we reduce the
Schroédinger equation (1) for the wave function ¥Y(r, 0, t) (4)
to the system of ordinary differential equations

1
l% = Ei’l(l’l + 1)80 [eXp(llA) VliD[_l

+exp(itd) V)i Dy, 121,

(N
i% = %”(” + Deglexp(—itd,) V, Cry
+exp(—itd) Vi1 Cral, 122
with the initial conditions
C(t=0)=96,4, D)(t=0)=0. ®)

To exclude the nonresonance 72p — 73s transition (deleted
in Fig. 3), we should set ;' = 0 in the first of the equations
in (7).

By solving numerically the system of equations (7), we
find the functions C)(t) and D, (f) determining all the
parameters of the Rydberg state of an electron in the
resonance microwave field. In particular, the expression
for the time-dependent probability density p of finding the
electron in the vicinity of point (r, 6) has the form

p(r,0,1) = % = Psin0]¥(r,0, 1)

= r?sin 0{

exp(—idEyt)Cy(t) P(cos0) R, 1 (1)

2

> Dy(1) Pi(c0s 0) Ry 1(r)

even/

Jr

2

-+ Z C[([) P[(COS 9) Rn,l(r)

odd />1

+ [exp(iwt) E exp(—itd;)C)(t) D} (1)
odd /
even /’

x Py(cos 0)Py(cos O)R,, (1) Ry, 1 (r) + C.c} } )

This function and a number of quantities determining
the evolution of the state of the Rydberg electron in the
resonance microwave field are analysed in detail in the next
section. Here we point out only that, first, under considered
conditions the oscillations at the field frequency approx-
imately equal to the Kepler frequency (o ~ wy) are fastest,

in particular, compared to the characteristic times of
variations in functions C)(t) and Dt). Therefore, rapid
oscillations of the probability density (9) at frequency
w ~ wg appear only in the interference term (in brackets).
If this term does not make a contribution to the mean values
of some operators, these values do not exhibit oscillations
with the field period. Such examples are presented below.
Second, below we will not differentiate oscillations at the
field frequency from those at the Kepler frequency. The
more so as follows from a detailed analysis, the frequency of
these rapid oscillations is not rigorously defined and is
subject to small and slow variations. We will not analyse this
here in detail.

5. Results of calculations

5.1 Population of the E, ; sublevels of resonance states

Figure 5 shows the time dependence of the mean value of
the quantum number of the angular momentum

() =>"11CF + > 1D(0).

odd/ even/

(10)

This figure demonstrates three evolution stages of the
electrons state: the initial transient period when /(f)
increases more or less monotonically, the period of some
decrease in /(f), and the long period of more or less
stationary behaviour of the function /(7). The oscillations of
the function /(7) at the second and third stages are similar
to Rabi oscillations. However, because we consider a
multilevel system, the oscillations are more complicated
than simple sinusoidal oscillations of the population in a
two-level system. The function /(7) does not experience
oscillations at the Kepler frequency, which is clearly seen
already from its definition (10).

~i

10 +

0 20 40 60 80
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Figure 5. Time evolution of the mean quantum number of the angular

momentum /(z). The circles indicate the instants of time for which the
curves in Fig. 6 are plotted.

Although the time dependence of the mean angular
momentum is quite informative, it does not describe all the
features of population migration over the E7,; and Ey3,
levels. Such data can be obtained from a direct analysis of
the probability distribution of population of the sublevels
with different values of /. The probabilities w(/) are defined
as |C|* for odd / and |D,\2 for even /. Two examples of such
distributions are presented in Fig. 6. The curves correspond
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to the instants 1 = 64.451 and 66.559 ns. These instants are
indicated by circles in Fig. 5. They correspond to the local
minimum at ¢ = 64.451 ns and maximum at ¢ = 66.559 ns of
the function /(7). Note, first, that the distributions w (/) are
rather broad and, second, they contain small values of the
angular momentum with a rather large weight. Like /(¢), the
probabilities w (/, £) do not oscillate at the Kepler frequency
but exhibit quasi-Rabi oscillations.

[R7,.1(r)] and angular [P;(cos0)] wave functions, and there
is no correlation between them. The radial and angular
variables are mixed in the microwave field, the total wave
function ¥(r,0,1) (4) is not factorised, and the correlation
coefficient increases on the average up to ~ 3.5, which
points to a rather high correlation or coupling of the radial
and angular motions in a Rydberg atom in a resonance
microwave field.

