
Abstract. The features of propagation of femtosecond laser
pulses in the atmosphere are studied by numerical methods.
The type of propagation is determined by the relation between
processes of multiphoton ionisation and multiple small-scale
self-focusing (élamentation). It is found that the process
develops step by step and élamentation occurs without the
pulse energy loss until the intensity threshold is achieved.
After the achievement of the threshold, ionisation losses
appear which are accompanied by the defocusing action of the
electron plasma resulting in the intensity decrease. When the
intensity becomes lower than the ionisation threshold, self-
focusing can again appear. The characteristic features of the
énal stage of élamentation can be explained by the
Bespalov ëTalanov theory. By using the time-averaged
equations and parallel methods, a program complex is
developed for qualitative simulations of the propagation of
high-power laser pulses over long distances.

Keywords: femtosecond pulses, élamentation, interaction of high-
power radiation with a medium.

1. Introduction

Among the possible propagation regimes of laser radiation
in a nonlinear medium, the propagation of a high-power
femtosecond pulse in air attracts considerable interest at
present and can be used for remote sensing, in micro-
photonics, and for remote control of an electric discharge
[1]. The érst experiments on the propagation of femto-
second laser pulses over long distances were performed in
the mid-1990s [2 ë 4]. In these experiments, IR lasers were
used which emitted � 100 fs pulses with power exceeding
the critical value, i.e., the power sufécient for pulse self-
focusing [5]. The decomposition of the laser beam into
narrow élaments of length of a few meters was observed,
the number of produced élaments being dependent on the
pulse power.

In this paper, we describe in detail the élamentation
process: the reasons for its appearance, the development and
its inêuence on the laser pulse proéle. Our model takes into

account the effect of ionisation, which allows us to limit the
characteristic spatial scale. The pulse intensity increases
during self-focusing and its duration decreases, however,
no collapse occurs due to the defocusing action of the
electron plasma produced upon multiphoton ionisation of
air molecules. As a result, the maximum radiation intensity
in a élament does not exceed 1014 W cmÿ2 for IR pulses. In
the region of the maximum intensity, a focus moving along
the propagation direction of the pulse is observed. The trace
of the focus is called a élament and the process of formation
of such structures is called élamentation.

It was shown in [6] that the power of a solitary pulse
monotonically decreases down to the critical value. The
pulse energy (and power) decreases due to multiphoton
ionisation, and the initial shape of the pulse is such that the
peak intensity above the threshold is preserved until the
achievement of the critical power.

The speciéc features of élamentation are caused by the
Bespalov ëTalanov instability, which gives rise to small-
scale self-focusing, and by the defocusing action of the
electron plasma produced upon multiphoton ionisation.
Self-focusing begins when the beam power exceeds the
critical value [5], whereas multiphoton ionisation begins
when the intensity exceeds the threshold. Our study showed
that until the maximum pulse intensity achieves the thresh-
old value, no energy losses occur and the pulse power does
not change. Only after the achievement of the threshold
intensity, multiphoton ionisation appears and the pulse
power and intensity decrease and multiphoton ionisation
ceases. As a result, the élamentation process ends, although
the pulse power still exceeds the critical value. This circum-
stance demonstrates the inêuence of the pulse spectrum
considered in the Bespalov ëTalanov theory on the type of
élamentation development. Thus, the type of the process
substantially depends on the features of the spatial intensity
distribution in the pulse. A distinct feature of our paper is
that we consider the inêuence of the pulse spectrum on the
evolution of élaments. In particular, we investigated in
detail the evolution of a solitary pulse at the initial stage of
the process.

At present four institutes in France and Germany are
engaged in the Teramobile project on the experimental and
numerical investigation of the propagation of high-power
femtosecond pulses. In experiments with terawatt pulses, a
few tens of élaments were observed which formed clusters of
length exceeding ten metres. The numerical simulation of
the real experimental problem can be performed only by
using parallel calculations.

The élamentation process was mathematically simulated
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in many papers [6 ë 9]. Usually, a nonstationary three-
dimensional system of equations for the slowly varying
light-éeld amplitude was considered. To compare exper-
imental data with the results of calculations taking into
account small-scale perturbations, it is necessary to use
approximately 1016 calculation cells. This requires a long
time for the numerical solution of equations at long
distances. To study the formation of élaments and their
ordering to clusters qualitatively, a simpliéed physical model
is used for calculating the propagation of a high-power laser
pulse over long distances for an acceptable time by applying
the method of parallel calculations.

