
Abstract. The structure of the fundamental mode éeld in a
nonplanar ring four-mirror resonator with an aperture is
determined taking into account rotations of the amplitude and
phase distributions of an astigmatic Gaussian beam. The
rotation angles of the axes of these distributions are
calculated upon variations in the characteristic aperture
size and the angle of curvature (nonplanarity) of the
resonator. The effect of the resonator aperture and non-
planarity on the intensity distribution of the interference
pattern behind a mixer is studied. It is shown that interference
fringes have a slope depending on the orientations of the
amplitude and phase distributions of the mode.

Keywords: nonplanar ring resonator, astigmatic Gaussian beam,
ring laser.

1. Introduction

Ring lasers are widely used in various laser devices, in
particular, gyros. Planar ring resonators have been most
thoroughly studied to date. The characteristics of modes in
such resonators can be much easily determined than in
nonplanar resonators due to their symmetry and the
possibility to describe separately the mode structure of
radiation in the resonator plane and in the perpendicular
plane. In nonplanar resonators, the transverse structure of
the beam éeld rotates around the optical axis of the
resonator and a more complicated mode structure is formed
[1]. The amplitude and phase distributions in the beam
cross section can rotate through different angles in free
space regions in such resonators, which can be used for
obtaining a more homogeneous éeld [2, 3]. One of the most
important applications of nonplanar resonators is their use
in multifrequency gyros having the best accuracy to date
[4, 5].

The theory of ring nonplanar resonators was developed
in many papers [2, 5 ë 10]. In [6], the spatial éeld distribu-
tion, polarisation, and the frequency spectrum of a cavity

were determined. In [7], resonators with selecting elements
were considered, in which beams with a complex astigma-
tism are formed. Nonplanar resonators were calculated by
the ray method in [8]. The polarisation properties of a solid-
state nonplanar resonator were investigated in [9]. A
convenient approach for practical calculations of nonplanar
resonators was proposed in [10], where a systematic analysis
allowing one to determine the required parameters of modes
in a nonplanar resonator was presented. Important calcu-
lations of ring resonators were performed in papers [11 ë 14].

Despite a great number of papers devoted to nonplanar
ring resonators, the questions related to the inêuence of the
beam-image rotation on the interference pattern in the
optical mixer of gyros with such a resonator and to the
optimisation and selection of the optical scheme of a
nonplanar resonator providing the most stable interference
pattern and, eventually, the best accuracy of the gyro have
not been adequately studied so far. It is also interesting to
analyse various conégurations of the resonator, both with
the image rotation in a free space and without rotation, but
with the 908 turn of the éeld in the cross section per round
trip in the resonator. In addition, of interest is the effect of
the resonator aperture on the intensity distribution in the
interference pattern behind the mixer.

In this paper, we considered a symmetrical nonplanar
four-mirror resonator in which all the angles of incidence on
mirrors are identical and are determined by the angle of
curvature (nonplanarity) of the resonator, which is selected
so that the rotation of the plane of incidence of the mode
beam on passing from one mirror to another would be 22.58.
The resonator sides had the same length. A spherical mirror
providing the resonator stability was mounted opposite to
the output mirror. Due to its high symmetry and the
rotation of the éeld in the beam cross section through
908 per round trip in the resonator, such a resonator is quite
stable and at the same has no additional intracavity
elements providing the operation of a gyro but introducing
additional errors. In the nonplanar resonator, the counter-
propagating beams with a circular polarisation are
generated, which allows the use of the Zeeman effect to
produce a frequency bias.

In this paper, we studied the inêuence of variations in
the resonator design on its mode structure and the intensity
distribution in the interference pattern at the output of a
mixer taking into account the rotation of the amplitude and
phase distributions of an astigmatic Gaussian beam. We
obtained equations for calculating the parameters of a beam
propagating in a nonplanar resonator and determining the
mode structure of radiation. A scalar model was considered
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by neglecting radiation polarisation. All the calculations
were performed assuming that only the fundamental trans-
verse mode was generated in the resonator.