0.5 H
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Figure 6. Probability distributions w(/) for the population of the E7;
and E7; ; levels at t = 64.451 (/) and 66.559 ns (2).
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Figure 7. Time dependence of the Schmidt parameter K characterising
the correlation degree of the electron radial and angular motions.

5.2 Correlation of the radial and angular motions

Another parameter of interest, which was calculated, is the
Schmidt parameter K [13] characterising the degree of
correlation of the electron radial and rotation motion. In
two-particle systems, this parameter is used to characterise
the entanglement degree of particle variables in the wave
function or the entanglement degree of quantum states [14].
In the case of one particle with two degrees of freedom, it
seems more reasonable to speak about the degree of
correlation of motions along these two degrees of freedom.
However, irrespective of the terminology, in any case the
Schmidt parameter indicates to what degree the wave
function of two variables differs from the factorised wave
function given by the product of two functions, each of
them being dependent on only one of the two variables. In
the case of the factorised wave function, both correlations
and entanglement are absent, and the Schmidt parameter is
unity. The larger is this parameter, the higher is the
correlation (entanglement) degree. In the case of systems
with two continuous variables, the Schmidt parameter is
conveniently defined as [15]

K= {J r2drsin 0 d0r'*dr' sin0'do’

-1
><‘P(r,ﬁ)lP*(r/,9)'1’*(;’,9')‘[’(;'/,9')} . (11)
The calculated time dependence of the parameter K is
presented in Fig. 7. As a whole, the dependence K(¢) is
similar to the dependence /(¢) (Fig. 5), although quasi-Rabi
oscillations of the correlation coefficient are more pro-
nounced than oscillations of the mean quantum number of
the angular momentum. At the initial instant, K(0)=1
because the initial wave function is the product of the radial

5.3 Radial distribution of the probability density

Figure 8 shows the dependence of the probability density
p(r,0,1) (9) on the radius r for a fixed angle 0 (0 = 0.7 rad)
at instants ¢ = 22.935 and 22.962 ns differing by half the
Kepler period. One can see that the probability density
distribution over the radius r in the specified direction 6
noticeably changes after half the field period. By repeating
calculations in the interval of the order of several field
periods, we can easily see that the time dependence of the
probability density p(r, 0, ) at fixed 6 contains both a slowly
varying component and a component oscillating with the
Kepler period. It is interesting to note, however, that the
radial probability density integrated over all directions

p(r,0,1) (107)

2 6 10 14

r/l()3

Figure 8. Probability density p(r,0,¢) (9) for 0 = 0.7 rad, r = 22.935 (1)
and 22.962 ns (2).
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plr; 1) = J: 40 p(r. 0, 1) (12)

has no oscillations with the Kepler period. This conclusion
follows directly from the general expression for the
probability density p(r,0,7) (9). Due to the orthogonality
of Legendre polynomials P, and P, with different / and /’,
the interference term in the expression for p(r, 0, ¢) [term in
the brackets in (9)] vanishes upon integration over 0. This
means that the mean values of any operators independent
of 0 also do not contain components oscillating at the
Kepler frequency. In particular, this also concerns the time-
dependent the mean radius 7(¢) of the wave function of an
electron. Figure 9a shows the fragment of the time
dependence of this function. One can see that the function
7(¢) is monotonic and has no oscillations in the interval of
the order of five Kepler periods.

=~
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@/rad

25.0 25.1 252 1/ns

Figure 9. Time dependences of the mean distance from an electron to the
ion core F(t) = (¥Y(1)|r|¥(r)) (a) and of the mean angle 6(r) =
(P11 (D)) (b).

Although the absence of oscillations of the mean values
of operators independent of 6 with the Kepler period is
formally explained by the orthogonality of Legendre poly-
nomials, it is nevertheless interesting to elucidate in detail
how oscillations with the Kepler period disappear during
angular averaging. This mechanism is illustrated to some
degree by the dependence on 6 of the radius r averaged only
over r itself but not over the angle 0 (Fig. 10):

(0, 1) = Joor3dr|‘l’(r, 0,1). (13)

0

The three curves in Fig. 10 correspond to three different
evolution stages of the system: before microwave field
switching on (¢ = 0), the stage corresponding to the increase
in (¢) in Fig. 5 (t = 10 ps), and the quasi-stationary regime
stage (¢t = 15 ns). The disappearance of oscillations upon
the averaging of 7(0,7) over 0 is simply explained in the

F(0;1)
9000

8000

7000

6000

5000

0 n/4 n/2

3n/4 0

Figure 10. Mean radius of the electron—ion distance as a function of the
angle 6 for t =0 (1), 10 ps (2), and 15 ns (3).

