
Abstract. A three-level neural network is considered which
contains twenty éve inputs, two hidden elements, and four
outputs and is trained to recognise four situations at the
input: the appearance of the fundamental mode of a Fabry ë
Perot resonator, the superposition of the fundamental and the
érst mode of the resonator with zero phases, the superposition
of the fundamental and érst mode of the resonator with
phases 0 and p, and the appearance of the second mode and
the superposition of the fundamental and second modes. It is
shown that the network can recognise correctly variations in
the mode composition of the Fabry ëPerot resonator over the
modulus of the transverse distribution of the éeld during the
development of two-mode lasing. The operation of the
network is studied for the two response times: the time
shorter than the resonator time and the time determined by
the response time of a pyroelectric detector of laser radiation.

Keywords: laser, Fabry-Perot resonator, lasing dynamics, numeri-
cal simulation, neural network.

1. Introduction

The dynamics of transverse distributions of the laser
emission éeld can be studied in detail by modern theoretical
methods. Analytic investigations of the dynamics are based
on the expansion of éeld and gain distributions in a set of
orthogonal functions or in the modes of an empty resonator
and description of the dynamics with the help of ordinary
differential equations [1 ë 4]. Such an approximation was
used to study the bifurcation mechanisms of transitions
between different lasing regimes and to analyse the rotation
regimes of transverse distributions of the éeld and the
formation of vortices [5 ë 7]. An advantage of this approach
is the possibility to solve ordinary differential equations by
high-precision numerical methods allowing one to study the
chaotic dynamics of the optical éeld. It was shown in [8]
that the results obtained by this method in the case of
stationary pumping coincide as a whole with numerical
results obtained by the Fox ëLee method. However, the

distribution proéles obtained by these two methods can
have local differences within 10% [8].

The numerical methods for determining the stationary
types of oscillations in optical resonators are well developed
at present [9 ë 14]. The problem of énding these oscillations
from the éeld distributions obtained upon successive round-
trip transits of radiation in the resonator was formulated in
[9], and algorithms of calculations by the methods of Prony,
Krylov, and Arnoldi were presented in [9 ë 14]. In particular,
it was shown [12] for the complicated case of an unstable
confocal resonator that the relative calculation accuracy of
the eigenvalues and eigenvectors can achieve 10ÿ11. The
preliminary determination of mode distributions speciées
the initial conditions for calculating transient lasing in lasers
with different resonators and constant pumping of the active
medium [15, 16]. As a result, new types of lasing inherent in
a laser as a distributed system were found [16] and the shape
of modes and proéles of the gain in the nonlinear case were
determined.

At present modes of higher orders than the fundamental
mode are also used in technological laser processes. For
example, radially polarised beams based on the érst-mode
éeld can be stronger absorbed in metal caverns than beams
with different polarisations [17]. In this case, the admixture
of the fundamental mode or higher-order modes in the light
éeld is undesirable. On the other hand, in technological
processes using the fundamental mode, the excitation of the
érst transverse mode is also undesirable because it gives rise
to oscillations of the angular distribution of radiation.
Therefore, the development of laser technologies requires
the system to control the mode spectrum of lasers. The
analytic and numerical methods developed at present can be
used for the elaboration of such systems.

It is assumed in this paper that the near-éeld transverse
radiation intensity distributions have speciéc features from
which the number of generated modes and the relation
between their amplitudes and phases can be found (such
distributions are presented, for example, in [18]). Modern
methods for controlling the mode composition do not
require the determination of these features. It is sufécient
to use neural networks (NNs) trained to recognise the
required situations [19, 20]. The situations considered in
this paper are the appearance at the NN input either of the
fundamental mode of a Fabry ë Perot resonator or the
superposition of the fundamental and érst modes of the
resonator with zero phases, or the superposition of the
fundamental and érst modes with phases 0 and p, or of the
second mode or the superposition of the fundamental and
second modes.
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2. The neutral network

Figure 1 shows a radiation source, the arrangement and
design of a NN. It is assumed that the NN has a classical
three-level structure with twenty-éve input neurons, two
neurons in the hidden layer, and four neurons in the output
layer. The response of neurons is described by the sigmoid
function [19]. It is assumed that photodetectors in the érst
layer are small compared to the distribution width and can
be considered as point sources.