2. Theoretical description of a nonplanar
four-mirror resonator

The éeld in an astigmatic Gaussian beam can be described
in the coordinate system coupled to the axes of the beam
distribution in the cross section by the expression [10, 15 ë
17]
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q1 and q2 are the complex parameters of the beam; x, y, z
are the transverse and longitudinal coordinates, respec-
tively; G is the éeld amplitude; k � 2p=l; l is the radiation
wavelength; R1 and R2 are the radii of curvature of wave
fronts; o1, and o2 are the cross sections of the beams in
mutually perpendicular directions; and f is the initial
phase. In the beam deéned in this way, the principal axes of
the amplitude and phase distributions coincide and are
directed along the coordinate axes, while the beam is
described by the complex parameters q1(z) and q2(z)
determining the transverse size and the curvature of the
wave front of the beam in the planes xz and yz, respectively.
The difference between the complex parameters in perpen-
dicular planes determines the beam astigmatism. When
these parameters are equal, the beam becomes a usual non-
astigmatic Gaussian beam.

Consider the representation of an astigmatic beam in the
coordinate system rotated through an angle around the
longitudinal axis. In this case, we can write for new
coordinates:
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where
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sinj cosj

� �
is the matrix of rotation of a new coordinate system (x 0, y 0)
through the angle j with respect to the old system (x, y).
The érst term of the sum in the exponent (by omitting
ÿik=2) describing the éeld of expression (1), representing a
quadratic form, can be written in the matrix form
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In this case, by rotating the coordinate system through
the angle j, the quadratic form can be written as
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Thus, the éeld of the astigmatic Gaussian beam in the
coordinate system turned through the angle j with respect
to the system axes, in which the quadratic form has the
canonical form, can be represented in the form
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In this case, the beam is deéned by the coefécients of the
matrix

T � a b
b c

� �
: (9)

If the angle of rotation j � jr � iji of the coordinate
system in the matrix transformation is written in the
complex form assuming that the rotation of the system
through a complex angle is some matrix transformation
(4) ë (7), the obtained representation of the astigmatic beam
will describe the beams in which the amplitude and phase
distributions are turned with respect to each other and the
coordinate system. In this case, the elements of the matrix T
will be complex. To énd the complex parameters of the
beam in such a representation, it is necessary to pass to the
coordinate system in which the imaginary or real part of the
quadratic form will not have the diagonal term, i.e., Imb=0
or Reb=0. In this case, the radii of curvature of the wave
front or the beam cross section are determined from the
coefécients of the quadratic form in the canonical repre-
sentation.

The angles of rotation x and Z of the phase and
amplitude distributions of the coordinate system in which
the quadratic form will have the canonical form of the
corresponding distribution with respect to the initial coor-
dinate system can be determined from the relations
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In the vicinity of points where a 0 � c 0 or a 00 � c 00, we have
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Here, a � a 0 � ia 00, b � b 0 � ib 00, and c � c 0 � ic 00 are the
coefécients of the quadratic form of the matrix T
represented by the imaginary and real parts; d � �1;
e � �1. The signs d and e are determined by the initial
orientation of the axes of distributions with respect to the
coordinate system because there exists some ambiguity in
the determination of the angle of rotation of the second-
order curve. By reducing this curve to the canonical form, it
can be turned through an angle with an accuracy of �p=2,
which does not allow one to determine uniquely the
directions of the major and minir semiaxes. To eliminate
this ambiguity, information on the initial direction of axes
is required.

Thus, knowing the matrix T specifying the astigmatic
Gaussian beam and reducing its imaginary or real part to
the diagonal form by rotating the coordinate system
through the angle ÿx (for the real part) or angle ÿZ (for
the imaginary part), we determine the transverse size of the
beam or curvature of the wave front for the given beam
cross section:
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Consider the transformation of the matrix T in indi-
vidual elements of the resonator: mirrors, free space regions,
and the aperture. After the propagation of the beam
through a free space region of length z, this transformation
can be written in the form

