
Abstract. It is shown that basic properties of the nonlinear
response of high-temperature superconductors (HTSCs)
observed in femtosecond and picosecond pump ë probe experi-
ments at high and low pump levels in various variants of the
pump ë probe spectroscopy, including one- and two-photon
excited-state probing, can be interpreted by using two
assumptions. The spectral and temperature properties of
the HTSC response at low pump levels can be explained
taking into account the contributions from interband
electronic transitions to the dielectric constant. At the
same time, drastic variations in the HTSC response kinetics
(temporal features) observed at high pump levels (for a typical
pump pulse energy of � 10ÿ7 J in a focal spot of diameter
150 lm) can be explained by assuming the existence of a
`frozen' (metastable) energy gap in the electronic spectrum of
a HTSC. In this case, all the conditions required for the
interpretation of a drastic decrease in the relaxation rate of a
nonlinear response (degeneracy) are realised due to the
speciéc distribution of the electronic state density immedi-
ately after the formation of the energy gap in the electronic
spectrum of the HTSC.

Keywords: nonlinear HTSC spectroscopy, spectral, temporal and
temperature features of a nonlinear response, metastable energy
gap, interband electronic transitions, degeneracy of electronic
states.

1. Introduction

The development of methods for generating ultrashort laser
pulses has stimulated the studies of processes of ultrafast
relaxation of photoexcitations in metals [1 ë 11] and low-
temperature [12 ë 16] and high-temperature [17 ë 34] super-
conductors (LTSC and HTSC). Such experiments attract
interest, in particular, in connection with the outlook for
elaborating ultrafast and supersensitive HTSC bolometers
[17, 23]. However, it is more important that such inves-
tigations can give new information shedding light on the
physics of the high-temperature superconductivity phenom-
enon itself.

Almost all experiments of this type use the classical
version of the pump ëprobe spectroscopy (Fig. 1) for study-
ing the dependence of a change DR in the reêection
coefécient [and (or) transmission coefécient DT ] of a sample
on the delay time t of a short probe pulse with respect to the
arrival time of a short pump pulse (impact excitation) [18 ë
22]. The obtained data are usually processed by means of
standard expression [34]
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where A(T ) is the temperature-dependent transient res-
ponse amplitude; H(t) is the Heaviside step function; and
tth and tr are the thermalisation and relaxation times of
optically excited carriers (see below). Other methods of
nonlinear spectroscopy such as stationary or transient
modiécations of biharmonic pumping (BP) [9, 25, 26],
degenerate four-photon spectroscopy (DFPS) [10, 11]
(Fig. 1), terahertz spectroscopy [27 ë 29] or hybrid methods
(optical excitation and recording of an electric response)
[16, 17, 23, 24] are used rather rarely. In all these cases,
other (most often spectral) properties of the nonlinear
response are mainly studied [35 ë 37]. However, the results
of these experiments are also very important because all the
data obtained must be interpreted within the framework of
a uniéed model.

It was assumed until recently that the basic properties of
processes proceeding under transient conditions are well
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Figure 1. Scheme of the experiment with one-photon (spectrochrono-
graphy) and two-photon (BP and DFPS methods) probing of the kinetics
of variations induced by the pump pulse in a HTSC. Either one probe
pulse 1 (whose transmission is measured with a PD-1 photodetector) or
two probe pulses 1 and 2 coincident in time are used (the self-diffraction
signal of probe pulses 1 and 2 is detected with a PD-2 photodetector).



known. After impact excitation, free carriers are érst
thermalised rapidly (tth < 10 fs for the `hot' electron energy
Ee � 1 eV [38, 39]) during electron ë electron (e ë e) scatter-
ing. In this case, their energy distribution function f (Ee)
returns to the Fermi ëDirac distribution fF(Ee;Te) with the
electron energy Te, which differs both from the initial
temperature T0 of a sample and the temperature Tp of
its phonon subsystem (lattice) [40]. However, it was found
that the thermalisation time was tth � 0:5 ps even in
elementary metals (Cu, Ag, Au, etc.) [5, 6, 40], which
was attributed to restrictions imposed by the Fermi ëDirac
statistics on the space of electronic states during e ë e
scattering. Moreover, the experiment did not reveal the
dependence tth / T ÿ2 predicted theoretically. This was
explained by the fact that the sample temperature in
experiments was not low enough [1 ë 7, 41].

At the second stage, thermalised carriers are cooled (Te

decreases) due to electron ë phonon (e ë p) scattering during
the time tr. This Te ! Tp process was érst described within
the framework of the so-called two-temperature model [42],
which predicts for elementary metals the dependences tr / T
for T5TD=5 and tr / T ÿ3 for T5TD=5, where TD is the
Debye temperature [7, 41, 43 ë 45]. However, the experi-
ments did not reveal any substantial increase in tr in the
region T5TD=5, which was again explained by the
restrictions imposed on the space of electronic states during
low-temperature scattering [1 ë 7]. This interpretation was
conérmed, at érst glance, by experiments with LTSCs and
HTSCs [13 ë 15, 17, 19, 30] in which the values of tth and tr
drastically increased in the vicinity of the superconducting

phase-transition point (T0 ' Tc). It is such a behaviour of
tth and tr that was predicted theoretically [12, 46 ë 48] beca-
use simultaneously with the formation of the energy (super-
conducting) gap in the electronic spectrum, the correspond-
ing restrictions also become considerably more rigid.

Experiments showed that the value of tr in LTSCs
changed approximately by éve times when T0 was varied
from 0.980 to 0:995Tc [15, 49 ë 51]. This is consistent in
principle with theoretical predictions [15, 51], according to
which at low temperatures and a low excitation level,
tr / exp (D=kBTc), where D is the energy gap in the elect-
ronic spectrum and kB is the Boltzmann constant. The value
of tr in a HTSC changed somewhat smaller on passing the
point T0 ' Tc (Fig. 2a), approximately by a factor of 2 ë 3
[52]. It was found that at a considerable distance from the
peak of tr (point T0 ' Tc), the relaxation time again
increased with decreasing T0 [31, 33], the increase being
described by the law tr / T ÿ3 [33, 53]. No reasonable
explanation of this fact was proposed. A similar result
was obtained in experiments with heavy fermion metals
YbXCu4 (where X � Ag, Cd, In) for which, unlike non-
magnetic LuXCu4 compounds, the value of tr increased by
more than two orders of magnitude for T0 below the Kondo
temperature [41].

That why paper [34], in which a substantially different
result was obtained after a drastic decrease in the pump
energy for a number of cuprates (La2ÿdSrdCuO4,
Bi2Sr2CuO6�d, doped La, and Bi2Sr2CaCuO8�d), proved
to be unexpected. It was shown that tr / T ÿ3�0:5 for all
these cuprates and tr begins to increase already in the
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Figure 2. Experimental data for YBa2Cu3O7ÿd: dependences tr(T=Tc) from [19] (squares) and [52] (circles) (a); dependences of the self-diffraction
eféciency Z on the frequency detuning Do of the BP components for t � 0 and 500 ps in the absence (solid curve) and presence (dashed curve) of the
pump pulse [25] (b) and the dependence of DT on the probe-pulse frequency o for different t and T0 � 92 and 70 K [22, 47] (c).
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`normal' metal phase (for T0 > Tc), while all the features of
the behaviour of tr in the vicinity of the point of phase
transition T0 ' Tc do take place, however, only at high
excitation levels when a sample should almost instantly
`forget' information about its initial state (about its initial
temperature T0). Moreover, these features became more
distinct with increasing the pump energy. The authors of
[34] argue that, taking into account the data presented in
[31 ë 33, 53 ë 55], the relaxation time tr in YBa2Cu3O7ÿd,
Bi2Sr2CuO6�d, Bi2Sr2CaCu2O8�d, La2ÿdSrdCuO4,
Tl2Ba2CuO6�d, and HgBa2Ca2Cu3O8�d behaves similarly.
Note that control experiments with metal (Au) élms
revealed no substantial changes in tr in the temperature
range from 10 to 280 K [34].

A quite unexpected result was also obtained in experi-
ments on picosecond (� 20-ps pulses) two-photon probing
of the kinetics of the electronic spectrum of superconducting
YBa2Cu3O7ÿd samples preliminary excited by a 20-ps pump
pulse [25]. It was found that, despite a signiécant change in
the temperature (by � 20ÿ 40 K) of an initially super-
conducting sample (T0 ' 80 K) caused by pumping, all
the features of the presence of the energy gap in its electronic
spectrum were preserved at probe-pulse delays up to 1 ns
[56, 57] (Fig. 2b). Because it is well known that super-
conductivity should disappear under such conditions
during the time � 1 ps [23], this fact was not explained
in [25]. Taking into account that the nonlinear response of
HTSCs in the optical range is usually attributed to
absorption by free carriers [34], rather drastic spectral
variations in the amplitude DR(l) and DT(l) observed in
experiments when the probe-pulse wavelength l was differ-
ent from the pump-pulse wavelength lp can be also
attributed to the known anomalies of the nonlinear response
(Fig. 2c) [22, 47].

Our paper is mainly of the review type and its aim is to
explain consistently the spectral, temporal and temperature
features of the nonlinear HTSC response, including all the
above-mentioned anomalies observed by the methods of
transient (femtosecond and picosecond) nonlinear spectro-
scopy. Below, we will use two assumptions for this purpose.
First, we will assume that the energy gap in the electronic
spectrum of HTSCs is `frozen' [58 ë 61]. This means that it
cannot be rapidly destroyed even when the electron temper-
ature Te considerably differs from the lattice temperature Tp

and a sample is found in a metastable state after excitation
[58]. It will be shown below that, as a result, the electronic
states of a HTSC become degenerate at high excitation
levels, i.e. the Fermi levels E F

e; h for free `electrons' (quasi-
particle states above the energy gap in the electronic
spectrum) and `holes' (similar states below the energy
gap) do not coincide [59 ë 61]. Taking into account the
energy distribution of the electronic state density in the
HTSC, this drastically reduces the recombination rate of
free electrons and holes, thereby changing the relaxation
kinetics of excitation. Second, we will assume that the
electronic part of the nonlinear response of HTSCs in
nonlinear spectroscopy is caused by interband electronic
transitions. Note that the latter assumption is less unex-
pected than the érst one because the role of interband
transitions in the formation of the nonlinear response of
metals in HTSCs was earlier discussed in papers
[8 ë 11, 36, 47, 62 ë 65].