2. Physical model and its averaging

The propagation of short pulses in a medium with the cubic
nonlinearity is usually described by the system of equations
[6] consisting of the nonlinear Schr�odinger equation (NSE)
for the electric-éeld envelope E(X,Y,Z, t) moving at the
group velocity vg (here, Z is the coordinate along which the
pulse propagates and XY is the plane perpendicular to the
pulse propagation direction),
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and the equation describing the Drude model [10] for the
local plasma density r(X,Y,Z, t),
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where k0 � 2p=l0 is the central wave number (l0 � 800 nm
is the central wavelength); n2 � 3:1� 10ÿ19 cm2 Wÿ1 is the
nonlinear refractive index caused by the Kerr effect; k 00 �
0.2 fs2 cmÿ1 is the group-velocity-dispersion coefécient;
tK � 70 fs is the relaxation time; rcr � 1:8� 1021 cmÿ3 is
the critical plasma density; b �K� � 4:25� 10ÿ98 cm13 Wÿ7 is
the multiphoton absorption coefécient; K � 8 is the number
of photons required for the ionisation of oxygen molecules
having a higher ionisation potential than nitrogen mole-
cules for which K � 10; s � 5:44� 10ÿ20 cm2 is the
coefécient of cascade ionisation and plasma absorption
in the cross section for inverse bremsstrahlung; sK �
2:88� 10ÿ99 cm16 sÿ1 Wÿ8 is the multiphoton ionisation
coefécient; Ui � 12:1 eV is the ionisation potential of
oxygen molecules; rnt � 5:4� 1018 cmÿ3 is the effective
density of neutral molecules equal to 20% of the standard
density rat � 2:7� 1019 cmÿ3. The parameter y for simu-
lating femtosecond pulses is set equal to 0.5, which allows
us to take into account the term responsible for polarisation
of molecules.

To reduce the calculation time, we can study qualita-
tively the propagation of high-power pulses in real laser
systems by using the algorithm for simplifying the model
proposed in [6]. First, because the inêuence of inverse

bremsstrahlung for pulses shorter than a picosecond is
negligible, we set s � 0 (the recombination of electrons
in the kinetic equation for the local plasma density is
neglected). We will also neglect the time dependence of
the second derivative q 2E=qt 2 because the complex ampli-
tude of the light wave slowly varies with time. Second, by
assuming that intense light éelds have Gaussian temporal
proéles, we will seek the solution of the system of equations
in the form of the product

E�X;Y;Z; t� � c�X;Y;Z� exp
�
ÿ �tÿ tc�2

T 2

�
,

where tc(Z) is the temporal layer where a peak with the
maximal intensity and the half-width T is formed, which is
preserved during the entire propagation time [6].

Taking into account the assumptions made above, we
énd érst r from Eqn (1c):
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Then, we substitute r and expression (1b) into (1a),
multiply the obtained equation by exp�ÿ(tÿ tc)

2=T 2 � and
integrate over the entire temporal domain, i.e. from ÿ1 to
�1. After some simpliécations, we obtain
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In [11], the inêuence of Raman scattering on a nonlinear
response in air at y � 1=2 was demonstrated. Let us assume
that T � 0:1tp (where tp is the pulse duration) for the
élamentation process in the presence of multiphoton
ionisation, which reduces the pulse duration. Let us
introduce dimensionless variables

z � Z
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the éeld
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where v � 0:154 for the parameters tp and T selected above.
Equations of the NSE type can be numerically simulated

by various methods which reduce the calculation time by
preserving the required calculation accuracy.

The spectral method allows one to use the fast Fourier
transform algorithm, but it can be realised only on uniform
networks. The advantage of the spectral method is obvious
only for simple solutions of the moving soliton type.

The splitting over processes is performed as follows: the
solution of Eqn (4) on the interval Dz is replaced by the
successive solution of two-dimensional diffraction problems
in a linear medium érst in planes parallel to the plane xz and
then in planes parallel to the plane yz. Then, the nonlinear
phase shift of the light éeld is calculated on the same interval
Dz in the absence of diffraction. For the schemes of splitting
over processes, the problem of conservation is important,
which requires a separate discussion.