T 0 � �E� zT�ÿ1T;
where

E � 1 0
0 1

� �
(16)

is the unit matrix.
The transformation of the matrix T on passing to the

coordinate system coupled to the plane of incidence of the
beam on the next mirror is obtained by rotating the
coordinate system through the angle j corresponding to
the angle between the planes of incidence of the beam on
successively mounted mirrors. In this case, the direction of
rotation should be opposite to the direction of rotation of
the planes of incidence:

T 0 � Fÿ1�j�TF�j�: (17)

The transformation of the matrix T upon reêection of
the beam from a mirror and performed because it is

necessary to select the right-hand orientation of the direc-
tion vectors of the coordinate system has the form

T 0 �MTM;

where
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� �
: (18)

The propagation of an astigmatic Gaussian beam
through a quadratic corrector is described in the general
case by multiplying the éeld distribution function by the
factor
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A, B, and C are the coefécients, which are complex in the
general form and can describe both the phase and
amplitude correction, which is equivalent to that produced
by an astigmatic lens, a spherical mirror or an astigmatic
aperture. The matrix describing a quadratic corrector in the
general case has the form

K � A B
B C

� �
;

while the transformation of the matrix T corresponding to
the astigmatic beam in the quadratic corrector is

T 0 � T� K. (21)

The transformation of the beam incident and reêected at
an angle of g=2 from a spherical mirror with the radius of
curvature R is described by the relation

T 0 � T� K1; (22)

where
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ÿ 2
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R
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and the transformation of the beam matrix T after
propagation through a Gaussian aperture can be written
in the form

T 0 � T� K2; (24)

where K2 is the matrix describing the quadratic correction
of the beam propagated through a Gaussian elliptic
aperture. Because a circular aperture was used in the
resonator under study, its dimensions Da and Dc along the x
and y axes are the same. In this case, K2 is determined from
the expression
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where l is the radiation wavelength and Da � Dc � D is the
aperture radius.

Consider a non-planar four-mirror resonator (Fig. 1)
with one spherical and three plane mirrors. Output mirror
M1 is located opposite to spherical mirror M3. Aperture D
is place in front of the output mirror. We assume that the
optical scheme is symmetric, i.e., all the arms of the
resonator are identical: AB � BC � CD � DA � L. The
angles of incidence of the beam on mirrors and angles
between the planes BAD, ADC, DCB, and CBA equal to j
in modulus are also identical and are determined by the
angle of nonplanarity b of the resonator.

For a symmetric nonplanar resonator with equal sides
and angles of incidence on mirrors, the angle of non-
planarity b and the angle of rotation j of the plane of
incidence of the beam from one mirror to another are
related by the expression

cos2�b=2� � cosj: (26)

The relation between the angle of incidence g=2 and angle j
has the form

tan2�g=2� � cosj: (27)

For an asymmetric resonator, when the angles of
incidence on mirrors are different, i.e., g=2 6� a=2, the
relations

cosj � tan�g=2� tan�a=2�; (28)

sinj sin a � cos�g=2� sin b (29)

are fulélled.

Let us énd the transformation of the beam matrix T in
each arm of the resonator taking into account the rotation
of the plane of incidence from one mirror to another and the
reorientation of the coordinate system at which the direction
basis becomes right-hand oriented after reêection from a
mirror. In this case, it should be taken into account that the
angle j between the planes of incidence on mirrors changes
its sign on passing from one mirror to another. As the initial
plane, we will use an incident plane of the beam behind
mirror M1 assuming that the beam propagates in the
resonator counter-clockwise. The x 0 axis in the coordinate
system x 0y 0z is located in the initial plane, the z axis is
directed along the beam, and the y 0 axis is directed
perpendicular to the initial plane, providing the right-
hand orientation of the coordinate system. As a result,
we obtain the matrix transformation for the initial beam
described by the matrix T1 upon a round trip in the
resonator:

T2 �MFÿ1�ÿj� ��E� z T1�ÿ1 T1�F�ÿj�M;

T3 �MFÿ1�j� ��E� z T2�ÿ1 T2 � K1�F�j�M;

T4 �MFÿ1�ÿj� ��E� z T3�ÿ1 T3�F�ÿj�M; (30)