The material of our paper is presented in the following
way. In section 2, the physical motivation of the érst of the

above assumptions is considered according to the approach
developed in [58]. After a brief review of some properties of
HTSCs of importance to us, we show, by using the model
describing the magnetic-dipole formation of the so-called
stripe structures (and the energy gap in the electronic
spectrum), that the kinetics of a phase transition resulting
in the destruction of these structures depends on the initial
temperature jump. If an optimally doped HTSC (see below)
is not strongly overheated, despite almost instant disappear-
ance of superconductivity, the phase transition should occur
comparatively slowly (for 10ÿ9 s and slower).

In section 3, we consider a closed system of equations
[59] describing the evolution of thermodynamic parameters
E F
e; h, Te; h, and Tp of the electron, hole, and phonon

subsystems during and after fast excitation of the HTSC
sample by a short pump pulse. It is at this stage that we used
the érst of the two above assumptions. Here we also present
the results of the numerical solution of the system of kinetic
equations [59, 61]. It is shown that in the case of a high
excitation level in the vicinity of the point T0 ' Tc, the
kinetics of E F

e; h Te; h, and Tp substantially changes due to the
appearance of the energy gap in the electronic spectrum of
the HTSC.

In section 4, a model of the nonlinear susceptibility of
HTSCs is developed which describes the nonlinear responses
of a HTSC sample for different modiécations of the pump ë
probe method, including regimes of intense femtosecond
and picosecond excitation and one- and two-photon excited-
state probing. The model is based on the consistent
consideration of contributions from all interband electronic
transitions in the `real' (see below) electronic spectrum
[9 ë 11, 64, 66, 67], which considerably reduces the number
of étting parameters in the model.

In section 5, we present the results of numerical
simulations of the spectral, temporal, and temperature
features of the nonlinear response of the HTSC obtained
in all the above-mentioned modiécations of the pump ë
probe method [59 ë 61]. It is at this stage that we use the
results of calculation of the kinetics of thermodynamic
parameters E F

e;h Te; h, and Tp presented in section 3.
Note that some of the results presented in this section
are original. Finally, we summarise in section 6 the results of
our analysis.

2. Self-organisation of charge carriers
in HTSCs and phase transition kinetics

2.1 Stripe structures and energy pseudogap

The analysis of investigations of copper ë oxide HTSC
compounds showed that their metallic conduction is related
to the violation of the stoichiometric composition [with a
certain defect (`doping') level] [67 ë 70], while the electronic
structure is determined by a complicated interaction of well
and weakly localised states sensitive to the short-range
order. In this case, a rather strong anisotropy leads to the
quasi-two-dimensional type of the Fermi surface. The
known common property of copper ë oxide HTSCs is the
ordering of spins of Cu ions in the so-called cuprate (CuO2)
planes. In the case of the stoichiometric composition, these
ions (Cu2) have `holes' with the spin 1/2 in the 3d shell,
while the indirect exchange interaction through oxygen ions
establishes the long-range antiferromagnetic order at
relatively low Neel temperatures TN � 300ÿ 500 K [71].
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The magnetic structure and spin correlations in the
metal phase of La2CuO4 and YBa2Cu3O7ÿd single crystals
were investigated in detail by the method of neutron
scattering [72]. It was found that the magnetic moments
of Cu2 ions in CuO2 ÿYÿ CuO2 bilayers had the anti-
ferromagnetic ordering, while Cu1 ions in linear CuÿO
chains had no magnetic moment. The dependence of the
magnetic correlation length xm in the cuprate plane on the
average concentration of holes hni was determined by the
method of diffuse neutron scattering [73]. The constants of
exchange interaction were measured in experiments on
inelastic neutron scattering for Cu2 ions (2J ' 0:170 eV)
in bilayers (2Jb ' 10ÿ22J ) and Cu2ÿO1 chains (2J 0 '
10ÿ52J ), which proved the quasi-two-dimensionality of
the spin dynamics in YBa2Cu3O7ÿd [74]. Similar results
were obtained for La2ÿdSrdCuO4 [75].

It was shown that, while the energy (`superconducting')
gap in LTSCs has the s symmetry and is formed at the
temperature lower than Tc due to electron ë phonon inter-
action [75], the experimental data suggest that this gap in
HTSCs has either the d symmetry (optimal doping, d � dopt
for which Tc is maximal) or the `mixed' (s ë d) symmetry
[76, 77]. Moreover, the so-called pseudogap was found in a
Ba2Sr2CaCu2O9ÿd HTSC by the method of angle-resolved
photoemission spectroscopy [78] and it was shown that for
d � dopt and d > dopt (overdoped compounds) the energy
gap disappeared at T � Tc at all points on the Fermi
surface. For d < dopt (underdoped compounds), the super-
conducting gap transforms to the pseudogap upon heating,
which has the d symmetry and disappears at T � T �5Tc.
The gap disappears at the point (p=4, p=4) of the Brillouin
zone at T � Tc , while at the point (p, 0) it disappears at
T ' 180 K4Tc. The nature of the pseudogap and is
relation to the superconducting gap are still the object of
intense discussions. Although the most convincing experi-
ments were performed only with Ba2Sr2CaCu2O9ÿd (by the
method of photoemission spectroscopy), it is assumed that
such a behaviour of the energy gap is inherent in all HTSC
compounds. Note that two energy gaps with different
kinetics were observed in overdoped YBa2Cu3O7ÿd with
d > dopt for T < Tc by the method of transient nonlinear
spectroscopy [79]. One of them was interpreted as the
superconducting gap, while the second one as the pseudo-
gap.

No less interesting data were obtained for La com-
pounds by the methods of electron, neutron, and X-ray
scattering [80 ë 82]. It was found that a periodic sequence of
alternating strongly elongated regions was formed in
cuprate planes at T � T �. These alternating regions, the
so-called stripes, were either enriched with holes or almost
did not contain them. The correlation length of stripes
oriented along the directions (�1, �1, 0) decreases with
increasing hni. Similar experiments with compounds of Bi,
Ba, and Hg did not reveal such properties. At the same time,
indirect data on the presence of stripe structures in Bi
compounds follow from the measurements of temperature
dependences of the heat conductivity and conduction which
exhibit breaks [80]. In the opinion of some authors, this
demonstrates the dynamic nature of the corresponding
stripe structures and their small correlation length.

Stripe structures are described, as a rule, by two
methods. The so-called tÿ J model uses the Hamiltonian
describing the kinetic energy and correlations at the
neighbouring sites [83]. The model contains two main

parameters: the energy t of a hole hopping to neighbouring
sites and the exchange interaction energy J with the sites.
Sometimes, terms describing hoppings of the holes to more
remote sites are also taken into account. Within the frame-
work of the tÿ J model, the energy band drastically
decreases and the effective mass correspondingly increases
due to antiferromagnetic spin correlations suppressing
hoppings of the holes between neighbouring sites. For
J4 t, the separating of phases into layers proves to be
energetically proétable, i.e. the formation of alternating
regions either élled with holes or virtually devoid of them.
The numerical calculations of small two-dimensional clus-
ters of size � 8� 8 show that the phase stratiécation should
be observed for small hni for J=t5 1 [84, 85], whereas
J=t ' 0:35 for real compounds [86].

Another approach ë the Peierls ëHubbard model, is
based on the consideration of Jahn ëTeller distortions of
a lattice [87]. Calculations within the framework of this
model taking into account hopping of holes between copper
sites, single-site Coulomb correlations, the spin dynamics,
and kinetic and potential energies of a lattice also conérm
the possibility of phase stratiécation. In this case, distortions
of the lattice play a stabilising role and the condition J=t5 1
becomes weaker. However, the simulation is performed for
clusters of even a smaller size (� 4� 4), which drastically
reduces the accuracy of calculations [88], preventing the
description of the kinetics of transitions associated with the
formation and destruction of stripe structures.

In the phenomenological model considered below, we
will take into account the nonlocal part of the interaction
potential of the spin ëwave theory [89 ë 91], which has the
dipole nature and is caused by deformations of the
antiferromagnetic environment, which result in attraction
in spin ë symmetrical and repulsion in spin ë asymmetrical
channels [89, 90]. For J=t4 1, the interaction energy is
�8t 2=J [90], whereas for J=t5 1, the calculation gives the
value � J [89]. It is this case that we will consider below.

2.2 Magnetic-dipole interaction

Let us assume that the local antiferromagnetic ordering
exists in the lattice of HTSC compounds up to the
maximum values of d (for superconductivity) [72]. Assum-
ing that the Coulomb interaction is screened, we consider
the magnetic-dipole interaction of holes appearing due to
the deformation of the environment, which can be described
in the two-particle approximation for the potential energy
[89, 90]:

V�r; a1; a2� �
B cos�2yÿ a1 ÿ a2�

r 2
. (2)

Here, r is the radius vector connecting two holes; B is a
constant related to the modulus jd �m�1;2 j � d �m� of their
effective dipole moments; and y and a1;2 are the angles
between the directions of r and d �m�1;2 and the Y axis,
respectively. We assume below that d �m� � 1. For such a
normalisation, in the limiting case J=t5 1 the constant
B=a 2 should be of the order of the exchange interaction
energy for a equal to the average distance between holes
[89].

Taking the symmetry of the problem into account, we
direct the Y axis along one of the possible crystallographic
directions ë the stripe axis. Let us assume that the dipole
moment d �m� of all the holes is oriented parallel to the Y axis
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and consider the displacement of one of the holes along the
X axis orthogonal to the Y axis (Fig. 3a). By projecting to
the X axis the forces acting on this hole from nearest
neighbours, we énd its potential energy

V�x; a� � B

a 2

1ÿ �x=a�2�
1� �x=a�2�2 , (3)

where x and a are the projections of the radius vector r on
the X and Y axes, respectively. By assuming that the dipole
moment d �m� can be oriented either along the Y axis or in
the opposite direction and d �m�(y) � d �m�(ÿ y), we repre-
sent it in the form d �m�(y) � �1 and write the expression
for the total energy Vt of the hole (i.e. the energy taking
into account the forces acting on the hole from remote
neighbours as well) as

Vt�x; a� �
X1
j�1

d �m��0�d �m�� ja�V�x; ja�. (4)

Here, the argument d �m� (i.e. j ) numbers in fact the holes in
a stripe.