In this paper, a direct method for solving Eqn (4) was
used, i.e. the implicit conservative difference scheme was
constructed and then the Newton method was applied. The
propagation of a laser pulse is usually simulated by using the
initial pulse proéle in the form
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p
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�
ÿ
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�N
w 2N

0

�
, (5)

where w0 and
����
I0

p
are the dimensionless initial width and

amplitude of the pulse. The power N is usually set equal to
unity (Gaussian pulse) or two (super-Gaussian pulse).

3. Study of the nonlinear stage
of the Bespalov ëTalanov instability

The theory of formation of the élament structure of a light
beam due to self-focusing was érst developed by Bespalov
and Talanov in 1966 [12]. They showed that the amplitu-
de ë phase perturbations of a plane electromagnetic wave in
a nonlinear dielectric lead to its decay into individual beams
having different self-focusing lengths depending on the scale
of the initial perturbation. To énd this dependence, we
study the solution of the NSE in the form of a plane wave

A � �A0 � a� exp�ijA0j2z�,

where A0 � const is the unperturbed wave amplitude and
jaj5A0. By studying the stability problem in the linear
approximation, we have

a � exp�ÿik?r? ÿ ihz�,
where k? and r? are the projections of the wave vector k
and radius vector r on the plane xy. Then, the development

of perturbations can be determined depending on the value
of k? (Fig. 1).

The numerical simulation of the results obtained by
Bespalov and Talanov presents no problems but is impor-
tant for substantiating some features of the pulse
propagation. Due to the fundamental nature of these
results, we consider once more in detail the numerical
simulation of the Bespalov ëTalanov instability, in partic-
ular, the simulation of the nonlinear stage of the process.

Consider the one-dimensional case of Eqn (4) by neglect-
ing ionisation effects. The initial perturbation is speciéed in
the form

A�x; 0� � 20� 2 cos�k?x�,

i.e. A0 � 20. Calculations were performed for different
values of k? and completely conérmed the theory presented
above. Figure 2 shows the behaviour of the maximum value
of the modulus of the solution maxx jA(x, z)j for different
regimes. If the wave-vector modulus jk?j � k? is large
enough (i.e. k? >

���
2
p

A0), the solution is stable and
periodically changes [curve ( 1 ) in Fig. 2]. The value
k? �

���
2
p

A0 is the stability boundary, and the solution
for such k? does not change along z [curve ( 2 )]. If
k? <

���
2
p

A0, the solution increases exponentially with z. In
this case, it remains harmonic in x at the initial stage. As z
increases, the solution is no longer harmonic in x (Figs 3a,
b). Thus, as expected, only the initial stages of the
instability correspond to the exponential increase [curves
( 3 ë 5 ) in Fig. 2]. Curve ( 4 ) in Fig. 2 corresponds to the
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0
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Figure 1. Dependence of the type of perturbations on k?.
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Figure 2. Dependences of the maximum value of the modulus
max x jA�x; z�j of the solution on the distance z for k? �
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3
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=2�1=2�
A0 < A0 ( 5 ). The vertical bars on curves ( 4 ) and ( 5 ) correspond to
distances z for which the distributions jA�x; z�j are presented in Figs 3a
and b, respectively.
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fastest development of instability, when the increment of
unstable perturbations is maximal (h � iA 2

0 ).
Figures 3a, b show the distributions of perturbations in

the initial state for z � 0 and other z > 0 corresponding to
the vertical bars on curves ( 4 ) and ( 5 ) in Fig. 2. In Fig. 3a
the minimal distance on which the instability develops is
0.016, and in Fig. 3b this distance is 0.021 (perturbations
develop not so rapidly).

The picture of the development of periodic perturbations
described above is also preserved as a whole in the two-
dimensional case [13]. Note that the Bespalov ëTalanov
theory concerns only the initial stage of the development of
perturbations. Upon simulation of stable periodic pertur-
bations at larger distances, a considerable increase in the
amplitude also occurs. Figure 3c presents the distribution of
stable perturbations according the Bespalov ëTalanov
theory (k? �

���
3
p

A0 >
���
2
p

A0), but unlike Fig. 3a, simulation
was performed at larger distances. The type of the solution
considerable changes and numerous rapidly increasing
maxima appear, i.e. stable modes at the nonlinear stage
can give rise to unstable structures (élaments).

