
Abstract. By using the derived master equations, it is shown
that the decay of electronic impurities in a nanocrystal can be
described as a collective relaxation of particles. A set of
entangled states of impurity atoms is found, which have
immunity to this relaxation. These states can be used for
decoherence-free quantum processing.

Keywords: nanocrystal, electronic impurity states, localised phonon
mode, dispersion limit, collective relaxation, entanglement of quan-
tum states.

1. Introduction

Nanocrystals and glasses activated with rare-earth ions are
used in scintillation devices as luminophores and in
biomedical problems as êuorescence probes [1, 2]. In this
paper, we discuss a new possibility of using nanocrystals
doped with atoms or ions as a `bricks' of the elemental base
in quantum information devices. This possibility is deter-
mined by the speciéc features of the dynamics of electronic
states of impurity atoms caused by electron ë phonon
interaction in the nanocrystals.

The unit of quantum information is a qubit or a two-
level quantum particle [3]. The physical realisations of
qubits together with main operations performed with
them have been actively studied over a decade [3, 4]. The
main elements of quantum information processes including
quantum calculations and quantum communication are the
superposition and entangled states of qubits.

Entangled quantum states are also considered as the
states with quantum correlations. The methods of prepa-
ration of quantum-correlated systems and their robustness
to relaxations (decoherence) are the subject of numerous
theoretical and experimental studies. At present the deco-
herence-free entangled states have been experimentally
realised only in the system of photons [5]. Thus, the search

for situations in which entangled states insensitive to
decoherence can exist is of current interest. In addition,
from the practical point of view the realisations of qubits
and entanglement operations in solid or even semiconductor
matrices are important for their integration with other
semiconductor devices. One of the examples is quantum
dots [6] and another is activated nanocrystals.

According to experimental data, impurity atoms or ions
in nanoparticles, for example, rare-earth ions (Pr3�, Eu3�,
Ce3�) in oxyorthosilicate nanocrystals (Y2SiO5, Lu2Si°5,
Gd2Si°5) exhibit a strong electron ë phonon interaction
with a localised phonon mode [7, 8]. Nanocrystals differ
in this respect from macroscopic crystals. The frequency of a
localised mode is approximately equal to the inverse pro-
pagation time of an acoustic signal over the characteristic
size of the nanocrystal in a microscopic crystal. The popular
model [9] consistent with experiments [7, 8] considers two
impurity quantum levels interacting with a localised phonon
mode similarly to a two-level atom in a resonator.

In our paper, we generalise the model [9] to the case of
several impurities and the coupling between the localised
mode and phonons of the matrix at the nanocrystal surface
and consider then the dynamics of impurity electronic states.
It is shown in the simplest case of the dispersion limit when
detuning from the resonance exceeds the characteristic
interaction frequency of an impurity with localised phonons
that the electronic states of impurities in nanocrystals can be
entangled and insensitive to decoherence. Therefore, acti-
vated nanocrystals are promising for applications in
quantum information devices.

We studied the dynamics of impurities in nanocrystals
by using a popular model of atoms in a microcavity with
losses at mirrors [10], which has, however, some modiéca-
tions.

Note érst of all that the dispersion limit for atoms in a
microcavity with losses at mirrors was recently considered in
[11]. However, the kinetic equation was derived in this paper
not correctly enough because the passage to the dispersion
limit was performed in kinetic equations for the atom+
microcavity photon system, whereas érst the effective
Hamiltonian should be obtained in the dispersion limit
for the atom+microcavity photon+thermostat phonon
system and then kinetic equations derived by using this
Hamiltonian [12]. The difference can be both in the values of
the model parameters and in the appearance of new
relaxation channels. In [13], the case is described when
such a correct approach results in the appearance of two-
quantum relaxation mechanisms that are efécient in media
with speciéc spectral features.
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In this paper, we obtained the kinetic equation for atoms
in a nanocrystal in the dispersion limit by the method
considered above and showed the correctness of the model
of collective relaxation. We obtained a correct expression
for parameters of the kinetic equation, which differs from
the kinetic equation obtained in [11]. The kinetic equation
was derived for the initial Hamiltonian without using the
slowly varying amplitude approximation. Note that it was
shown in [14] for the problem of interaction of ultrashort
electromagnetic pulses with a two-level system in the
dispersion limit (where it is called the adiabatic following
approximation) how the correctly obtained dispersion limit
differs from the results derived from the initial Hamiltonian
in the slowly varying amplitude approximation.