When the number of holes with the `wrong' orientation
of d �m� caused by thermal êuctuations in a stripe is small,
the standard mean éeld approximation can be used. To do
this, we introduce the mean local (over y) moment hd �m�i(y)
and will assume that hd �m�i is a slow function of y (at the
scale of a). Assuming now that the value of V (x, a) decreases
with distance considerably faster than hd �m�i changes and
also assuming that d �m�(y)ÿ hd �m�i(y)5 hd �m�i(y), we
obtain after replacing summation over j by integration

over y and the expansion of hd �m�i(y) in a series in the
vicinity of arbitrary y that

Vt�x; y� '
p 2

6

B

a 2
0

d �m��y�

�
�

d �m�

��y� � a 2
e

d2


d �m�

��y�
dy 2

� . . .

��
1�

�
x

a0

�2 �ÿ1
. (5)

Here, a0 � (6=p 2)a; ae is a constant of the order of the
magnetic correlation length related to the énite value of the
interaction radius. It follows from (5) that interaction inside
a stripe is well localised.

We will assume below that the distribution of stripes
along the X axis is periodic and consider the period L of this
distribution and the spatial frequency qxm � 2p=L of its
lowest harmonic as the external parameters of the problem
rigidly connected with d (i.e. with hni). To calculate the
spatial distribution of the potential energy V0(x, y) for an
arbitrary distribution of stripes along the X axis, we will énd
the Fourier transform of the function Vt(x, y) (5)

Vt�qx; y� � L ÿ1
� L=2

ÿL=2
Vt�x; y� exp�iqxx�dx

� ~G�y� exp�ÿqxa0�, (6)

where

~G�y� � G0d
�m��y�

�

d �m�

��y� � a 2
e

d 2


d �m�

��y�
dy 2

� . . .

�
;

G0 �
3

p
B

a0L
;

and qx is the spatial frequency. For small values of d, taking
into account screening at distances of the order of a few
periods of a cell, the integration limits in (6) can be
expanded to inénity.

For an arbitrary one-dimensional (along x) distribution
of stripes with the same hd �m�i(y) and n(qx), the energy
distribution density is

V0�qx; y� � Vt�qx; y�n�qx� � ~G�y� exp�ÿqxa0�n�qx�. (7)

After the inverse Fourier transform of (7) and the
renormalisation

~G!
~G

E0

, x! x

a
, L! L

a
, a0;e !

a0;e
a

,

where E0 � (2p�h)2=(2m0a
2), �h is Planck's constant, and m0

is the effective mass, the stationary Schr�odinger equation
can be written in the form�
d2

dx 2
� ~G�y� exp

�
ÿ ia0

d

dx

�
jj�x; y�j2 � eH

�
j�x; y� � 0. (8)

Here, j(x, y) is the wave function of a hole and eH is the
eigenvalue of the energy operator. The differential operator
in the exponent in (8) takes into account the nonlocal
interaction and acts on jj(x, y)j2. For two stripe systems
(with subscripts 1 and 2), for which hd �m�1 i(y) � ÿhd �m�2 i(y),
expression (8) transforms to the system

a
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Figure 3. Scheme illustrating the calculation of the interaction energy
V (x, a) of a hole with its nearest neighbours (a) and dependences on the
normalised localisation energy H of holes on j(qsm) for T1ÿ4; L � 3,
G0 � 4:5 (b).
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�
d2

dx 2
� ~G�y� exp

�
ÿ ia0

d

dx

��jjk�x; y�j2

ÿjjl�x; y�j2
�� eH

�
jk�x; y� � 0, (9)

where k, l � 1, 2 and k 6� 1.
Note that for the solutions of (9) of interest to us, the

values of eH and hd �m�1;2 i(y) entering into the expression for
~G(y) should be consistent with the wave function j1;2(x, y).
In this case, by averaging d �m� in each stripe over two
admissible directions taking into account thermal êuctua-
tions in the local (over y) thermodynamic equilibrium, we
should require [92] that



d
�m�
1;2

��y� � � tanh

�
Dd�y�
kBT

�
. (10)

Here, 2Dd(y) is the difference in the interaction energies for
holes with the dipole moment d �m� oriented along the
vector hd �m�i(y) in a stripe (the order parameter) and in the
opposite direction. Simultaneously, the relation

Dd�y� � ÿ
X1

p�ÿ1

X
i;j�1;2

�ÿ1�iÿj ~G�y�

� exp�ÿjpjqxma0�ni�pqxm; y�nj�ÿpqxm; y� (11)

should be fulélled.
The normalisation of j1;2(x, y) in calculations corre-

sponded to the arrangement of two holes with the opposite
orientations of d �m� over the period L (in the `unit cell') of
the stripe structure [93]:� L=2

ÿL=2

� L=2

ÿL=2
dxdyjjk�x; y�j2 � 1, (12)

where k � 1, 2. Thus, the probability of énding any hole in
any stripe was the same.

We described the dynamics by assuming that hd �m�i
depends explicitly not only on y but also on the time t and
the so-called relaxation approximation [93] is used

q


d �m�

��y; t�
qt

� ÿtÿ1d

�

d �m�

��y; t� ÿ 
d �m��
0

�
. (13)

Here, td is the êip time of d �m� and hd �m�i0 is the
equilibrium value of hd �m�i. Dynamic terms were not
explicitly included into system (9), and the evolution of
j1;2(t) was described in terms of the dependence hd �m�i(y, t)
in the adiabatic approximation (the time scale was speciéed
by the parameter tF �L=vF, where vF is the Fermi velocity)
by using Eqn (13).

2.3 Stationary stripe structures

Taking (9) into account, we write the Hamiltonian of the
system in the form

H �
X

qx ; i 6�j�1;2
q 2
xji�qx; y�ji�ÿqxy� ÿ ~G�y� exp�ÿqxa0�

(14)

� ni�qx; y�ni�ÿqx; y� � ~G�y� exp�ÿqxa0�ni�qx; y�nj�ÿqx; y�.

Then, it follows from the Cauchy ë Schwartz inequality [94]
that the minimisation of H occurs for

ji�qx; y� � ÿjj�qx; y�, if qx � �qxm, �3qxm, . . . ,
(15)

ji�qx; y� � jj�qx; y�, if qx � 0, �2qxm, . . . ,
which is equivalent to the requirement

j1�x; y� � j2

�
x� L

2
; y

�
. (16)

Because in the case of the coexistence of stripe structures, at
least one spatial harmonic should have the amplitude
j1;2(qxm) 6� 0, taking the two lowest harmonics j1;2 into
account, we write

j1;2�x; y� � j0�y� � j�qxm; y� cos�qxmx�. (17)

In this case, the expressions for the localisation energy of
holes H and Dd will take the form

H�y� � 2j 2�qxm; y�Lÿ1
�
p 2 ÿ 8L 2j 2

0 �y�

�
�

d �m�

��y� � a 2
e

d 2


d �m�

��y�
dy 2

� . . .

�
G0 exp�ÿqxma0�

�
, (18)

Dd�y� � 8L 2j 2
0 �y�j 2�qxm; y�

�
�

d �m�

��y� � a 2
e

d 2


d �m�

��y�
dy 2

� . . .

�
G0 exp�ÿqxma0�. (19)

By using relations (10), (12), (18), and (19), we can calculate
the dependence of H (i.e. the pseudogap width) on j(qxm)
in the thermodynamic equilibrium state, when j0(y) � j0

and j(qxm, y) � j(qxm) (Fig. 3b). One can see that in this
case there exists the region of parameters where the
minimisation of H for T < T � � const occurs for
j(qxm) 6� 0. The critical temperature T � determines the
point of phase transition related to the formation of stripe
structures. However, even more important for us is that the
dependence of j(qxm) on H is ambiguous and stripe
structures may not be destructed upon `rapid' excitation but
transfer to metastable states.

More rigorous calculations were performed numerically
taking into account the six érst harmonics of the Fourier
expansion of j1;2(x) [58]. In this case, the auxiliary Ham-
iltonian

H 0 �
X1
p�ÿ1

X
i; j�1;2

��pqxm�2ji�pqxm�ji�ÿpqxm�

ÿhd �m� ii�ÿ1�iÿjG0 exp�ÿjpjqxma0�ni�pqxm�nj�ÿpqxm�
�

�M exp
�
R�Lni�0� ÿ 1�2	,

(20)

d �m�

�
i
� tanh

h
�kBT �ÿ1



d �m�

�
i

�
X1
p�ÿ1

X
i; j�1;2

�ÿ1�iÿjG0 exp�ÿjpjqxma0�ni�pqxm�nj�ÿpqxm�
i
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was constructed, which was minimised by the unlimited
simplex method [95] to provide the correct normalisation of
j1;2(x) for R!1. The parameters M and R were selected
to provide the normalisation error less than 1%. The
binding energy was determined by substituting the found
functions j1;2(x) into (14). The normalised calculated
dependence T �(Lÿ2) is illustrated in Fig. 4a. One can see
that the region of existence of stripe structures is restricted
by the limiting value dmax for which T � � 0. The depend-
ence T �(Lÿ2) has the region of an almost linear increase in

T � with decreasing L (i.e. d). The functions j1;2(x) are
strongly anharmonic (Fig. 4b). The energy gap decreases
monotonically with increasing T and vanishes at T � T �

(Fig. 4c). This conérms indirectly that the point T � T � is
the point of the second-order phase transition.

2.4 Phase coexistence

By assuming that hd �m�i( y) 6� const and taking into
account the term proportional to d2hd �m�i( y)=dy 2, we
perform the variation of j(qx, y) (17) with changing
continuously the position of a local extremum. It can be
easily shown that the minimisation of H occurs for

j�qxm; y� � �2L�ÿ1
�
1ÿ g

P

�
, (21)

where

g � �4g�ÿ1 � p 2

4LG0 exp�ÿqxma0�
;

P � 
d �m���y� � a 2
e

d2


d �m�

��y�
dy 2

� . . . .