Aside from the harmonic perturbation, we also consid-
ered the evolution of a single perturbation. It is known [5]

that élamentation develops at a certain power of the beam.
However, the dynamics of this process was not considered in
most papers. It is shown in our paper that this process
depends considerably not only on the pulse power but also
on its spectrum. The perturbation was described by a
Gaussian beam, i.e. the initial condition had the form

A�r; 0� � A0 � a0 exp

�
ÿ r 2

w 2
0

�
.

In this case, the solution represents a solitary maximum up
to a certain distance z: the subsequent decay of the
maximum is not considered. If the pulse width w0 is small,
this means that the beam has a broad spectrum, and if the
fraction of low-frequency components (which exponentially
increase according to the Bespalov ëTalanov theory) is
small, the amplitude of such a beam at the linear stage of
instability will not increase. Under such initial conditions,
the beam érst broadens and its amplitude decreases. Indeed,
érst the widths of beams with w0 � 0:05, 0.08, and 0.11
increase (Fig. 4b) and their amplitudes decrease (Fig. 4a).

To study the solitary maximum, we write the Fourier
transform for the function A(r, 0) � A0 exp (ÿ r 2=w 2

0 ):
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Figure 3. Distributions of the amplitudes jAj for z=0 ( 1 ) and z > 0 ( 2 ) for k? � A0 (corresponds to the maximum increment of the development of
perturbations) (a) k? � �1ÿ

���
3
p

=2�1=2A0 < A0 (b), and k? �
���
3
p

A0 >
���
2
p

A0 (c). The development of instability in Fig. 3c occurs in the nonlinear
phase.
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is the expansion of the initial perturbation into the
superposition of the considered waves. The smaller w0,
the broader the signal spectrum and the smaller its fraction
in the region of small k [here, k � (k 2

x � k 2
y )

1=2], i.e. for
small w0 the signal will increase faster than for large w0.
However, such an initial perturbation is unstable as a whole
because the values of k satisfying the Bespalov ëTalanov
condition always exist.

If the initial width of the beam is large enough, the beam
amplitude increases and its width decreases because the
fraction of the low-frequency growing components of the
spectrum is large. For Gaussian beams, the spectral dis-
tribution is also Gaussian, the greater part of the spectrum
being located in the region k4 2=w0. For this part of the
spectrum to satisfy the Bespalov ëTalanov conditions, the
inequality 2=w0 4

���
2
p

A0 should be fulélled, i.e. w0 5���
2
p

=A0. In the given case, w0 > 0:14 because A0 � 10.
Our calculations showed that up to w0 � 0:17 the beam
amplitude érst decreases and its width increases. Further, at
the nonlinear stage such beams will behave as broader
beams, but at larger z.

During the development of instability, the parts of the
spectrum where k >

���
2
p

A0 are suppressed and the beam
broadens, i.e. the spectrum with small k narrows down
(Fig. 4, w0 < 0:2). Thus, as the beam broadens, the high-

frequency components satisfying the stability condition
decay, thereby increasing the contribution to the decay
of low-frequency (unstable) components (this occurs due to
the conservation of the érst integral corresponding to the
total beam power).

However, important is the dependence of the spectrum
not only on the instability boundary but also on the
maximum increment region. As w0 is further increased,
the spectrum continues to narrow down and, hence, the
increasing number of the wave numbers k will be smaller
than A0, which corresponds to a slower development of
instability (Fig. 4, w0 � 0:2 and 0.4). In this case, stable
components are absent and, therefore, the beam is not
broadened.

4. Calculation for a single Gaussian pulse

Consider the solutions of Eqn (4) taking into account
multiphoton ionisation. The results will be often interpreted
by using dimensionless parameters.

Figure 5 shows the dependences of power P on the
distance z for the high initial power of a Gaussian beam
close to the threshold (or maximal) and the power slightly
exceeding the critical power Pcr. Note that the propagation
of laser pulses was simulated in many papers by character-
ising them only by their power as the parameter determining
the type of propagation. However, this can be sometimes
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Figure 4. Changes in the éeld amplitude jAj on the axis (a) and the width w of the beam proéle (b) or A0 � 10 and a0 � 1 and different values of w0.
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Figure 5. Dependence of the power P on the distance z for different
initial beam powers.
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insufécient for revealing in full measure the pulse prop-
agation properties, and the initial width and maximum
intensity of the pulse should be also taken into account. The
type of propagation of a laser pulse can considerably depend
on the combination of these parameters at the same critical
power.