By solving the kinetic equation obtained for impurities
in a nanocrystal, we found that, several initial states of
impurities result in the steady-state solutions with their
decoherence-free entangled states. Acoustic waves in a
matrix to which an impurity nanocrystal is embedded
play a key role in the creation of such states.

2. The model

Consider a spherical nanocrystal of diameter L to which
several impurity atoms are embedded. According to the
Simon ëGeller model [9], each atom interacts with a loca-
lised phonon mode of frequency o0 � 2pv=L, where v is the
sound speed in a macroscopic crystal. By assuming that the
electronic states of impurities are the same, we will write the
Hamiltonian for this interaction in the form

H � Ha �Hph � V; Ha �
X
ai

eac
�
ai cai;

(1)

V �
X
aa 0i

gaa 0c
�
ai ca 0i�a� a��; Hph � o0a

�a:

Here, the subscript a � 1; 2 numerates a pair of electronic
states with energies e1 and e2, and cai and c�ai are the electron
annihilation and creation operators in these states of the ith
impurity. The electron ë phonon interaction is determined
by the coupling constants g21 � g12 � g, g11 � g22 � 0; and
a and a� are the annihilation and creation operators for the
localised phonon mode.

The further generalisation of the Simon ëGeller model
involves the consideration of excitation of the localised
mode due to interaction with thermostat phonons on the
nanocrystal boundary. The simplest operator of this inter-
action has the form

Vloss �
X
o

Go�a�bo � ab�o�; (2)

where bo and b�o are the thermostat phonon annihilation
and creation operators. We assume that the initial state jF0i
of phonons in the thermostat is delta-correlated:

hF0jb�obo 0 jF0i � N�o�d�oÿ o 0�;
(3)

hF0jbob�a0 jF0i � �1�N�o��d�oÿ o 0�;

where N(o) � (eo=kT ÿ 1)ÿ1: Because phonons with fre-
quencies close to the localised mode frequency play a main

role, the assumption of delta-correlation is justiéed in the
light of using the Markovian approximation to derive the
kinetic equation.

The main approximation of the Simon ëGeller model
and proposed generalisation is the neglect of a difference
between transverse and longitudinal phonons. It is also
assumed that the dipole moment of the e2 ! e1 electron
transition is small enough to neglect the interaction between
atoms and the electromagnetic éeld. We use the system of
units in which �h � 1.

Therefore, the initial Hamiltonian of the problem on the
dynamics of impurity electronic states in a nanocrystal
taking into account the coupling of the localised phonon
mode with thermostat phonons is

Hloss � Ha �Hph �Hbath � V� Vloss;
(4)

Hbath �
X
o

ob�obo;

where Hbath is the Hamiltonian of the thermostat phonons
in a matrix to which the nanocrystal is embedded.

The state vector jCi of the entire system satisées the
Schr�odinger equation

i�h
q
qt
jCi � HlossjCi: (5)

One can see that Hamiltonian (4) coincides formally
with the Hamiltonian describing the dynamics of atoms in a
single-mode cavity with losses at mirrors [10]. To demon-
strate most simply the possibility of the entanglement of
impurity electronic states and the realisation of the decoher-
ence-free entangled states, we consider the dispersion limit
for Hamiltonian (4). In this case, our equations are no
longer coincident with the known kinetic equations for the
dispersion limit presented in [11].

3. Dispersion limit

Consider a nanocrystal of size at which the localised mode
frequency and the electronic transition frequency for
impurities satisfy the conditions

jDj4 g 2�n; jDj5 je2 ÿ e1j; D � o0 ÿ e2 ÿ e1; (6)

i.e. we assume that the detuning D from the resonance
exceeds the characteristic energy of interaction with the
localised mode (�n is the average number of phonons of the
localised mode) but is much smaller than all detunings from
other impurity electronic states and impurity electronic
transition frequencies.