In this case,

Dd�y;P� �
G0P

L

�
1ÿ

�
g
P

�2 �
exp�ÿqxma0�. (22)

By substituting now (22) into (10) and linearising the
obtained equation for P, taking into account the self-
consistence of the problem, we obtain the closed equation

a 2
e

d2


d �m�

��y�
dy 2

� Eb�T�arctanh
�

d �m�

��y��� gÿ
d �m���y�, (23)

where

Eb�T� �
kBTL

2G0 exp�ÿqxma0�
,

which can be interpreted within the framework of a
mechanical analogy as the equation of motion in the
potential

U
ÿ

d �m�

�� � ÿEb�T�
�
arctanh

�

d �m�

��y��

� 1

2
ln
�
1ÿ 
d �m��2��ÿ g



d �m�

�� 1

2



d �m�

�2
. (24)

Its nature is illustrated in Fig. 5a. For T � T �, both
maxima of the potential curve U(hd �m�i) have the same
value. Note that the system is conservative in the case under
study, and all processes proceed in it with the conservation
of energy.

Consider now the simplest example of the inhomoge-
neous (over y) solution of the phase switching type. We will
assume that hd �m�i(y)jy!ÿ1 � hd �m�i1 and hd �m�i(y)jy!�1 �
hd �m�i2 6� hd �m�i1 on two inénitely remote (over y) sides of
the cuprate plane. We are interested in the interface between
these regions, which we will call phases. It follows from
Fig. 5a that for T < Tm � const > T �, the curves
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Figure 4. Normalised dependence of T � on Lÿ2 (squares) and its
approximation by the fourth-order polynomial (solid curve) (a), wave
functions j1;2(x) (solid and dashed curves) for L � 7:5 (b), and the
temperature dependence of the pseudogap width for L � 5, 6, and 8;
G0 � 4:5 (c).
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U�hd �m�i(y)� have two local extrema. The érst of them, U1, is
localised at the point hd �m�i � 0 at any T, while the position
hd �m�i � hd �m�ir of the second extremum U2 depends on T.
For T � < T < Tm, we have U1 < U2, and for T < T �, we
have U1 > U2. For T � T �, the phases have the same
energy, U1 � U2, and solutions can be obtained with the
asymptotic transition

d


d �m�

��y�
dy

����
y!�1

� 0 (25)

from the phase hd �m�i1 � 0 to the phase hd �m�i2 � hd �m�ir in
accordance with the Maxwell rule [96].

The approximate estimate of the width of the phase
transition region can be obtained analytically because the
solution of (23) under condition (25) can be written in
quadratures:

zÿ z0 �
� hd �m�ir
0

d


d �m�

��
Eb�T ��

�
arctanh



d �m�

��
� 1

2
ln
�
1ÿ 
d �m��2��� g



d �m�

�ÿ 1

2



d �m�

�2�ÿ1=2
, (26)

where z � y=ae and z0 � const. By expanding the integrand
into a series and retaining quadratic terms for Eb(T

�)5 1,
we obtain



d �m�

��z� � 1

2

Eb�T �� � g
1ÿ Eb�T ��

�
�
sin

��
1

2

�
1ÿ Eb�T ��

��1=2�zÿ z0�
�
� 1

�
. (27)

This gives the estimate of the width of the phase transition
region:

Dy � pae

�
2

1ÿ Eb�T ��
�1=2

. (28)

It is obvious that this solution is invariant with respect to
an arbitrary displacement y! y� dy (dy � const) of
coordinates along the Y axis.

2.5 Metastable states and phase transition kinetics

The second maximum in the potential curve in Fig. 5a
disappears at the temperature T � Tm corresponding to the
simultaneous fulélment of the conditions

q

q


d �m�

� Uÿ
d �m��;Tm

� � 0,

(29)
q 2

q


d �m�

�2 U
ÿ

d �m�

�
;Tm

� � 0.

Figure 5b illustrates the normalised dependence Tm(g). It is
easy to verify that Tm > T �. Consider now the situation
when T � 6� T < Tm and the phase interface is movable. We
assume, as before, that hd �m�i(y)jy!ÿ1 � 0 and
hd �m�i(y)jy!�1 � hd �m�ir , and will describe the interface
by the proéle of the phase switching wave hd �m�i(y, t) �
hd �m�i(x) moving along the Y axis at a constant velocity v.
Here, x � (yÿ vt) is the running coordinate. By performing
similar transformations and using (13), we obtain the
relation

a 2
e

d2


d �m�

�
dx 2

� Eb�T�

�arctanh
�


d �m�
�ÿ tdv

d


d �m�

�
dx

�
� gÿ 
d �m��, (30)

which transforms to (23) for v � 0. This means that for
T � T �, the phase switching wave is immobile. Because,
within the framework of a mechanical analogy, the term
proportional to v is responsible for nonlinear friction, the
phase coexistence at T 6� T � is impossible. This conclusion
is consistent with the fact that for the switching wave to
develop in distributed systems, the initial seed is necessary ë
a êuctuation with the characteristic size of the order of the
transition region width [97, 98]. The velocity v depends on
the value of the control parameter (in our case, T ). At the
critical point, v � 0 and changes the sign.

Equation (3) was solved by using the six-order Runge ë
Kutta method with a time variable step t. We considered the
evolution of the initial state hd �m�i � 0 with the hyper-
Gaussian perturbation. Figure 6a illustrates the evolution of
a broad (compared to Dy) initial êuctuation for T > T �.
The system rapidly undergoes a transition to the metastable
state hd �m�i � hd �m�ir , and only then a switching wave to the
phase hd �m�i � 0 is formed, the value of hd �m�ir being
decreased with increasing T. For T � T � (Fig. 6b) and
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Figure 5. Dependences U(hd �m�i) calculated for different T (a) and
normalised dependences Tm(g) (solid curve) and hd �m�ir(g) (dashed curve)
calculated for T � Tm (b).
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T < T � (Fig. 6c), the system érst undergoes a transition to
the metastable state hd �m�i � hd �m�ir, and then êuctuations
are either `frozen' (v � 0, the stationary phase interface) or
`resolved' (v < 0). A narrow êuctuation resolves even for
T > T � (Fig. 7a). For T > Tm, the system undergoes a
transition from the state hd �m�i 6� 0 at once to the state
hd �m�i � 0 (Fig. 7b). The velocity v linearly depends on
T=T �, by changing its sign at the point T � T � (Fig. 7c).

Thus, if the two phases can coexist at T � T � (Fig. 7b),
then for T < T � (v > 0) the seed of the stripe structure can
expand due to the involvement of the holes from regions
where the order has not been established yet (Fig. 6a). By
assuming that the magnetic dipole moments d �m� in a stripe
are ordered for � 102 holes and td � 10ÿ12 ÿ 10ÿ13 s, we
obtain the estimate for the propagation time of a phase
switching wave tv � 0:1ÿ 1:0 ns. However, for such a wave
to begin propagate, the size of the stripe seed should exceed
Dy (see Figs 6a and 7a). Figure 8a illustrates the calculated
dependence of Dy(T=T �) (at the 0.9 level of the front height)
for g � 1:25 (solid curve) and 0.56 (dashed curve). There-
fore, by taking into account the calculated values of Dy, we
estimate the minimal size of the seed (in fact, the number of
holes with ordered d �m�) as Dy � 4ÿ 6 and obtain the
probabilistic estimate of the formation time tf correspond-

ing to tf � 10 ns4 td of the initial êuctuation

tf �
tdÿ

1ÿ hd �m��
r

�Nÿ1 . (31)

It follows from this that for T=T � � 1:25, when
(1ÿ hd �m�ir) �0:25 (see Fig. 8b), the formation time is
tf � 10 ns4 td.

Thus, we described in this section the self-organisation
of charge carriers in a HTSC due to magnetic-dipole
interaction. It was shown that for a reasonable value of
the energy G0 � 100 meV, the limiting HTSC doping level
hnimax � 1:125, the formation temperature of stripe struc-
tures T � � 150 K, their spatial period, the presence of the
linear region of the dependence T �(hni) for hni < hnimax, the
energy gap width and its temperature dependence corre-
spond to the experimental data. However, it is even more
important that, despite a rapid destruction of superconduc-
tivity upon impact excitation of initially superconducting
HTSCs up to T > Tc, metastable stripe structures in their
cuprate planes can exist for a long time (� 1 ns and longer,
see above). It is for this reason that a sample can `remember'
its initial state during all this time.
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3. Nonequilibrium HTSC thermodynamics
at high excitation levels

3.1 Kinetic equations

Having substantiated the metastable nature of stripe
structures existing in HTSCs, we now turn to the con-
struction of a simpliéed system of kinetic equations
describing the evolution of the thermodynamic parameters
of the system upon optical excitation.

In the case of a `frozen' energy gap, the electronic
spectrum of a HTSC is similar to that of an intrinsic
narrow-gap semiconductor. Therefore, according to
[59 ë 61], it is convenient to introduce two bands (similar to
the valence and conduction bands in a semiconductor)
separated by the energy gap of width D, and to consider the
evolution of the concentrations Ne;h of free `electrons'
(quasi-particle states over the gap) and `holes' (quasi-
particle states below the gap), respectively. If we now
assume that intraband thermalisation (intraband e ë e
relaxation) occurs inénitely rapidly, the energy distributions
Ee;h of electrons and holes at any instant t can be
considered quasi-equilibrium. In this case, the description
of the evolution of the system becomes parametrical and is
reduced to the introduction of the dependence of the instant
values of EF

e;h and Te;h on time t. Therefore, in all further
calculations we will substitute the instant values of EF

e;h and
Te;h at each instant t to the standard Fermi ëDirac
distribution function fF (Ee;h; EF

e;h, Te;h). The concentra-
tions Ne;h of free electrons and holes and the energy density
stored in these two subsystems (`heat' storage) Qe;h are
described by the expressions

Ne;h � Nc

�1
0

fF
ÿ
Ee;h;EF

e;h;Te;h

�
ge;h�Ee;h;D�dEe;h, (32)

Qe;h � NehEe;hi

� Ne

�1
0

Ee;h fF
ÿ
Ee;h;EF

e;h;Te;h

�
ge;h�Ee;h;D�dEe;h. (33)

Here, Nc is the density of cells; ge;h(Ee;h;D) are functions
describing the electronic-states densities at a éxed gap width
D; and hEe;hi are the mean energies of free electrons and
holes. Taking into account the symmetry of the problem
and that photogeneration of free electrons and holes and
their recombination are pair processes, we will assume that
the states of both subsystems at each instant t are identical
and

g�E;D� � ge�E;D� � gh�E;D�,
(34)

EF � EF
e � EF

h , Te � Th, hEei � hEhi, Ne � Nh, Qe � Qh.

Taking this into account, it is sufécient to write kinetic
equations for Ne and Qe.