First the mode composition of an empty Fabry ë Perot
resonator was determined in the numerical experiment and a
set of examples for NN training was created based on this
composition. The set used here consisted of 33 distributions
grouped according to the number of output neurons. The
érst group contained the a( j )jU0(x)j distributions. When
distributions from this group entered the NN input, the érst
output neuron y1 should give the value equal to unity and
the other three neurons y2 ÿ y4 should give zero. The second
and third groups contained distributions a( j )jU0(x)
� b( l )U1(x)j and a( j )jU0(x)ÿ b( l )U1(x)j, respectively.
For these input distributions, the conditions y2 � 1 ( y1,
y3, y4 � 0) and y3 � 1 ( y1, y2, y4 � 0) should be fulélled.
The fourth group contained distributions a( j )jU2(x)j and
a( j )jU0(x)� b( l )U2(x)j. In this case, y4 � 1 ( y1 � y2 �
y3 � 0). In the expressions presented above, U0;1;2(x) are
distributions of the complex amplitudes of the fundamental,
érst, and second modes, respectively; j, l � 1, 2, 3; a1;2;3 �
0.8, 0.9, 1.0; b1;2;3 � 0:1, 0.2, 0.3. Thus, the NN was trained
by this set of examples to recognise at its input not speciéc
distributions but some of their forms such as the funda-
mental mode, two superpositions of the fundamental and

érst modes, and superpositions including the second mode
(the NN was not adjusted to recognise the mode ampli-
tudes).

Two methods of training were used: the method of
backward propagation and evolution approach [19, 20]. In
the latter case, training was performed by changing gen-
erations. In each generation, a population was formed with
individual species representing a set of the weights of hidden
and output neurons randomly perturbed with small ampli-
tude. The number of species in the population was � 100.
The population was formed by using the elite strategy [20]:
the most successful species from the previous generation
passed to the next generation (i.e. the species recognising
input distributions in the best way) and the rest of the
members of the population were formed based on this
species during mutations (random perturbations of weights).
Thus, the next generation could not deteriorate the recog-
nition of the mode forms. Species were not crossed despite
recommendations [20]. Nevertheless, the training occurred
rather rapidly. Figure 2a shows the time dependence of the
root-mean-square error of the network output for the most
successful species. One can see that the error decreased from
� 1 to 10ÿ90 for 6 min. During this time, 6000 generations
have changed. One can see from Fig. 2b that the curve is not
smooth, i.e. the evolution weakened sometimes. This
occurred when no species improving the population were
found in the corresponding generation.

According the NN structure, its hidden layer should in
fact compress information on the input distribution to two
bits. The least successful values of the outputs of neurons of
the hidden layer for each of the four groups were
(1:17� 10ÿ3; 9:95� 10ÿ1), (3:18� 10ÿ10; 1:81� 10ÿ4),
(1.00; 1.00) and (9:97� 10ÿ1; 2:46� 10ÿ4), respectively.
One can see that during the evolution the hidden layer
was trained to number groups by bits (0; 1), (0; 0), (1; 1),
(1; 0). Nevertheless, the error in the hidden layer is not such
small as that in the output layer, i.e. the NN compensated
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Figure 1. System for control of the mode composition of laser radiation:
( 1, 3 ) Fabry ë Perot resonator mirrors; ( 2 ) active-medium layer; ( 4 )
beamsplitter; (L ) distance between mirrors; (LS) logical scheme giving
the value ysum � y2 or ysum � y3 if y2 or y3 are greater than 0.5.
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Figure 2. Time dependence of the logarithm of the root-mean-square
error of the outputs of the NN on the training set (a) and slowing down
of the training rate in the absence of proper species in the population (b).
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errors of the operation of the hidden layer in the output
layer. Note that training by the method of backward
propagation occurred much slower.

3. The calculation scheme

Transient lasing was calculated in a plane geometry. In the
small-angle approximation of the scalar diffraction theory,
the electric éeld E in the resonator was represented in the
form of counterpropagating plane waves modulated by
smooth envelopes F and B:

E�x; z; t� � �F�x; z; t� exp�ik0z�

�B�x; z; t� exp�ÿik0z� exp�ÿio0t�. (1)

Here, o0 is the carrier frequency and k0 � o0=c. The
dynamics of the envelopes F(x, z, t) and B(x, z, t) of the
forward and backward waves, respectively, was described
by the equations

2ik0

�
1

c

qB
qt
ÿ qB

qz

�
� q 2B

qx 2
ÿ ik0gB � 0, (2)