T5 �MFÿ1�j� ��E� zT4�ÿ1 T4 � K2�F�j�M;

T1 � T5;

where T2 is the matrix describing the astigmatic Gaussian
beam after propagation through free region CB and
reêection from mirror M2; T3 is the beam matrix after
propagation through free region BA and reêection from
spherical mirror M3; T4 is the beam matrix after
propagation through free region AD and reêection from
mirror M4; T5 is the beam matrix after propagation
through free region DC and aperture and refection from
mirror M1; z is the coordinate measured from the point of
incidence of the beam on the mirror to the section in the
beam in the resonator arms or equal to L upon complete
propagation through the arm.

Similar transformations can be obtained for a counter-
propagating beam. Assuming that after a round trip in the
resonator, the beam arrives at the initial plane of the section
and then, after multiple round trips, a stationary éeld
distribution is established in the resonator, we can énd
both the stationary parameters of the beam and their
variation during the establishment process. For this pur-
pose, we assign to the initial matrix T1 the values of the
matrix T5 obtained due to transformations in equations for
the entire resonator.

3. Numerical calculation of a nonplanar
resonator with one spherical mirror

The matrix recurrent equations obtained in the paper were
solved numerically. As the initial approximation, a family
of matrices T1 was formed which determined a number of
astigmatic beams having in the general form the amplitude
and phase distributions turned, according to (2), through
different angles with respect to the coordinate system. As
the initial approximation, the complex parameters q1 and q2
were calculated for a similar but planar resonator. After
multiple transformations in recurrent equations (30), the

D

M2

g

M1

£

M4

M3 ¡

D
a

0

b
N

C

Figure 1. Optical scheme of the nonplanar resonator of a laser gyro.
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initial matrices T1 were reduced to stationary matrices
determining the distribution of the mode éeld for the
speciéed parameters of the resonator.

The characteristic establishment times of a stationary
mode were determined by the aperture size. Figure 2 shows
the dependence of establishment of the transverse size of the
beam on the number of round trips in the resonator. For the
resonator perimeter length 4L � 0:2092 m and the aperture
D � 0:00053 m, the mode establishment time was 15 ns, and
for the aperture D � 0:001 m, it was � 50 ns.

We calculated a nonplanar resonator for a helium ë neon
Zeeman laser gyro with the following parameters: the
resonator is completely symmetric over angles and arms
lengths, the radiation wavelength is l � 0:6328 mm, the
resonator arm length is L � 0:0523 m, the aperture size
is D � 0:00053 m, the radius of curvature of the spherical
mirror is R � 1:36 m, the angle of nonplanarity
b � 32:031248 corresponds to the angle j � 22:58, and
the angle of incidence of the beam on mirrors is g=2 �
43:866228.

Figures 3a, b show the transverse dimensions of the
beam in the orthogonal directions along the x and y axis in
the resonator cross section in front of the output mirror and
after reêection from it calculated as functions of the distance
z from the output mirror. At a distance of 10 cm from the
output mirror, the beam dimensions are o1 � 281:5 mm and
o2 � 265:6 mm, and o1 � 248:5 mm and o2 � 247:4 mm on
the output mirror (here o1 and o2 are the beam size along
the x and y axes, respectively). Because the aperture is
placed in front of the output mirror in the resonator, the
beam size in each orthogonal direction is characterised by
the two dependences: the upper one, corresponding to the
beam size in front of the aperture on the interval [ÿ0:1; 0]
(in the absence of the aperture, the dependence would
continue on the interval [0; 0.1]), and the lower one,
corresponding to the beam size behind the aperture on
the interval [0; 0.1] and the continuation of the dependence
of the beam size on the interval [ÿ0:1; 0]. Thus, the beam
dimensions sharply change at the point z � 0 after its
propagation through the aperture. The dimensions of the
beam cross section are shown in the coordinate system
coupled with the principal axes of the amplitude distribu-
tion. These dependences demonstrate that beam waists in
orthogonal directions are displaced from the output to
spherical mirror and are located asymmetrically. Figures
3c, d show the dependences of the inverse curvature 1=R of
the wave front of the beam on the distance from the output
mirror. On the interval [ÿ0:1; 0] (Figs 3c, d), it is necessary
to take into account the upper dependence, as well as on the
[0; 0.1] interval. For convenience of the consideration, the
dependences are continued beyond the origin of reference.