The érst of them can be written by assuming that
photogeneration and recombination of free carriers are
strictly pair processes. Then, we obtain

dNe

dt
� �1ÿ fF�hEei;E F;Te�

�

�Pp�t�
Ne

Qe

�ho
2
ÿ g �r�eh

ÿ
N 2

e ÿN 2
s

�
. (35)

Here, Pp(t) is the instant density of the êux of absorbed
pump photons of energy �ho; g �r�eh � g �r�ehp � g �r�ehe is the rate
constant of nonradiative pair recombination represented by
a sum of rate constants describing three-particle processes
involving a phonon g �r�ehp and one more electron (hole) g �r�ehe

and depending on D, EF, Te;p, Ne and other parameters
[99]; Ns � Nc

� 1
0 fF(Ee;E

F
0 ,Tp)g(Ee;D)dEe is the quasi-

equilibrium concentration of electrons and holes for
EF � EF

0 and Te � Tp 6� T0. The term in the right-hand
part of (35) describing the generation of free carriers takes
into account explicitly that upon absorption of a photon, a
hot electron appears in the conduction band, which
experiences the instant interband e ë e scattering accom-
panied by the production of 1

2 �ho=hEei thermalised electrons
and holes with hEei � Qe=Ne. Taking into account a
competition between interband and intraband e ë e scatter-
ing, the factor �1ÿ fF(hEei;EF,Te)� changes from 1/2 (for
EF 4D=2) to 1 (for EF 5D=2).

The initial (E 0) and énal (E 00 ' E 0 � 2hEei) states of the
third quasi-particle involved in pair recombination cannot
be completely empty and occupied, respectively. In the case
of degeneracy (when EF 5D=2 and the Fermi level `enters'
into the conduction band) due to the presence of a peak in
the distribution of the state density g(Ee) in the HTSC in the
vicinity of the point Ee � D=2, this condition reduces the
concentration of quasi-particles that can be involved in
recombination. The larger is the gap width D, the higher is
the degree of degeneracy; and the lower is Te, the more
distinct should be this effect. We took the role of this effect
into account within the framework of the expression
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Figure 8. Temperature dependences of the transition region width Dy for
g � 1:25 and 0.56 (a) and the dependence of (1ÿ hdir) on T=T � for g �
1.25 (b).
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g �r�ehe ' ~g �r�eheN
0
e, (36)

where ~g �r�ehe is the rate constant of recombination, which is
independent of the concentration of third quasi-particles,
and

N 0e ' Nc

�1
0

dE 0fF
ÿ
E 0;EF;Te

��
1ÿ fF

ÿ
E 0 � 2hEei;EF;Te

��
� g�E 0�g�E 0 � 2hEei�4Ne. (37)

If the third particle involved in recombination is an
acoustic phonon, the rate constant g �r�ehp of the corresponding
process also should decrease with increasing the total energy
2hEei of recombining particles because phonons with the
maximal energy Emax can no longer take away this energy.
In the isotropic approximation for the model dispersion
dependence [99]

Eph ' Emax sin
p
2

K

KBr

(38)

this results in the appearance of the correcting factor in the
recombination constant g �r�ehp, which can be taken into
account by making the replacement

g �r�ehp ! g �r�ehp�hEei�

� ~g �r�ehp

� Emax

0

dEphF�Eph;Tp�G�Eph�G�Eph � 2hEei�, (39)

where ~g �r�ehp is a constant independent of Tp and hEei; Eph

and K are the phonon energy and momentum; Emax is the
phonon energy at the edge of the Brillouin zone (K � KBr);

F�Eph;Tp� �
�
exp

�
Eph

kBTp

�
ÿ 1

�ÿ1
(40)

is the distribution function; and

G�Eph� �ÿ
E 2
max ÿ E 2

ph

�ÿ1
arcsin

�
Eph

Emax

�
for Eph 4Emax;

0 for Eph > Emax

8><>: (41)

is the phonon state density.
The kinetic equation for Qe can be obtained by

representing Qe in the form

Qe � Qe�Ne; hEei� � NehEei

� Ne

� 1
0

Ee fF
ÿ
Ee;E

F;Te

�
g�Ee;D�dEe. (42)

By varying now (42) over Ne and hEei (i.e. assuming that
these variables are independent), we obtain

dQe

dt
� hEei

dNe

dt

����
hEei�const

�Ne

dhEei
dt

����
Ne�const

� Qe

Ne

dNe

dt
ÿNeg

�Q�
ep

�

Ee

ÿ
EF;Te

��ÿ 
Ee

ÿ
EF;Tp

�� �
� Pp�t�

�ho
2
ÿQe

Ne

g �r�ehp

ÿ
N 2

e ÿN 2
s

�ÿ g�Q�ep

�
Qe ÿ

Ne

Nes

Qes

�
. (43)

Here, we used the relaxation approximation

dhEei
dt

����
Ne�const

� ÿg�Q�ep

�

Ee

ÿ
EF;Te

��ÿ 
Ee

ÿ
EF;Tp

���

� ÿg�Q�ep

�
Qe

Ne

ÿQes

Nes

�
(44)

in a series of transformations, where g�Q�ep is the relaxation
rate of hEei (in fact, of Te), which is expressed within the
framework of the two-temperature model [38] in terms of
the speciéc heats ce;p of the electron and phonon
subsystems of a HTSC sample depending on Te;p;

Qes � Nes

�1
0

Ee fF
ÿ
Ee;E

F;Tp

�
g�Ee;D�dEe,

Nes � Nc

�1
0

fF
ÿ
Ee;E

F;Tp

�
g�Ee;D�dEe

is the energy density and concentration of free electrons at
the equilibrium temperature Te � Tp, but at the non-
equilibrium position EF 6� EF

0 of the Fermi level. The érst
term in the right-hand part of (44) takes into account the
energy supply to the electronic subsystem due to the
absorption of pump radiation, the second term describes
the energy loss caused by phonon-assisted recombination,
and, the third one describes the cooling of the electronic
subsystem due to transfer of the kinetic energy of free
carriers to the phonon subsystem. Equation (44) is written
by assuming that the probability of the recombination
process is independent of the energy of quasi-particles.

The energy exchange with a thermostat, whose role is
played by a substrate at temperature Ts, is described by the
kinetic equation for the energy density (heat storage) Qp in
the phonon subsystem. Taking into account the balance
between the energy supply and loss and the principle of
detailed balancing, this equation will take the form

dQp

dt
� 2

Qe

Ne

g �r�ehp

ÿ
N 2

e ÿN 2
s

�
� 2g �Q�ep �Qe ÿQes� ÿ g �Q�ps �Qp ÿQps� (45)

in the relaxation approximation. Here, we used the notation
Qp;ps � cpTp;ps, where Tp and Tps are the current and
equilibrium temperatures of the phonon subsystem, respec-
tively. We can assume in calculations that due to the
immense heat capacity of the thermostat (substrate),
Ts � T0. Note that the rate constant g �Q�ps of relaxation
of the heat excess in (45) can depend on Tp and Ts because
the speciéc heat cp of the phonon subsystem depends on
temperature.

3.2 Kinetics of thermodynamic parameters
upon femtosecond pumping

It was assumed in numerical calculations [59 ë 61] that
the initial conditions are determined by the values
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EF(t � 0) � EF
0 �0 and Te(t � 0) � T0 through the expres-

sions

Ne�t � 0� � Nc

�1
0

fF�Ee;E
F � 0;Te � T0�g�Ee;D�dEe, (46)

Qe�t � 0� � Ne

�1
0

Ee fF�Ee;E
F � 0;Te � T0�

� g�Ee;D�dEe, (47)

Qp�t � 0� � cpT0. (48)

The energy gap D in the electronic spectrum of a HTSC was
assumed a constant depending only on the initial temper-
ature T0 and the superconducting transition temperature Tc

(see section 2):

D � D�T0� �
3:12kBTc

�
1ÿ T0

Tc

�1=2

for T0 4Tc;

0 for T0 > Tc:

8><>: (49)

Expression (49) corresponds to the so-called weak coupling
limit in the BCS theory. The instant values of EF(t) and
Te(t) were determined by solving the system of integral
equations

Ne�t 6� 0� � Nc

�1
0

fF�Ee;E
F;Te�g�Ee;D�dEe, (50)

Qe�t 6� 0� � Ne

�1
0

Ee fF�Ee;E
F;Te�g�Ee;D�dEe. (51)

The distribution of the electronic state density
g (Ee;D � 0) for T0 > Tc was calculated from the standard
expression [93]

g�Ee;D � 0� � 1

4p 3

��



Ee�const

dS

jHkEe�k�j
(52)

taking into account the data on Ee(ke), i.e. the `real'
(calculated by the pseudopotential method) zone structure
of La2CuO4 [100] (Fig. 9a). Here, Ee(ke) describes the shape
of the conduction band of La2CuO4, i.e. the dependence of
the electronic energy Ee on the quasi-momentum ke, while
integral (52) is taken over the constant energy surface
Ee � const. Upon integration, the data from [100] were
interpolated to the érst Brillouin zone by the method
described in [66] taking symmetry into account. As
expected, the calculated dependence g(Ee;D � 0) had the
distinct peak of the state density in the vicinity of the point
Ee � 0. Then, this dependence in the range jEe ÿ EF

0 j
4 1 eV was approximated by a smooth analytic function
with an accuracy of 0.5%. For T0 4Tc, we introduced
compulsorily a gap of symmetry s into the obtained
distribution g(Ee;D � 0), i.e. the states with energy Ee in
a layer of thickness 2D(T0) in the vicinity of EF

0 were
redistributed over the Brillouin zone according the expres-
sion

g�Ee;D� �
(53)

0 for Ee < D;

g�Ee;D � 0�� 1

kBT0

exp

�
ÿ Ee

kBT0

��D�T0�

0

g�Ee;D � 0�dEe for Ee 5D:

8<:

The evolution of the calculated distribution of the density
of electronic states DOS � g(Ee;D) with changing T0 is
illustrated in Fig. 9b, where the instant of the appearance of
the energy gap at the point T0 � Tc is clearly observed.