Condition (6) shows that transitions between the impu-
rity levels e1 and e2 caused by the electron ë phonon inte-
raction are weak. Therefore, we will try to diagonalise the
non-dissipative part of the Hamiltonian Hloss. For this
purpose, we perform the unitary transformation of the
state vector jCi of the whole system:

j ~Ci � UjCi: (7)

The transition of the vector jCi to a new vector (4) results
in the transformation of the Hamiltonian
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~Hloss � UHlossU
� ÿ i�hU

q
qt
U�; (8)

so that the quantum system is now described by the
Schr�odinger equation with the Hamiltonian (8):

i�h
q
qt
j ~Ci � ~Hlossj ~Ci: (9)

By expressing the unitary operator in terms of the
Hermitean operator

U � eÿiS; S� � S; (10)

and expanding the transformed Hamiltonian (5) and S into
series over the coupling constants of the atoms and
thermostat phonons,

S � S �10� � S �01� � S �11� � :::;

~Hloss � ~H �00� � ~H �10� � ~H �01� � ~H �11� � ~H �20� � :::; (11)

we obtain the following equalities for different expansion
orders of the transformed Hamiltonian (the left digit in
each pair of superscripts indicates the expansion order in
the coupling constant with the localised phonon mode,
while the right digit indicates this order in the coupling
constant with thermostat phonons):

~H �00� � Ha �Hph �Hbath; (12a)

~H �10� � Vÿ i�S �10�; ~H �00�� � �h
qS �10�

qt
; (12b)

~H �01� � Vloss ÿ i�S �01�; ~H �00�� � �h
qS �01�

qt
; (12c)

~H �11� � ÿ i

2
�S �01�;V � ÿ i

2
�S �10�;Vloss� ÿ

i

2
�S �01�; ~H�10��

ÿ i

2
�S �10�; ~H �01�� ÿ i�S �11�; ~H �00�� � �h

qS �11�

qt
; (12d)

~H �20� � ÿ i

2
�S �10�;V� ÿ i

2
�S �10�; ~H �10��

ÿ i�S �20�; ~H �00�� � �h
qS �20�

qt
; (12e)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To obtain the effective Hamiltonian, it is necessary to
remove the term describing the linear interaction of atoms
with the localised mode because in the adiabatic approx-
imation it is this term that should be absent due to a large
enough tuning from the resonance. We will require that

~H �10� � 0: (13)

This can be achieved with the help of the operator

S �10� � i
g�a�Rÿ ÿ aR��

D
� i

g�a�R� ÿ aRÿ�
o0 � e2 ÿ e1

: (14)

In this case,

~H �20� � ÿ i

2
�S �10�;V � � ÿ g 2

D
�RÿR� � cc�2R3�; (15)

~H �01� � Vloss; (16)

~H �11� � ÿ g

D

X
o

Go�R�bo � Rÿb
�
o�; (17)

S �20� � 0; S �01� � 0; S �11� � 0: (18)

The collective operators for impurity electronic states used
in these relations are

R3 �
1

2

X
i

�c�2ic2i ÿ c�1ic1i�; R� �
X
i

c�2ic1i; Rÿ �
X
i

c�1ic2i;

and

�R3;R�� � �R�; �R�;Rÿ� � 2R3; RÿR� � R 2 ÿ R 2
3 ÿ R3:

In addition, we excluded from the Hamiltonian the term
proportional to the population of impurity levels under
study,

1

2
�e2 � e1�

X
i

�c�2ic2i � c�1ic1i�;

because it commutes with all other terms.
Thus, the effective Hamiltonian

H eff � ~H �00� � ~H �01� � ~H �11� � ~H �20�

of the impurity nanocrystal takes the form

H eff � �e2 ÿ e1�R3 � o0a
�a

�
X
o

ob�obo ÿ
g 2

D
�RÿR� � cc�2R3�

�
X
o

Go�a�bo � ab�o� ÿ
g

D

X
o

Go�R�bo � Rÿb
�
o� (19)

in the dispersion limit, in which the effective Hamiltonian
H eff

a of impurities in the nanocrystal and the impurity-
thermostat éeld coupling operator V eff

a loss :

H eff
a � �e2 ÿ e1�R3 ÿ

g 2

D
�RÿR� � cc�2R3�;

V eff
a loss � ÿ

g

D

X
o

Go�R�bo � Rÿb
�
o�

play a key role.
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By using Hamiltonian (19) and initial state (3) for matrix
phonons, we derive in the Markovian approximation [15,
16] the master equation for the density matrix of impurities
in the nanocrystal:

dra
dt
� i

�h
�ra ; �H eff

a � ÿ Ĝra; (20)

where

Ĝra � jwj2�N� 1��ra R�Rÿ � R�Rÿra ÿ 2Rÿra R� �

� jwj2N�ra RÿR� � RÿR�ra ÿ 2R�ra Rÿ� (21)

is the relaxation operator; w � gGe2ÿe1D
ÿ1 ������

2p
p

; and N �
N(e2 ÿ e1�:

We assume also that the dynamics of the phonon mode
of the nanocrystal in the dispersion limit is mainly deter-
mined by the interaction with thermostat phonons on the
nanocrystal boundary, so that the Hamiltonian �H eff

a

contains instead of phonon operators the average number
a�a of phonons in the nanocrystal:

�H eff
a � �e2 ÿ e1�R3 ÿ

g 2

D
�RÿR� � �1� a�a�2R3�: (22)

Equations (20) and (21) describe the relaxation of impurity
electronic states in the nanocrystal in the dispersion limit
(6). Unlike paper [11], the coefécients of the relaxation
operator are independent of the boson annihilation and
creation operators in the nanocrystal. The term containing
operators R3 is also absent {see Eqn (5.8) in [11]}.

In conclusion, we write the equation for the density
matrix of impurities in the nanocrystal in the interaction
representation ~ra:

~ra � exp�i �H eff
a t=�h�ra exp�ÿi �H eff

a t=�h�;
(23)

_~ra � ÿĜ~ra,

where the relaxation operator is now determined by
Eqn (21) [by neglecting the difference of �H eff

a from
(e2 ÿ e1)R3].

4. Consequences of the collective dynamics
of impurities

It is important to note that relaxation operator (21)
coincides accurately to the values of parameters with this
operator obtained in the model of collective relaxation of
atoms located in one spatial point in a three-dimensional
electromagnetic éeld and in the model of a unidirectional
thermostat [17]. Moreover, when the components of the
density matrix change slowly, kinetic equations (23) also
correspond to the model of collective relaxation. Therefore,
we can use the results of our papers [17 ë 19] to describe the
dynamics of impurities in nanocrystals. The main features
of this dynamics are as follows.

In the case of two impurities, of most interest for
relaxation processes is the pure state with one excited
particle

C � aj01i � bj10i; (24)

where jaj2 � jbj2 � 1; j0i and j1i are the wave functions of
impurities with energies e1 and e2; j01i (j10i) are the states
of two impurities in which the érst (second) impurity
occupies the electronic state with energy e1and the second
(érst) impurity occupies the electronic state with energy e2.
Because the wave function C is not factorised, the atoms
can be entangled. In this case, the entanglement degree is
determined by the entropy of one of the impurities, say, the
érst one: S � ÿTr(r ln r), where r � Tr2jCihCj and the
trace is taken over the states of the second impurity. In our
case, S � ÿp ln pÿ (1ÿ p) ln (1ÿ p), where p � jaj2. For
p � 0 or 1, the entropy is S � 0, which corresponds to the
case of the non-entangled state for which the wave function
is factorised. For p � 1=

���
2
p

, the maximally entangled state
appears, which can be antisymmetric with respect to the
permutation of particles:

Cÿ � �j01i ÿ j10i�= ���
2
p

: (25)

Due to the symmetry, this state is annihilated by all two-
particle collective operators and, thereby being preserved in
all collective processes. In particular, if the two impurities
were initially prepared in the state Cÿ, then under the
conditions of a collective decay determined by Eqn (23)
their state will be preserved because GjCÿihCÿj � 0. This
means that maximally entangled antisymmetric states of a
pair of atoms prove to be insensitive to collective relaxation.
If we consider now arbitrary states of two impurities, we will
see that collective relaxation separates antisymmetric states,
resulting in the formation of stationary entangled states [17].

Numerous multiparticle entangled states are of interest
for applications. By using the above example, we can
construct a trivial generalisation for the even number 2n
of impurities by considering the state jCÿi 
 jCÿi::: : This
state describes the case of n excited impurities. However, we
can also indicate the states with one excited impurity, which
will be also insensitive to collective relaxation. Such states
prove to be natural for multiparticle systems and can be
prepared by using simple schemes. Consider the wave
function describing an ensemble of n impurities inside
one nanocrystal when only one impurity is excited. We
will use the result

Zn�1� � q1j10:::0i � q2j01:::0i � :::� qnj00:::1i (26)

obtained in [18], where
P

k jqkj2 � 1. If all the coefécients
qk are the same, the symmetric state appears, which is called
the W state in the quantum theory of information:

Wn � �j10:::0i � j01:::0i � :::� j00:::1i�=
���
n
p

, (27)

States of the type Zn(1) can appear during the additional
resonance interaction of impurities with a high-power
electromagnetic wave. Because the dipole moments of
transitions between the electronic levels with energies e1
and e2 are small, the intensity of the electromagnetic wave
can be selected so that only one of n impurity atoms can
absorb a photon. As a result, one excitation is distributed
between all impurities in the nanocrystal and superposition
(26) appears.