It was found in numerical simulations that after the
establishment of the mode structure in the resonator, the
mode parameters were independent of the initial parameters
of a family of beams taken with different angles between the
amplitude and phase distributions. Thus, irrespective of the
initial parameters of the beam, the established distribution
of the éeld was determined by the resonator parameters.
The phase distribution is shown in Fig. 4. The amplitude
éeld distribution in the beam cross section on the output
mirror is well described by a Gaussian distribution. A
noticeable astigmatism of the phase distribution was

o1

�
10ÿ4 m

0 20 40 60 80 100 n

2.55

2.50

2.60

2.65

2.70

2.75

Figure 2. Transverse size o1 of the beam along the x axis as a function of
the number n of round trips in the resonator with the aperture D � 0:001
m (behind the output mirror).
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Figure 3. Transverse sizes o1 and o2 of the beam in directions x (a) and y (b), respectively, as functions of the distance z from the output mirror for
D � 0:00053 m and the dependences of the wave-front curvature Rÿ11 and Rÿ12 of the beam before and after reêection from the output mirror in
directions x (c) and y (d).
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observed, while the astigmatism of the amplitude distribu-
tion was rather small. This is caused by the rotation of the
beam image through 908 during a round trip in the
resonator. In the region between waists in the resonator,
the curvature of the wave front along different axis has
different signs. As a result, the phase distribution of the
transverse structure (the second-order surface near the beam
axis) is a hyperbolic paraboloid. For this reason, the
distribution of the phase factor in the beam cross section
behind the spherical mirror has the shape shown in Fig. 5,
while the amplitude distribution has a noticeable astigma-
tism.

One of the factors affecting the gyro parameters is the
transverse mode structure of the éeld. In most gyros,
attempts are made to provide the conditions for generation
of the fundamental mode of the Gaussian distribution,
although interesting results demonstrating the possibility
of removing frequency locking upon generation of higher-
order modes were obtained in some papers [18]. The
numerical simulation performed in our paper showed
that, as the aperture size was changed, the structure of
an astigmatic beam in the resonator considerably changed,
and its waists in orthogonal directions displaced toward the
spherical mirror with decreasing the aperture size. In the
absence of the aperture, the eigenmode of the resonator is an
astigmatic beam with waists in mutually orthogonal direc-
tions located symmetrically at the same distances from the

output mirror: one ë before reêection [curve ( 1 ) in Fig. 6a]
and another ë after [curve ( 2 ) in Fig. 6b]. As the aperture
size is reduced, the waists move from the output mirror to
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Figure 4. Dependences of the phase factor of the éeld in the beam cross section (a) and equal-phase cross sections in the phase distribution of the beam
(b) on the output mirror.
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Figure 5. Dependences of the phase factor of the éeld in the beam cross section (a) and equal-phase cross sections in the phase distribution of the beam
(b) behind the spherical mirror.
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the spherical one (Figs 7, 8). As a result, both waists enter
the spherical mirror region, and their size érst increases with
decreasing the aperture size and then, having achieved a
maximum, begins to strongly decrease (Fig. 8). Note also
that because the aperture is located on the output mirror,
the dependences in Fig. 7 for positive distances are qual-
itative. In reality, the beam size sharply changes after
propagation through the aperture. Thus, the reduction of
the aperture size leads to the increase in the beam astig-
matism (Figs 7, 8). Therefore, to reduce the beam
astigmatism, the aperture size should be chosen so that
the waist size would not achieve a maximum.