The system of kinetic equations (35), (43), (45) was
solved by the fourth-order Runge ëKutta method. The
value of parameters corresponded to the standard con-
ditions of most of the real experiments. It was assumed that
a � 200-nm HTSC élm absorbs 30% of the total energy
(4� 10ÿ7 J) of the 800-nm, 30-fs pump pulse from a
Ti : sapphire laser. The focal spot diameter was assumed to
be 150 mm, while the rest of the parameters (the super-
conducting transition temperature Tc � 90 K, heat capacity
cp � 0:9 J cmÿ3 Kÿ1, heat escape rate to a substrate
g �Q�ps � 5� 10ÿ3 psÿ1, and Emax � 15 meV) were approxi-
mately equal to the parameters of a YBa2Cu3O7ÿd élm on a
SrTiO3 substrate. The two remaining free parameters ~g �r�ehe

and ~g �r�ehp were varied to obtain the calculated relaxation time
t 0r of the nonlinear response (see section 4) equal to � 0:3
and 1.5 ps for T0 � 100 and 40 K, respectively, which is
close to experimental values.

Figure 10 shows the transformation of kinetics of the
shift DEF(t) � EF

e (t)ÿ EF
0 of the Fermi level and changes in

the electron temperature DTe(t) � Te(t)ÿ T0, the total

G XPG3 Z G G1 G2X G
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�
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�
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Figure 9. Band structure of La2CuO4 at room temperature [100] (a) and
the distribution of the density of electronic states DOS � g(Ee;D) in the
HTSC spectrum with changing the initial temperature T0 (b).
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concentration DNe(t) � Ne(t)ÿN0 of free carriers in the
split part of the conduction band, and the lattice temper-
ature DTp(t) � Tp(t)ÿ T0 depending of the initial
temperature T0 of the HTSC élm. One can see that the
absorption of pump radiation drastically changes the
kinetics of thermodynamic parameters upon variations of
T0 in the vicinity of the point T0 ' Tc (the gap `opening'
point). The type of changes in the kinetics of the rate
constants g �r�ehe(t) and g �r�ehp(t) of pair recombination upon
variations of T0 [59] proves the principal role of these
processes.

3.3 Kinetics of thermodynamic parameters
upon picosecond pumping

The kinetics of thermodynamic parameters of a HTSC élm
upon picosecond excitation [61] was simulated similarly.
The system of kinetic equations (35), (43), (45) was solved
by assuming that the duration tpulse of the pump pulse of
the same energy (4� 10ÿ7 J) was 20 ps, while the rest of the
control parameters were the same. The energy gap in the
electronic spectrum was assumed `frozen', as before, and
the rate constants ~g �r�ehe Ë ~g �r�ehp of nonradiative three-body
recombination in (36) and (39) were taken from calculations
described above.

Figure 11 illustrates the transformation of the calculated
kinetics of the instant shift DEF(t) � EF

e (t)ÿ EF
0 of the

Fermi level with respect to its initial position and also of
the jump DTe(t) � Te(t)ÿ T0 of the electron temperature of
the HTSC élm upon variations of its initial temperature. It
is easy to verify that even under conditions of a relatively
slow picosecond excitation of a sample, the amplitude of

DNe
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Figure 10. Transformation of kinetics DEF(t) � EF
e (t)ÿ EF

0 (a), DTe(t) � Te(t)ÿ T0 (b), DNe(t) � Ne(t)ÿN0 (c), and DTp(t) � Tp(t)ÿ T0 (d) with
changing T0 for a HTSC élm excited by a 30-fs pulse.
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Figure 11. Transformation of kinetics DEF(t) � EF
e (t)ÿ EF

0 (a) and
DTe(t) � Te(t)ÿ T0 (b) with changing T0 for a HTSC élm excited by a
20-ps pulse.

Spectral, temporal and temperature features of the nonlinear response 907



instant deviations of its thermodynamic parameters from
equilibrium values drastically increases after the opening of
the energy gap in the electronic spectrum (upon passage
through the point T0 ' Te).

4. Nonlinear HTSC response

4.1 Electronic part of a nonlinear response
upon one-photon probing

First we consider the nonlinear response of a HTSC élm in
the classical version of the pumpë probe method with one-
photon probing of the excited state by a probe pulse at the
wavelength l, i.e. we will study the kinetics of variations in
the reêection (DR ) and transmission (DT ) coefécients of
the sample after the absorption of the pump pulse. We
assume, as in [59, 61], that the nonlinear response of the
HTSC élm is determined by a change de(l,T0) in its initial
complex dielectric constant e0 � e(l,T0) caused by the
deviation of thermodynamic parameters EF

e and Te from
their equilibrium values. Because the reêection coefécient
R(l,T0) at the air ëHTSC élm interface is determined by
the dielectric constant e of the latter according to the
expression

R�l;T0� �
�
e 1=2�l;T0� ÿ 1

e 1=2�l;T0� � 1

�2
, (54)

by varying it by the substitution R(l,T0) � R0(l,T0)�
dR(l,T0) and e(l,T0) � e0(l,T0)� de(l,T0) and restricting
ourselves to the érst correction to the initial reêection
coefécient R0(l,T0) in de(l,T0), we obtain

dR�l;T0� � 2R0�l;T0�
de�l;T0�

e 1=20 �l;T0��e0�l;T0� ÿ 1�
. (55)

In fact, such an approach is always used to interpret the
data obtained in any real experiment. However, unlike
papers [18, 19, 21, 27, 30 ë 34, 48, 52, 53], where absorption
of light by free carriers (excited by the pump pulse) was
taken into account during probing, we will calculate de
taking into account the electronic part of the instant linear
response e of the HTSC élm caused only by interband
transitions. In principle, the authors of papers [20, 22, 47]
attempted earlier to realise a similar procedure; however, it
will be clear below that our models are more accurate and
realistic.

The value of de(l,T0) was calculated in two spectral
intervals l � 800 and 620 ë 680 nm by using the standard
expression

e �
X
i6�i 0

� � ��di;i 0ÿke; k 0e���2ni�ke��1ÿ ni 0
ÿ
k 0e
��

oÿ Oi;i 0
ÿ
ke; k

0
e

�� iGi;i 0
ÿ
ke; k

0
e

� dke dk
0
e. (56)

Here, ke is the electron quasi-momentum; the subscripts i
and i 0 number electronic state bands involved in the
(i, ke)! (i 0, k 0e ) transition with the dipole moment
di;i 0 (ke, k

0
e ); ni(ke) is the occupation number of the (i, ke)

state, which is determined by the Fermi ëDirac distribution;
o is the probe frequency; Oi;i 0 (ke, k

0
e ) is the resonance

frequency of the (i, ke)! (i 0, k 0e ) transition; and Gi;i 0 (ke, k
0
e )

is the relaxation rate of interband polarisation. Integration
over ke and k 0e is performed within the érst Brillouin zone,

and summation over the subscripts i and i 0 includes all the
bands of allowed electronic states.

In the case of one-photon probing, taking into account
that the photon momentum is small compared to ke, the
(i, ke)! (i 0, k 0e ) transitions can be considered direct (ke �
k 0e) and we can pass in (56) to single integration over ke by
using the notation di;i 0 (ke, k

0
e) � di;i 0 (ke), Gi;i 0 (ke, k

0
e) �

Gi;i 0 (ke), and Oi;i 0 (ke, k
0
e) � Oi;i 0 (ke). After that, the reso-

nance frequencies in (56) will be determined by standard
expressions Oi;i 0 (ke) � Ei 0 (ke)ÿ Ei(ke), where Ei(ke) is the
electron energy in the (i, ke) state normalised to Planck's
constant.

As in [64, 67], we assumed in numerical calculations that
di;i 0 (ke) � d and Gi;i 0 (ke) � G � 5� 1012 sÿ1 are constants
independent of i, i 0, and ke. Frequencies Oi;i 0 (ke) were found
by interpolating the data [100] on the band structure of
La2CuO4 at room temperature to the érst Brillouin zone
taking into account the requirements of symmetry and
periodicity [66]. Cooling down to temperatures T0 4Tc

was simulated by the compulsory introduction of a frozen
energy gap (49) into the obtained electronic spectrum, i.e. by
the replacement Ee(ke)! EF

0 � f�Ee(ke)ÿ EF
0 �2 � D(T0)

2g1=2
for Ee(ke) > EF

0 and Ee(ke) < EF
0 , respectively [59 ë 61]. As a

result, the electronic state density in the vicinity of the Fermi
level was redistributed, imitating the phase transition. Both
procedures described above allowed us to include the real
electronic spectrum (i.e. known from the literature) to our
model, thereby drastically reducing the number of étting
parameters. Integration in expression (56) was performed by
the special point method [101] over the state bands lying in
the energy range jEe � EF

0 j4 2:5 eV.
The dielectric constant e0(l,T0) was calculated (in the

absence of pumping) by assuming that the occupation
numbers ni(ke) in (56) were speciéed by the Fermi ëDirac
distribution fF(Ee;E

F
0 ,T0). Upon femtosecond excitation of

the HTSC élm, the occupation numbers ni(ke) at each
instant of time t were determined from the Fermi ëDirac
distribution fF(Ee;E

F
e ,Te) with the instant values of ther-

modynamic parameters EF
e (t) and Te(t) calculated by the

method described in section 3 (see Fig. 10). Upon pico-
second excitation, ni(k) were assumed to be speciéed by the
Fermi ëDirac distribution with the thermodynamic param-
eters hEF

e it Ë hTeit averaged over the pump pulse duration
tpulse � 20 ps (see Fig. 11). This simulated the situation with
pump ëprobe instants coincident in time, which corresponds
to saturation spectroscopy experiments.

4.2 Nonlinear HTSC response upon two-photon probing

The state of a HTSC sample in BP [9, 25, 26, 56, 64] and
DFPS [10, 11, 37, 64, 67] methods is probed by two
photons by using two probe pulses at wavelengths l1;2
(at frequencies o1;2) that coincide in time but propagate at
an angle to each other (with the wave vectors k1 6� k2).
Experimentally, the self-diffraction eféciency Z (the
eféciency of éled generation in the direction k3 �
2k1 ÿ k2 at frequency o3 � 2o1 ÿ o2) is measured as a
function of the frequency detuning Do � o1 ÿ o2 of the BP
components or of the wavelength l of probe pulses when
their frequencies coincide (o1 � o2, DFPS).