intermediate regime. The excess of the area under curve (2)
in the region of maximum (to the left of the point 6 = 7/2)
is compensated for to a great extent by the defficiency in the
area under the curve in the region of minimum (to the right
of the point 0 = 7/2), and the sum of these contributions to
the integral over 6 proves to be approximately the same as
for t = 0. After half the Kepler period, the maximum and
minimum of curve (2) are interchanged and the integral
effect remains almost unchanged, i.e. oscillations are
absent. Thus, in this case the disappearance of oscillations
with the Kepler period upon averaging over 0 is directly
related to the structure of the curve 7(6;¢). The oscillations
of the mean radius 7(6;7) are most pronounced in the
vicinity of the point § = n/2. The oscillations of 7(6;1) to
the left and right of the point 6 = /2 are out of phase and
are mutually compensated for upon integration over 0.

Unfortunately, the function 7(6;¢) in the quasi-sta-
tionary regime is strongly complicated and its behaviour
cannot be explained so clearly as above. In this case, only a
formal explanation by the orthogonality of Legendre
polynomials remains.

5.4 Angular distribution of the probability density

One can see from Fig. 9b that the behaviour of the mean
angle 0(¢) considerably differs from that of the mean radius
7(¢): the function () oscillates with the Kepler frequency,
whereas 7(f) changes monotonically (for the time of the
order of a few Kepler periods). This is explained by the fact
that, unlike Legendre polynomials, the radial wave
functions R, ; and R, ; are not mutually orthogonal at
different / and /’. For this reason, the interference term in
expression (9) for the probability density p(r, 0, ) does not
vanish upon integration over r.

Finally, we present the data on the angular distribution
of the probability density. The angular probability density

o]

p(6:1) =J drp(r,0.1) (14)

0

in Fig. 11 is presented in polar coordinates. This means that
the angle 0 is measured from the positive direction of the z
axis both clockwise and counter-clockwise. The distance
from the coordinate origin to points in the curves is p(0; 7).
The two curves correspond to two instants of time
separated by half the Kepler period.

One can see from Fig. 11 that the angular distribution of
the probability density of finding an electron in the vicinity
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Figure 11. Angular probability densities p(0;¢) for ¢t = 22.935 (1) and
22.962 ns (2).

of directions determined by the angle 0 is quite irregular. In
principle, we can say about the formation of a series of
angle-localised wave packets in the microwave field. One can
clearly see changes in the distribution upon the time shift by
half the field period. These changes repeat through the
period, i.e. the angular distribution of the probability
density oscillates with the Kepler period.

6. Conclusions

In summary, we repeat that the interaction of a Rydberg
atom with a resonance microwave field under experimental
conditions [5] is not accompanied by the formation of an
electron wave packet localised along the radial variable and
moving along the Kepler orbit as a classical particle. The
absence of such a localisation is explained by the fact that
many Rydberg levels with different values of the principal
quantum number n are not populated in a relatively weak
resonance microwave field. On the other hand, the
resonance field can produce the efficient repopulation of
the sublevels of the resonance states with different quantum
numbers / of the angular moment. We believe that it is this
process that plays a key role in the interaction of a Rydberg
atom with a relatively weak but resonance field. The
problem of description of the repopulation of the sublevels
of the resonance states with different quantum numbers / of
the angular momentum excludes in principle the use of any
one-dimensional atomic models.

Although the resonance microwave field of a moderate
intensity does not provide the radial localisation of the wave
function, it causes the modulation (at the field frequency) of
both the radial and angular motions of the electron.
Undoubtedly, this modulation is responsible for the periodic
dependence of the ionisation probability of the atom on the
time of switching on the ionising half-cycle pulse. We hope
to return in the future to the description of the ionisation
process and to obtain the explicit dependences of the
ionisation probability on the parameters of the half-cycle
pulse and microwave field.

In this paper, we have studied in detail the radial and
angular distributions of the probability density and have
shown that the radial and angular motions are strongly
mutually correlated. One of the differences between the
modulations of the angular and radial motions of the
electron in the resonance microwave field is that the radial
distribution of the probability density integrated over angles
does not oscillate with the Kepler frequency, whereas such
oscillations are observed in the angular distribution inte-
grated over the radius.

The angular structure of the wave function of the
electron in the microwave field proves to be rather com-
plicated and irregular, containing a series of comparatively
narrow peaks. In principle, such a structure can be
interpreted as a series of relatively narrow angular wave
packets localised over the angle 0 and maintained by the
microwave field. However, they are not localised in the
radial direction and cannot be associated with a classical
particle moving along the Kepler orbit.
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