2ik0

�
1

c

qF
qt
� qF

qz

�
� q 2F

qx 2
ÿ ik0gF � 0. (3)

The waves satisfy the reêection conditions at mirrors:

F�x; 0; t� � ÿB�x; 0; t�r1, (4)

B�x;L; t� � ÿF�x;L; t�r2. (5)

Here, r1 and r2 are the reêection coefécients of the highly
reêecting and output mirrors, respectively, and L is the
distances between the mirrors. The ampliécation of
radiation in the active medium was described by the
equation

t
qg
qt
� g0�x� ÿ g

ÿ
1� I�, (6)

where I � jF j2 � jBj2 is the radiation intensity averaged
over the interference oscillations of counterpropagating
waves and normalised to the saturation value [21]. Thus,
the calculations took into account simulated emission and
relaxation with the time constant t.

The initial condition F (x, 0, 0) for the forward wave was
speciéed with the help of the distribution of the fundamental
mode U0(x). The initial condition B(x, 0, 0) for the back-
ward wave was found with the help of the round-trip transit
of radiation in the resonator. The amplitudes of the initial
distributions of the forward and backward waves and the
initial distribution of the gain were chosen close to their
stationary values. This made it possible to compare the
calculations of single-mode lasing by expressions (2) ë (6)
with analytic results for weak perturbations [21].

The Fabry ë Perot resonator had the following param-
eters: the radius of mirrors a � 1 cm, the distance between
mirrors L � 150 cm, the reêection coefécients r1 � 1 and
r2 � 0:8, the resonator Fresnel number NF � 6:25. The
threshold gain of the fundamental mode was gt �
1:5337� 10ÿ3 cmÿ1, the pump excess over the threshold
was k � g0=gt, and the relaxation time was t � 10ÿ5 s. Thus,
the physical parameters of the problem corresponded to

those used in [15]. The differences were that the active
medium was only one thin layer adjacent to the érst mirror
(in [15], the active-medium layer was located in the middle
of the network element along the z axis) and the diffraction
step was performed by calculating the Fresnel ëKirchhoff
integral (in [15], the spectral approach was used). The size of
the grid in the transverse direction was Mx � 257. Calcu-
lations were performed for the pump excess over the
threshold k � 1:34ÿ 1:55. Distributions corresponding to
small values of k proved to be the most difécult for
recognition; for this reason, the time dependences are
presented below for k � 1:347.

4. The fast-response neural network

The time dependence of the radiation power Pout on the
output mirror in the interval 0 ë 320 ms is shown in Fig. 3a.
The region of the curve between 0 and 220 ms corresponds
to single-mode lasing, and region AB corresponds to the
generation of the fundamental mode of constant amplitude.
Figure 3b presents the time dependences of the power Pout

without the constant component for the point model (curve
with a smaller amplitude) and calculation scheme (2) ë (6).
One can see that the curves are in good agreement although
the calculation model is greatly simpliéed. The theoretical
period Td of relaxation oscillations found in the point
model [21] was 5.96 ms. The numerical experiment gave the
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Figure 3. Time dependences of the radiation power Pout on the output
mirror (A is the region of single-mode lasing; B is the region of a passage
to two-mode lasing) (a) and of the power Pout without the constant
component for the point model (curve with a smaller amplitude) and for
the calculation scheme (2) ë (6) (b), as well as the NN outputs in the
region A (c).
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value 5.91 ms with a root-mean-square deviation of
0.003 msÿ1. Similarly, the attenuation coefécient dd for
the point model was 0.0675 msÿ1, while its calculated value
was 0.0706 msÿ1 for the root-mean-square deviation of
0.006 msÿ1. Such deviations correspond as a whole to
results [15]. Therefore, the calculation scheme is valid for
studying transient lasing regimes.

Figire 3c shows the output signals y1 ÿ y4 of the NN in
region A in the case of a fast response of the network (the
response time is smaller than the round-trip transit time for
radiation in the resonator). One can see that y1 � 1, while
other output signals y2, y3, and y4 of the NN are equal to
zero. Thus, the NN correctly recognised the single-mode
lasing regime.