The nonlinear response in this case can be described
within the framework of the model developed in [9, 66]. This
model assumes that the total cubic nonlinear susceptibility w
of a sample contains several components:
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w � wr � wnr � ws � w0. (57)

Here, wr and wnr are the resonance and nonresonance (see
below) parts of the electronic response caused by interband
transitions; ws is the susceptibility component related to
scattering by acoustic phonons; w0 is a constant caused by
errors of the model and, érst of all, by a éniteness of the
integration region over the initial and énal electronic states.
The restriction of the integration region in calculations
inevitably leads to errors in the description of nonresonance
processes caused by transitions to the bands that were
neglected, absorption by free carriers, etc.

The nonresonance part wnr can be calculated by using the
approach developed in [9, 66]. In this case, it is sufécient to
take into account in the cubic nonlinear susceptibility of a
HTSC sample the contributions from all one- and two-
photon resonance electronic transitions in the real (calcu-
lated from the same data [100]) electronic spectrum and
their real (calculated from the same kinetic data for EF

e and
Te;p) occupation numbers. In this case, the expression for wnr
takes the form [9, 66]

wnr / P0fK�P� � KÿPÿg, (58)

which is standard for nonlinear optics and spectroscopy
[102], where

P0 �
X
i;i 0

� � ��di;i 0ÿke; k 0e���2ni�ke��1ÿ ni 0
ÿ
k 0e
���

o1 ÿ Oi;i 0
ÿ
ke; k

0
e

�ÿ iGi;i 0
ÿ
ke; k

0
e

��2 dke dk
0
e ,

(59)

P� �X
i;i 0

� � ��di;i 0ÿke; k 0e���2ni�ke��1ÿ ni 0
ÿ
k 0e
���

o1 � Doÿ Oi;i 0
ÿ
ke; k

0
e

�� iGi;i 0
ÿ
ke; k

0
e

��2 dke dk
0
e ,

(60)

K� �
X
i;i 0

� � ��di;i 0ÿke; k 0e���2ni�ke��1ÿ ni 0
ÿ
k 0e
��

�Do� Oi;i 0
ÿ
ke; k

0
e

�� iGi;i 0
ÿ
ke; k

0
e

� dke dk 0e ,
(61)

and all other notations are the same as in the previous
section.

We calculated wnr by using the same approximations
[ke � k 0e, di;i 0 (k, k

0) � d, and Gi;i 0 (k, k
0) � G � const], proce-

dures for determining Oi;i 0 (ke, k
0
e) and integration as for one-

photon probing, as well as the replacement Ee(ke)!
EF
0 � f�Ee(ke)ÿ EF

0 �2 � D(T0)
2g1=2 for Ee(ke)5EF

0 and
Ee(ke)< EF

0 simulating cooling. The frequency detuning
in the DFPS method was assumed zero (Do � 0,
l � l1 � l2), and the probe wavelength was changed
(frequency o � o1 � o2). In the BP method, the point of
coincidence of frequencies was éxed (l � l1 � l2 � const
for Do � 0), while the frequency o2 of one of the BP
components was tuned (Do 6� 0). In the femtosecond
pump ëprobe method, the occupation numbers ni(ke) at
each instant t were assumed to be determined by the Fermi ë
Dirac distribution fF(Ee;E

F
e ,Te) with the instant values of

thermodynamic parameters EF
e (t) and Te(t) calculated by

the method described in section 3 (see Figs 10a, b). In the
case of picosecond excitation, we assumed that the occu-
pation numbers ni(k) were speciéed by the Fermi ëDirac
distribution with the values of thermodynamic parameters

hEF
e it Ë hTeit averaged over the pump pulse duration

tpulse � 20 ps (see Fig. 11), which again simulated the
situation with pump and probe pulses made coincident in
time.

The only étting parameter in the calculation of wnr is the
relaxation rate G of interband polarisation, whose value
(150 cmÿ1) was selected to obtain the best agreement
between the calculated width of spectral features of the
nonlinear response in the DFPS method and the width
observed in one-photon probing experiments [22, 47] and
was not varied then.

The approximation ke � k 0e used in the calculation of wnr
results in the loss of contributions introduced by two-
photon resonance transitions ke ! k 0e between the states
separated by the energy gap within one band. Taking into
account the condition k 0e � ke � k1 ÿ k2 (the law of con-
servation of momentum), the role of such transitions will be
signiécant for states within a narrow vicinity (jkej4 jkF

e jÿ
jk1 ÿ k2j of the Fermi surface for Do � 2D(T0). It is this
circumstance that is reêected by the term the nonresonance
part of an electronic nonlinear response that we introduced
for wnr. However, because of a drastic increase in the state
density near the Fermi surface, the role of transitions of this
type in a HTSC can be rather important. Because of this, the
resonance component wr was introduced into nonlinear
response (57) to take into account the corresponding
contributions. The value of wr was calculated within the
framework of the effective two-level system [103], i.e. the
anisotropy of the band structure was neglected and inte-
gration in (59) ë (61) was performed over energy Ei taking
into account the condition Ei 0 ÿ Ei�2D(T0), similarly to the
approach described in section 2 and [59]. As a result, the
weight of wr with respect to wnr was not determined
unambiguously and was considered below as another étting
parameter. Its value was found to provide the agreement
between the calculated and experimental [56] dependences
Z(Do) / jw(Do)j2 in the BP method and was assumed equal
to 0.075 at T0 � 90 K and proportional to T 2

0 . The latter
took into account an increase in the amplitude and steepness
of the state density peak with decreasing T0. Note also that
the value of wr was calculated by assuming that the
relaxation rate of interband polarisation was lower (G �
50 cmÿ1) than that for wnr (see above) because only in this
case the spectral features of the dependence Z(Do) were
consistent with experimental data [56]. This is not surprising
in principle because the relaxation rate should decrease near
the edges of the allowed state bands [32, 38, 47].

The contribution of processes involving acoustic pho-
nons was calculated from the expression

ws � ÿ
wac

�Do�2 � �4do�2 � i4doDo
, (62)

which follows from the usual relation for nonlinearity of
the Mandelstam ëBrillouin type [104] convoluted with the
spectra of two pulses exciting sound taking into account
that tpulse is much shorter than the decay time of the latter.
In the case of femtosecond pulses, the contribution of term
(62) into total response (57) can be neglected. The
picosecond spectroscopy data were simulated by assuming
that the spectral width was do � 1:5 cmÿ1, in accordance
with the experimental width [25, 56]. As a result, the
component ws contained one free parameter ë the complex
amplitude wac, which was assumed proportional to T0 due
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to an increase in the occupation numbers of acoustic
phonon modes with increasing the initial temperature.

The dependence w(Do,T0) in the BP method was
simulated numerically by assuming that both pump com-
ponents have the wavelength 625 nm at the frequency-
coincidence point (Do � 0), i.e. they are localised in the
spectral region where the electronic part of the nonlinear
response of a HTSC sample is small both in experiments
[22, 47] and theoretically [59 ë 61, 67]. The results of calcu-
lations were étted by using two parameters. The amplitude
wac of the component ws and also w0 were selected so that due
to the interference of all contributions to w, the dependence
of the self-diffraction eféciency Z(Do,T0) / jw(Do,T0)j2 had
`holes' at the points Do � 10 cmÿ1 at T0 ' 90 K and Do �
63 cmÿ1 at T0 � 80 K, in accordance with experimental
data [26]. Note, however, that the point Do � 0 in [26] was
slightly shifted (to l ' 620:4 nm). The dependences
Z(l,T0) / jw(l,T0)j2 measured by the DFPS method were
already calculated without any étting, by using the same
expressions (57) ë (62) and procedures and the values of wac
and w0 that were found as described above.

5. Numerical simulations of a nonlinear response

5.1 One-photon femtosecond probing

First we consider the results of simulation of the kinetics of
the nonlinear response de(l,T0) of a HTSC élm for two
modiécations of the pump ëprobe method with one-photon
femtosecond excited-state probing [59]. We will assume that
the thermodynamic parameters EF

e and Te of the electronic
subsystem of a sample with the same characteristics (see
section 3) change in time due to absorption of 30% of the
total energy (4� 10ÿ7 J) of a 800-nm, 30-fs pulse focused to
a spot of diameter 150 mm on a � 200-nm thick élm.
However, in the érst of the considered situations (see
Fig. 12), we will assume that the instant state of the élm is
probed by a pulse at the same wavelength (800 nm), i.e. we
will simulate the experimental data that are similar to those
obtained in [18, 19, 21,
30 ë 34, 48, 52, 53]. Then (see Fig. 13), we will assume that
a different experimental situation is realised and the state of
the sample is probed by a short pulse of the same duration
in the range from 620 to 680 nm (for example, by a
broadband supercontinuum pulse), which corresponds to
experimental conditions described in [20, 22, 47]. This
modiécation of the pump ëprobe method is often called
spectrochronography [105].

Figure 12a illustrates the transformation of the calcu-
lated kinetics of changes in the modulus of the dielectric
constant De(t) � je(t)j ÿ je0j of the HTSC élm upon varia-
tions of T0 and one-photon probing at a wavelength of
800 nm. The exponential approximation of the initial (with
small probe-pulse delays) part of the family of kinetic curves
De(t,T0) presented here gives a nontrivial dependence of the
relaxation time tDe of the nonlinear response on T0

(Fig. 12b) with a distinct abrupt step (the jump of tDe at
T0 ' 86 K, which is slightly lower than the phase transition
temperature Tc � 90 K). It is easy to see that both the
transformation of the dependence De(t) (Fig. 12a) with
changing T0 (the presence of the region of two-exponential
relaxation of De at T0 in the vicinity of the point Tc � 90 K)
and the calculated dependence tDe(T0) itself (Fig. 12b) are in
good agreement with the experimental kinetics of the

nonlinear response observed in experiments
[32, 34, 41, 48, 52, 53] (see section 1). The only feature of
the dependence tDe(T0) that was lost in the simulation is the
absence of a narrow peak of tDe at the top of the `step'
(Fig. 12b). This is most likely explained by the use of the
approximation according to which the rates of relaxation
processes in (35), (43) ë (45) depend only on mean energies.
Note also that all the above-mentioned `anomalies' of the
nonlinear response kinetics disappear with decreasing the
pump-pulse energy (when EF

e;h coincides with EF
0 ).