The calculation of the slopes of axes of the amplitude
and phase distributions as functions of the angle of non-
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Figure 7. Family of curves describing transverse sizes o1(z) and o2(z) of
the beam in directions x (a) and y (b), respectively, in different cross
sections of the resonator for different aperture sizes. The distance z is
measured from the output mirror. The negative and positive values of z
correspond to the distances in front of and behind the mirror, respecti-
vely. Curves with waists located closer to zero correspond to a larger
aperture.
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planarity of the resonator showed a considerable change in
the slope of the amplitude distribution (Fig. 9). We con-
sidered small deviations from the angle of nonplanarity,
which provided the rotation of the plane of incidence
through the angle j � 22:58 on passing to the next arm
of the resonator.

Figure 10 shows the calculated dependences of the turn
of the amplitude [Z(z)] and phase [x(z)] distributions of a
beam in the resonator propagating behind the output
mirror. Each of the curves corresponds to a certain angle
of nonplanarity of the resonator. A considerable rotation of
the axes of the amplitude distribution is observed, and at the
same time there exists the angle of nonplanarity at which the
axes are not rotated during the beam propagation. The
amplitude distribution curves arranged from bottom to top
correspond to the increase in the angle of nonplanarity,
while the phase distribution curves arrange in the same
order correspond to the decrease in this angle.

Figure 11 shows the intensity distribution in the inter-
ference pattern at the output of the laser gyro mixer
calculated for the resonator under study. The dip observed
between the beams corresponds to the minimum of the
interference fringe intensity. The beams are combined so
that their overlap region corresponds approximately to one
third of the intensity of each of the beams.

4. Calculation of a nonplanar resonator with two
spherical mirrors

Beams with the amplitude and phase distributions rotating
during propagation in the free-space regions of the
resonator can be formed in it not only upon the deviation
of the angle of nonplanarity from the value providing the
existence of the mode with an astigmatic beam without
rotation of the éeld but also when more than one spherical
mirrors are used. If two spherical mirrors located in the
opposite arms of the resonator are used, a mode is formed

1.0
y
�
10ÿ3 m

a b

ÿ1:0 ÿ0:5ÿ0:5 0
0 0.5

0.5

x
�
10ÿ3 m

y
�
10ÿ4 m

I (arb. units)

ÿ8

ÿ4

0

4

ÿ8 ÿ4 0 4 x
�
10ÿ4 m

0

0.02

0.04

0.06

0.08

Figure 11. Intensity distribution (a) and equal-intensity lines (b) in the interference pattern at the mixer output.

Z; x
�
deg

ÿ60

ÿ40

ÿ20

0

20

x

Z

ÿ0:10 ÿ0:06 ÿ0:02 0.02 0.06 z
�
m

Figure 12. Dependences of the rotation angles Z and x of the amplitude
and phase distributions of the beam on the distance z from the output
plane mirror.

z1; z2
�
m

0

o1;o2

�
10ÿ4m

ÿ0:12
ÿ0:10
ÿ0:08

ÿ0:06

ÿ0:02
ÿ0:04

1.0 1.5 2.0 2.5 3.0 R
�
m

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 R
�
m

2

1

2

1

2.0

2.2

2.4

2.6

2.8

3.0

a

b

Figure 13. Dependences of the beam-waist positions with respect to the
output mirror (a) and of the beam-waist sizes (b) in directions x ( 1 ) and
y ( 2 ) on the radius of curvature of the spherical mirror varying
simultaneously for two spherical mirrors of the resonator.

454 Yu.Yu. Broslavets, T.E. Zaitseva, A.A. Kazakov, A.A. Fomichev



in which the amplitude and phase distributions rotate in the
free-space regions. The rotation of the axes of the
amplitude and phase distributions during the beam
propagation in a free space in the resonator arm is
shown in Fig. 12. The radius of curvature of spherical
mirrors was taken in calculations twice as large as that in
the resonator with one mirror. Figure 13 shows the
dependences of the position and size of the waist on the
radius of curvature of mirrors.

Thus, a change in the curvature of plane mirrors, for
example, upon their bending caused by the action of a
piezoceramic motor of the perimeter control system can lead
to the rotation of the phase and amplitude distributions of
the beam.