Consider the dynamics of Zn(1) in a vacuum thermostat
by assuming that N � 0 in (21). In this case, Eqn (23) takes
the form
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_~ra � ÿjwj2l~ra;
(28)

l~ra � ~raR�Rÿ ÿ Rÿ~raR�+H. c.

By using this equation, we énd that the evolution of the
density matrix ~r(0)! ~r(t) for the Zn(1) state is determined
by the expression

jZnihZnj ! �Q=
���
n
p ��exp�ÿnjwj2t� ÿ 1�jWnihZnj

+H. c.+ �jQj2=n��exp�ÿnjwj2t� ÿ 1�2

� jWnihWnj � �jQj2=n��1ÿ exp�ÿ2njwj2t��

� j0ih0j � jZnihZnj;

where Q �Pk qk. This means that, under the condition

X
k

qk � 0 (29)

the Zn(1) states do not decay unlike the decaying Wn:
Wn ! j00:::0i. This behaviour can be explained based on
the symmetry considerations. The matter is that vectors
Zn(1) under conditions (7) are reduced to the Dicke states,
and therefore their space can be divided into irreducible
subspaces with different types of symmetry. In this case,
Zn(1) and Wn belong to different subspaces. For collective
relaxation processes, which are described by Eqn (23), the
permutation operator of particles commutes with G.
Therefore, the symmetry of the state with respect to
particle permutation is conserved and different subspaces
are not mixed. This means that the decay Wn ! j00:::0i is
possible because both states are totally symmetric and
belong to the same subspace; at the same time, the decay of
Zn(1) to the j00:::0i state is impossible. The insensitivity of
Zn(1) to the collective decay is of interest for problems in
which the integrity of a quantum state is important. Thus,
by coding information with the help of Zn(1) states, these
states can be stored without decay in a collective thermo-
stat. This can be used in a quantum memory based on
impurity ions or atoms in nanocrystals.

Let us discuss the factors neglected in our model, which
can affect the lifetime of state (26) and lead to its decay with
time. We derived the kinetic equation by assuming that the
electronic states of impurity atoms are characterised by the
same transition frequency. This requires the symmetric
arrangement of impurity atoms in a nanocrystal because
in this case the impurities will interact with the environment
in the same way, which will provide the needed equality of
transition frequencies. Otherwise the transition frequencies
of impurity atoms will be slightly different, which will break
the symmetry properties of state (26) and will result in its
decay. The decay rate of state (26) can be probably
estimated by using the results obtained in paper [20] where
the temporal dynamics of the entanglement of excited and
unexcited atoms in a collective thermostat was studied. It
was shown that a steady state in the case of small detunings
decays slowly compared to the stationary entanglement time
of the initially factorised states. A similar picture can be also
expected for many impurity atoms in a nanocrystal.

Another factor is the dipole ë dipole interaction of
impurity atoms. On the one hand, we neglected it by
assuming that the dipole moments of transitions between
Stark sublevels are very small. On the other hand, because
the insensitivity of states (26) to decoherence is caused by
the different quantum dynamics of the subspaces of states of
the atomic system, which are symmetric or antisymmetric
with respect to the permutation of particles, and the dipole ë
dipole interaction operator is symmetric with respect to the
permutation of particles (as the main collective operators in
our model), the stationary entangled states appearing in this
case should be also stable (in the sense deéned in [20]) with
respect to the dipole ë dipole interaction of atoms. However,
if the dipole ë dipole interaction of impurity atoms and
atoms of a nanocrystal or a matrix is considerable, this
will give rise to an independent single-frequency relaxation
channel, which will destroy the properties of a collective
thermostat and will determine the lifetime of quantum
correlations of (26). Then, the insensitivity to decoherence
can exist only within the time interval shorter than the decay
time in this independent channel.

5. Conclusions

Thus, our study has shown that the collective relaxation of
the electronic states of impurity atoms can be realised in
nanoparticles. The constructed entangled states of impurity
atoms, which are insensitive to decoherence, can be used in
various problems of quantum information, making these
nanocrystals promising for applications in quantum-infor-
mation devices.
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