Upon one-photon probing of the kinetics of the excited
state of the HTSC by a femtosecond supercontinuum pulse,
the situation becomes more complicated. Figure 13 shows
the calculated spectral dependences of the change in the
modulus of the dielectric constant De(l) � je(l)j ÿ je0j of the
HTSC élm produced by the same pump pulse in the
wavelength range from 620 to 680 nm at T0 � 100 and
40 K and different probe-pulse delays (t � 30 fs, 1, 2, 3, and
7 ps). Although tDe also experiences a jump with decreasing
T0 down to the same value T0 ' 86 K and a step is formed
in the dependences tDe(T0) for all l, nevertheless due to a
continuous displacements of the local extrema of De(l) with
increasing t, the further run of curves tDe(T0) in the low-
temperature region (T0 < 86 K) depends on l (Fig. 14b). As
in experiments [20, 22, 47], there exist points on the wave-
length axis at which De � 0. These points separate spectral
regions with the opposite signs of changes De induced by the
pump pulse (Fig. 13b). Note that this result is not such
trivial as it may seem, because we are dealing with the
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Figure 12. Transformation of the kinetics De (t) � je (t)j ÿ je0j upon one-
photon femtosecond probing at a wavelength of 800 nm and variations
of the initial temperature T0 (a) and the dependence of the relaxation
time tDe on T0 (b).
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simultaneous vanishing of the real and imaginary parts of
the nonlinear response. Therefore, in our opinion, the
presence of such points on the wavelength axis can be
caused only by a change in the phase relations between two
interfering components of de and is related to the frequency
degeneracy of probing [67].

5.2 One-photon picosecond pumping-probing

Recall (see section 4) that in this case the situation with 20-
ps pump and one-photon probe pulses coincident in time
was simulated (i.e. the results of simulation should
correspond to the results of saturation spectroscopy
measurements). Figure 14 illustrates the jump of the
amplitude of changes in the modulus of the dielectric
constant De of the HTSC induced by the pump pulse upon
variations of T0 in the vicinity of the phase transition point
T0 ' Te and probing at 800 and 625 nm. One can see that
the signs of De in these two situations are opposite. This
means that in this case, there also exist points with De � 0,
which separate spectral regions with the opposite signs of
pump-induced variations De. At the same time, it is unlikely
that the corresponding measurements can be performed in
practice because the amplitude of variations in e caused the
pump pulse is too small in this case.

5.3 Two-photon femtosecond probing

The main advantage of two-photon probing methods (BP
and DFPS methods) is a drastic reduction of the initial
background level. This is achieved because in this case the

energy characteristics of light pulses are measured, which
are produced exclusively by nonlinear processes (self-
diffraction) [9 ë 11, 25, 26, 56].

Note at once that the results presented below differ from
those reported in [67] because calculations performed in [67]
neglected the shift of the Fermi level (degeneracy), whose
role, as shown above, proved to be quite important.

Figure 15 shows the transformation of the dependence
of the modulus of the nonlinear response w(l) of the HTSC
upon frequency-degenerate (l � l1;2, k1 6� k2) two-photon
femtosecond probing of the excited state of the HTSC in the
wavelength range from 620 to 680 nm at T0 � 100, 90, 76,
and 40 K for probing instants t � 30 fs, 0.5, 1.5, and 2.0 ps.
In experiments, a differential measurement scheme is often
used when the two situations are compared: in the presence
of the pump pulse (w for EF

e;h 6� EF
0 , Te;h 6� T0) and in its

absence (w0 for EF
e;h � EF

0 , Te;h � T0). The calculated
dependences of the difference Dw � jwj ÿ jw0j on l for
T0 � 100, 90, 76, and 40 K and the same probe-pulse delays
are presented in Figs 16a ë d. One can see that, as in the case
of one-photon probing of changes induced by the pump
pulse (see above), there also exists a point (Dw � 0) on the
wavelength axis separating regions with the opposite signs
of Dw (see Figs 16a ë d).

The exponential approximation of the decay kinetics of
Dw(t) at l ' 653 nm (the long-wavelength peak of Dw) also
gives a nontrivial dependence of the relaxation time on T0

(Fig. 16e) with a distinct step (the jump of tDw in the vicinity
of the same point T0 � 86 K) and a subsequent sharp
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increase in tDw in the low-temperature region. Thus, the
kinetics of Dw(t) has the same features as the nonlinear
response upon one-photon probing. Note that all these
features disappeared completely with decreasing the pump-
pulse energy (when EF

e;h and EF
0 coincided).

5.4 Two-photon picosecond pumping ë probing

Figure 17 illustrates the calculated transformation of the
dependence of the nonresonance component wnr of the total
nonlinear susceptibility w of the HTSC on the frequency
detuning Do of the BP components upon varying T0. Here,
variations in the real and imaginary parts of wnr in the (Do,
T0) plane are shown at the semi-logarithmic scale (over
Do). It is easy to verify that, due to a reasonable choice of
the relaxation rate of the interband polarisation G �
150 cmÿ1 (see section 4), the dependences wnr(Do) have
pronounced spectral features. Also, the jump of wnr is
observed in the vicinity of the point T0 ' Tc, which is
similar to the jumps shown in Fig. 14 (one-photon pico-
second probing).

The resonance component wr in the same plane (Fig. 18)
behaves considerably simpler. The dependence wr(Do)
appears upon decreasing the initial temperature T0 of a
sample when the energy gap begins to form (at the point
T0 � Tc) and then this dependence follows in fact an
increase in the gap width D. Note also that because of

the énite relaxation rate G � 50 cmÿ1 used in the calculation
of wr, the contribution of this component proves to be also
signiécant for Do � 0 (the case of the frequency degener-
acy). Therefore, the contribution of wr should be also taken
into account in the calculation of the total nonlinear
response in the DFPS method (o1 � o2 for k1 6� k2, see
below).

For brevity, we do not present here the dependence of
the component ws(Do,T0) after the étting of its complex
amplitude wac by using the criterion described above. Recall
only that all the spectral features of ws are unambiguously
determined by the spectral width do of the BP components,
while the temperature parameters are determined by the
model itself (see section 4).

Figure 19 shows the dependences of the real and
imaginary parts of the total nonlinear susceptibility w on
T0 and Do. It is easy to verify that the calculated depend-
ence w(Do,T0) preserves all the features of its components
considered above. It follows even more clearly from Fig. 20
where the experimental [56] (Fig. 20a) and calculated
dependence Z(Do,T0) / jw(Do,T0)j2 (Fig. 20b) are pre-
sented in the double logarithmic coordinates Z and Do
for the same range of the initial temperature T0. Taking into
account that in fact only two étting parameters were used in
the model ë slightly different coincidence points of the BP
component frequencies and experimental errors, the agree-
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ment obtained for the family of the dependences can be
considered as satisfactory.

Figure 21 shows at the same double logarithmic scale the
calculated transformation of the dependence Z(Do,T0) upon
the shift of the frequency coincidence point (Do � 0) for the
BP components corresponding to wavelengths 625, 630, and
650 nm. One can see that the choice of the point Do � 0
corresponding to the minimum of the amplitude of the
nonresonance component wnr of the total nonlinear response
w is optimal for revealing the spectral features of its
resonance part wr and, therefore, for determining the
energy-gap parameters.

Figure 22 illustrates the calculated transformation of the
dependences of the real and imaginary parts of the non-
resonance component wnr in the frequency-degenerate case
(o1 � o2 for k1 6� k2, the DFPS method). It is easy to verify
that due to the consideration of the real band structure of a

sample, the dependence wnr(l) exhibits distinct spectral
features, which weakly depend on the initial temperature
T0 of the sample and are consistent as a whole with expe-
rimental data obtained by the pump ëprobe method and
saturation spectroscopy (one-photon probing) [22, 47] and
calculations [59 ë 61]. In this case, a characteristic jump of wnr
is also observed in the vicinity of the phase transition
temperature T0 � Te. The dependences wr(T0), ws(T0), and
w0 are not presented here because within the framework of
the model used for Do � 0, these components are inde-
pendent of the picosecond pumpëprobe wavelength l.

The behaviour of the total nonlinear response w (taking
into account its components ws and w0) proves to be
substantially different in this case. Figure 23 shows varia-
tions in the real and imaginary parts of w and the
experimentally measured dependence of the self-diffraction
eféciency Z(l,T0) / jw(l,T0)j2 in the (l,T0) plane. One can
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see that, while the temperature features of the behaviour of
dependences w(l,T0) and Z(l,T0) are preserved, their
spectral features are inverted, i.e. due to the negative
interference of ws and wnr, the positions of maxima and

minima on the wavelength axis are interchanged. This
means that, in passing from experiments with femtosecond
probing of the response kinetics of HTSCs to the two-
photon picosecond pump ëprobe method (efécient excita-
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tion of processes involving acoustic phonons), the spectral
region of measurements should be shifted.

6. Conclusions

We have shown that almost all spectral, temporal, and
temperature features of the nonlinear response of HTSCs,
which were observed earlier by various methods of non-
linear spectroscopy, can be interpreted within the
framework of the uniéed and comparatively simple
model with a minimal number of étting parameters. It
should be emphasised that this uniéed model can be used to
interpret experiments performed both at high and low levels
of pumping by femtosecond [18 ë 22, 27, 30 ë 34, 47, 48, 52,
53] and picosecond [25, 26, 56] lasers.

The model is based on the consistent consideration of
contributions from all possible interband electronic tran-
sitions to the dielectric constant e of a HTSC sample in the
real (i.e. known from the literature [100]) electronic spec-
trum to which a feature simulating the frozen (i.e.
metastable [58]) energy gap has been artiécially introduced.
The metastable nature of the energy gap explains virtually
all the features of the nonlinear response of the HTSC,
which were observed by various methods of nonlinear
spectroscopy at low excitation levels. At the same time,

the consideration of the degeneracy, i.e. the shift of the
Fermi level for excess free carriers, and the corresponding
decrease in the rates of three-body recombination of free
carriers allows one to interpret variations in the nonlinear
response of the HTSC observed at typical pump-pulse
energies � 10ÿ7 J at the focal spot of diameter 150 mm
(high excitation level). The decrease in the recombination
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rates g �r�ehp and g �r�ehe required for this is achieved at once after
the opening of the energy gap in the electronic spectrum of
the HTSC (the decrease in the initial temperature T0 of the
HTSC sample slightly below the phase transition temper-
ature Tc) due to the unusual shape (compared to the
electronic spectrum of narrow-gap semiconductors) of the
electronic state density function g(Ee).

Note that so far the predictions of models used for
interpreting experimental data could explain only one of the
experiments, contradicting inevitably the results of other
measurements.
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