Figure 6 presents the dependences of the power and
maximum amplitude

���������
Imax

p
on the distance z for Gaussian

pulses with the same initial amplitude
����
I0

p
� 0:25 and

different initial widths w0. One can see (Fig. 6b) that the
rate of increase in the peak intensity depends not only on the
pulse power (for P < Pcr, defocusing occurs) but also on its
width.

The increase of the pulse intensity in the problem under
study is limited by plasma effects and, as follows from
Fig. 6, the maximum intensity does not exceed unity. The
dimensional maximum intensity is �7� 1013 W cmÿ2, in
accordance with experimental data. As the radiation inten-
sity increases, the last term in Eqn (4) responsible for
multiphoton absorption begins to play an increasing role.
Thus, as follows from Fig. 6a the pulse intensity drastically
decreases. At the same time, the inêuence of another term in
this equation responsible for multiphoton ionisation
increases. This term reduces the action of the Kerr effect.
Due to absorption of radiation during multiphoton ionisa-
tion and defocusing, the peak intensity of the pulse
decreases, resulting in the ceasing of multiphoton ionisation
and a constant value of the power integral up to the next
instant of the intensity increase.

The Hamiltonian

H �
� � �

jH?Aj2 ÿ
jAj4
2

�
dxdy

changes its sign to positive by the time of the establishment
of a constant power level (Fig. 6a), which is the necessary
condition for the beam divergence on the average [14].
However, the presence of divergence does not contradict the
fact that an internal part of the beam can be focused. The
further development of the beam proéle can be analysed by
using the Bespalov ëTalanov theory. For this purpose, we
consider the spectrum of the spatial distribution of the éeld
A at a large enough distance z (Fig. 7).

Recall [12] that the instability increment plays an
important role only in the case if the pulse spectrum
contains harmonics that are smaller than the average value
of the distribution Rec, which is almost zero for large z.
Therefore, from the point of view of the Bespalov ëTalanov
instability, the further development of unstable perturba-
tions is impossible.

To explain the stepwise decrease in the pulse power, we
consider in more detail the stages of self-focusing of a
Gaussian pulse described in [13]. As mentioned above, the
Gaussian pulse self-focusing requires the concentration of
low frequencies of the spectrum. If the beam width is large,
the fraction of low-frequency components is also large and
self-focusing occurs without the initial broadening of the
pulse, unlike the case of less broad pulses. As a result, a
rather steep intensity `column' is formed surrounded by a
background produced by a defocused part of the initial
pulse (Fig. 8a). However, once the peak intensity achieves
the threshold value, it begins to decrease due to ionisation
losses and the defocusing action of the electron plasma
produced upon multiphoton ionisation. The érst regions
subjected to the action are regions of large gradients. In the
case under study, the intensity decreases faster at the edge of
the `column' (Fig. 8b).

As the intensity further decreases, the power outêow
from the centre meets the replenishment regions and a quasi-
stationary annular structure is formed (Fig. 8c). Figure 9
(corresponding to Fig. 8b) shows power êows determined
by the phase gradient j(x, y) � arctan (ReA=ImA). The
three structures can be distinguished in the égure: the
central near-axis proéle and two annular structures. The
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Figure 6. Dependences of the beam power (a) and peak intensity (b) on the distance z for
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p
� 0:25 for different initial pulse widths w0.

o

Figure 7. Spatial distribution spectrum of the éeld A.
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power êow inside these structures is directed to the centre.
The structures are separated by the regions with the
minimum intensity (dark regions), where the power êow
is directed from the centre.

When a certain power is concentrated in the annular
structure after a decrease of the intensity `column', the
conditions are produced for a repeated increase of the
`column'. In the case under study, such a condition is
the distribution shape (Fig. 8d) ë a Gaussian proéle with
the power above the critical value and the half-width

sufécient for the development of self-focusing. Thus, the
intensity érst increases, the annular structure is formed, and
after the decrease in the intensity the proéle is formed which
experiences self-focusing again. As a result, the pulse power
decreases stepwise (Fig. 6a).