Upon passing to two-mode lasing (t > 200 ms), the
average emission power Pout on the output mirror increases
weakly (� 0:5%) and is unnoticeable in Fig. 3a. Figure 4a
presents the envelope of the oscillation amplitude of the
angular maximum of the far-éeld radiation (to demonstrate
oscillations themselves, the time scale should be much

smaller). Figures 4b ë c show the NN outputs y1 ÿ y3 for
a fast response (for each round trip in the resonator). The
output y4 � 0 is not shown in Fig. 4. One can see the NN
correctly recognised the change in the lasing regime in the
region of 240 ms. The intermediate region, in which the
value of y1 was between 0 and 1, had a width of � 40 ms
(Fig. 4b). After the end of the intermediate region, the value
of y1 was stabilised at zero ë the NN ceased to observe
single-mode lasing, and the values of y2 and y3 (Figs 4c, d)
showed the appearance of the érst mode. However, y2 and
y3 also take zero and intermediate values. The reason is
explained in Fig. 5, which shows the positions of the angular
maximum jmax of far-éeld radiation at small time intervals
(Fig. 5a) and neuron outputs y2 and y3, which, as follows
from Figs 5b, c, correspond to the variable deviations of the
angular radiation maximum from the resonator axis. The
use of the logical scheme (see Fig. 1) considerable improves
the recognition (Fig. 5d). The value ysum � 0 corresponds to
the phase shift between the fundamental and érst modes
equal to � p=2.
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Distributions jFj(x=a) for two instants differing approx-
imately by half the beat period and for established single-
mode lasing are shown in Fig. 6a. Figures 6b ë d present the
dependence of the beat period, the oscillation amplitude of
the angular directivity of radiation, and the oscillation
amplitude of the wave intensity averaged over an aperture
on the output mirror on the pump excess k over the
threshold. All these parameters increase with increasing
k. In the given case, the beat period for an empty resonator
is 0.3884 ms, in good agreement with its values for two-
model lasing (Fig. 6b). The angular far-éeld oscillations of
the beam are consistent with those obtained in [15]. Note
that the far-éeld oscillation amplitude of the beam revealed
some nonlinearity (Fig. 6c) compared to the oscillation
amplitude of the wave intensity �I averaged over the aperture
(Fig. 6d). As the pump power was increased, the conditions
for the recognition of input distributions improved and the
intermediate values of the NN outputs decreased (y1ÿ4 �

0.5). The corresponding égures are similar to Figs 4b ë d
and 5b ë d.

5. The slow-response neural network

The response time of pyroelectric IR detectors based on
triglycinesulfate is 0.1 ë 0.01 ms and the interval between
measurements is 55.6 ms [22]. For deéniteness, the response
time was set equal to 0.1 ms, which is comparable with the
beat period 0.39 ms. The operation of the NN with such
parameters was studied for 3200 ms (Fig. 7), the output
signals y1 ÿ ysum being integrated during 0.1 ms. Figure 7a
shows that the NN well recognises the cessation of single-
mode lasing; however, two-mode lasing is recognised by the
NN with some omissions (Figs 7b, c). The omissions appear
either when the counting instant falls on a comparatively
symmetric distribution or a distribution with different
relation between mode phases. In this case, the recognition
quality can be improved by combining signals y2 and y3.
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the complex amplitude of radiation incident on the output mirror at the
instants of maximum deviations (t1, t2) and upon single-mode lasing (t0)
(a), and dependences of the beat period, the oscillation amplitude of the
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average radiation intensity incident on the output mirror on the pump
excess over the threshold k (b ë d).
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The total signal is shown in Fig. 7d. One can see that
omission at ysum � 5 are compensated by smaller values of
ysum, which demonstrates good recognition quality.

The main advantage of the NN considered above is a
small number of arithmetic operations of the processor
required for obtaining the values of y1 ÿ y4 from input
signals (i.e. a small recognition time trcg). The value of trcg
was estimated by realising the procedure of repeated
recognition of input distributions without a round trip of
radiation in the resonator and calculation of the gain. The
number of recognition events was 320 000, and the time was
measured by the system clock. For the 500-MHz Celeron
processor, trcg � 34:8 ms, which is smaller than the interval
between counts equal to 55.6 ms.

6. Conclusions

It has been demonstrated that a neural network can be
trained by using a set of calculated distributions to
recognise reliably the onset of two-mode lasing. In the
author's opinion, the approach to control the mode
composition proposed in the paper is acceptable in practice
and makes it possible to use theoretical results more
eféciently. This approach can be further developed by using
improved neural networks and a better processing of their
output signals to control a more complicated lasing
dynamics.
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