5. Experimental measurement of the parameters
of an astigmatic Gaussian beam

We measured the transverse distribution of the éeld at the
output of an LGK-200 Zeeman laser gyro with a nonplanar
resonator, whose parameters were determined above. The
intensity distribution in the output-beam cross section
shows that the beam has no astigmatism and is virtually
circular. The dependences of the transverse intensity
distributions measured in orthogonal directions at a
distance of 10 cm behind the output mirror showed
(Fig. 14) that the difference between measured and
calculated waist sizes was smaller than 10 mm within the
measurement error. The transverse dimensions of the beam
o1 � 287 mm and o2 � 271 mm agree with the calculated
values (Fig. 3) o1 � 281:5 mm and o2 � 265:6 mm.

The intensity distribution in the interference pattern
shown in Fig. 15 was measured in the far-éeld zone at

the output of a mixer providing the convergence of the
beams at the required angle. The convergence angle Y
(Fig. 16) was chosen to obtain only one interference
maximum or minimum in the overlap region of the beams.
The intensity distributions obtained in this way revealed the
presence of the slope of interference fringes (Fig. 15). The
numerical simulations showed that the slope of interference
fringes (Fig. 11) was determined by the turn of the phase
distribution axes (Fig. 4). If the turn angle of the phase
distribution is zero, the interference fringes prove to be
perpendicular to the line connecting the axes of the beams.

Thus, the rotation of the phase distribution in the beam
cross section leads to the slope of interference fringes, which
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behind the output mirror.
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should be taken into account during the orientation of a
photodetector.

6. Conclusions

We have used a simple method for describing nonplanar
resonators based on quadratic matrices determining an
astigmatic Gaussian beam. Despite its simplicity, this
method allowed us to describe the éeld distribution in
the resonator and calculate the main parameters of a mode
such as the beam cross section, the wave-front curvature,
and the rotation angles of the amplitude and phase
distributions.

The numerical calculations have shown that in a non-
planar four-mirror resonator with one spherical mirror with
the angle of nonplanarity chosen equal to 32.0312368, the
mode is an astigmatic Gaussian beam without rotation of
the éeld during propagation through free spaces. At the
same time, the presence of angles between the plane of
incidence on the resonator mirrors speciéed by the non-
planarity angle of the resonator leads to the rotation of the
amplitude and phase distributions of the beam through 908
per round trip in the resonator. Such a conéguration allows
one to equalise eféciently the semiaxes of the amplitude
distribution on the output mirror, and at the same time the
phase distribution of the beam remains astigmatic.

A mode formed in a nonplanar resonator with a
spherical mirror without an aperture has two waists in
mutually orthogonal directions, which are located symmetri-
cally at the same distance from the output mirror placed
opposite to the spherical mirror. The use of an aperture on
the output mirror leads to the displacement of the waists
towards the spherical mirror, which increases with decreas-
ing the aperture diameter.

The calculated rotation of interference fringes in the
observation plane of the interference pattern taking place
upon a change in the rotation angle of the semiaxes of the
phase distribution was also observed in experiments with an
LGK-200 Zeeman laser gyro during measurements of the
intensity distribution in the interference pattern of two
counterpropagating beams in the gyro.

In nonplanar resonators with rotating amplitude and
phase distributions of the mode, it is necessary to take into
account the slope of axes of these distributions in a mixer.
The deviation of the angle of nonplanarity of the resonator
from the value providing the rotation of the amplitude and
phase distributions through 908 per round trip in the
resonator leads to the formation of beams with rotation
of the axes of amplitude and phase distributions observed in
their cross sections in certain regions of the resonator.

The éeld distribution calculated for a nonplanar reso-
nator with two spherical mirrors revealed the presence of a
mode with rotating amplitude and phase distributions in the
free-space regions of the resonator.

Our study has shown that the mode of a nonplanar four-
mirror resonator with one spherical mirror is an astigmatic
Gaussian beam in which the rotation of the axes of
amplitude and phase distributions through different angles
is observed in the general case, which results in the
redistribution of the structure of the interference pattern
and rotation of interference fringes. To improve the
accuracy and stability of a laser gyro, this rotation should
be taken into account in the gyro mixer.
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