The type of variation in power presented in Fig. 5 can be
explained by the absence of the background of low-
frequency spectral components around the pulse. Therefore,
it is necessary to begin the simulation of pulse propagation
from the time of laser pulse entering into a nonlinear
medium rather than from the self-focusing development
stage. Note also that the establishment of a constant power
level (Fig. 6a) only means that this level is preserved up to
some value of z because, as discussed above, élamentation
can occur at large distances in the case of stable perturba-
tions (Fig. 3c).

Figure 10 shows the decrease in the pulse power P and
increase in its peak intensity Imax at the pulse propagation
length z. One can see that absorption begins at the threshold
intensity Ith � 0:7. According to the estimate performed in
[15], the ionisation of air becomes signiécant at the intensity
of 4:5� 1013 W cmÿ2, which corresponds to the dimension-
less threshold found. As the pulse power decreases, the
power loss and length at which absorption is observed
decrease.

Let us write the equation for the dependence of the pulse
power on the coordinate z. For this purpose, we multiply
Eqn (4) by A� and add the result with the equation complex
conjugate to (4) and multiplied by A. By integrating over the
entire transverse plane xy, we obtain
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Figure 9. Phase gradient of the complex quantity A�x; y�. Directions of
the power êuxes are indicated by the arrows.
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qP
qz
� q

qz

�
jAj2dxdy � ÿ2v

�
jAj2Kdxdy � ÿ2vKÿ1=NP,

Pcr � P0 exp�ÿ2vKÿ1=NDzd� � P0�1ÿ 2vKÿ1=NDzd�.

The approximate equality was obtained by using the
expression for the initial shape of the pulse. Thus, we
can estimate the length of the dissipative region as

Dzd �
K 1=N

2v

�
1ÿ Pcr

P0

�
,

which tends to � 0:25 for N! 1 and P0 4Pcr, which is
conérmed by the results of calculations presented above. In
the dimensional units, we have Dzd� 0:35m.

The stepwise variation of the pulse power also depends
on its initial width. Figure 11 shows variations in the pulse
power for pulses with the same initial power.

5. Calculation for two Gaussian pulses

We have already considered the mutual inêuence of two
Gaussian pulses in paper [13]. This inêuence becomes more
noticeable in the case of multiphoton ionisation. The
simulation of the mutual inêuence of two pulses performed

by the research group headed by Kandidov was reported in
[16], where the conditions restricting the power of pulses
and the distance between them at which the interaction
between pulses is possible were obtained. However, as in
many other papers, the authors of [16] did not give due
attention to the inêuence of the relation between pulse
widths and intensities on the features of the phenomenon
studied, although these relations can be considerably
different at the same powers. In addition, the interaction
between the high-intensity regions of pulses was not clearly
demonstrated and the question about the time of beginning
of the interaction was not considered [16].

Let us present two examples of calculations of two
Gaussian proéles demonstrating how the presence of
dissipation inêuences the type of variation of high-intensity
regions. We considered two identical Gaussian perturba-
tions with the initial width w0 � 5 and the amplitude����

I0
p

� 0:9 separated by the distance d � 15 between their
centres (Fig. 12). One can see that in the conservative case
(Fig. 12a), i.e. for v � 0 in (4), the pulse power is con-
centrated and remains constant in the middle between the
two perturbations. In the presence of dissipation (v � 0:154,
Fig. 12b), each of the two pulses begins to lose its power,
narrowing simultaneously, and the instant of their merging
is located slightly farther over z than in the conservative
case.

The interaction between élaments in a broad pulse with
power greatly exceeding the critical value is more compli-
cated. Figure 13 shows qualitatively the power overêow
from a developed élament with the maximum intensity to
the region where a new élament is being produced.

6. Calculation for a high-power laser pulse

The development of parallel calculation methods [17], as a
rule, makes it possible to calculate real physical systems. In
the case of the propagation of a laser pulse over large
distances, the use of parallel technologies is also justiéed.
The aim of our paper is to prove the possibility of such a
calculation.
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Figure 10. Dependences of the intensity Imax and power P on the dis-
tance z.
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Figure 11. Dependences of the power on z for different initial pulse
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Figure 12. High-intensity regions for two identical Gaussian perturba-
tions with w0 � 5 and

����
I0

p
� 0:9 separated by the distance d � 15

between their centres in the absence of dissipation (v � 0) (a) and in its
presence (v � 0:154) (b). The arrows indicate the propagation direction
of the pulse.

832 A.D. Balashov, A.Kh. Pergament



The power of a real laser pulse achieved a few terawatts
and the pulse width is several centimetres. The pulse proéle
in real laser systems is usually represented by a super-
Gaussian function, i.e. the exponent N � 2 in expression (5).
The input proéle of a real laser beam also contains noise.
We reproduced a random éeld of amplitude êuctuations by
the spectral method [18] based on the summation of the
Fourier harmonics of the spatial spectrum.

The development of small-scale focusing [12] resulting in
the decay of the proéle symmetry is classically explained by
the presence of amplitude êuctuations of the initial dis-
tribution. Due to small-scale self-focusing and the
achievement of the multiphoton ionisation by the ampli-
tudes of some êuctuations, multiple élamentation begins to
develop in a high-power laser pulse. During this process,
multiple connections are formed between individual
élaments, resulting in the absorption and creation of new
élaments. Such a chaotic development is accompanied by
the formation of regions in laser pulses where élamentation
occurs continuously due to the absorption of energy from
adjacent regions. Such regions are called clusters [1], and the
experimental data (Fig. 14) are explained by their presence.

We will estimate the required dimensions of the calcu-
lation network from the following experimental conditions
and data (Teramobile project [6]):

(i) The élamentation process is studied by using a high-
power (100 GWë3 TW) laser pulse with the initial width
achieving 2 cm;

(ii) the width of élaments formed in experiments as a

small-scale effect is constant and amounts to 100 ë 150 mm,
while the intensity at the élament focus can exceed the
background intensity by tens of times;

(iii) the observed propagation length of the pulse is from
tens to hundreds of metres.

Thus, the side of the square of the calculation network
can achieve 10 cm to avoid a considerable inêuence of the
network boundaries. The side of a cell should not exceed
10 ë 15 mm in order to describe adequately small-scale
effects. Therefore, the number of cells in the calculation
region (xy plane) can achieve 104 � 104 � 108. A step in z
decreases inversely proportional to the maximum intensity
Imax, thereby providing not only stability but also the
required accuracy of the solution. Due to a large dimension-
ality of the system of linear equations being solved and the
necessity of numerical simulation of the propagation of a
femtosecond pulse over large distances, we used a parallel
calculation complex.

As an example we present the calculation for a pulse
with an average power of 62Pcr and an initial width of 6
mm. The calculation region is a square with the side of
length 2 cm. The Gaussian noise in the initial proéle is
speciéed by the algorithm described above. The calculation
was performed by using the 2048� 2048 network and the
parallel calculation complex at M.V. Keldysh Applied
Mathematics Institute, RAS.

The results of calculations of the intensity (Figs 15 and
16) and power (Fig. 17) of the pulse coincide with those
obtained in the Teramobile project [6]. Moreover, the
calculation rates of the parallel program complex developed
for our work according to the Teramobile project are also
comparable with those obtained in [6] despite the principle
difference in the approach to the numerical solution of the
problem. The approximation methods and characteristics of
the parallel algorithm that we used are discussed in detail in
[19]. As a rule, to obtain a high density of élaments, an
elliptic distribution of the initial pulse proéle is used in
practice.
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7. Conclusions

We have studied the élamentation process by numerical
methods and developed the efécient algorithms for
calculating élamentation in real laser systems. The sym-
metric difference schemes having the conservative nature
were used and parallel programs for calculating such
problems were developed.

It has been shown that the development of nonlinearity
occurs stepwise and is determined by the threshold intensity
5� 1013 W cmÿ2 at which the ionisation of air becomes
considerable. The nature of the process is determined by the
relation between multiphoton ionisation and small-scale
focusing. Until the intensity achieves the threshold, the
light beam does not lose its energy and self-focusing takes
place. When the threshold is achieved, the energy losses
appear due to ionisation and defocusing produced by the
electron plasma, resulting in the intensity decrease. When
the intensity becomes lower than the threshold value, self-
focusing can begin again. Thus, the process has the stepwise
nature. The process ceases when the spectrum of the pulse
becomes such that the further development of instability in
the linear approximation is impossible because the stability
condition is fulélled according to the Bespalov ëTalanov
criterion. However, the possibility of the regeneration of this
process during the propagation of pulses over large dis-
tances has not been proved.

In the case of the initial Gaussian beam with a high
intensity close to the threshold (or maximal) and power
slightly exceeding the critical value, the stepwise variation in
the intensity of the beam during its propagation was not
observed.
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