
Abstract. The distribution of polarisation of a light éeld in
the cross section of a beam at the sum frequency is
investigated upon the collinear interaction of two elliptically
polarised Gaussian beams in a nonlinear isotropic gyrotropic
medium. It is shown that the ellipticity, the angle of rotation
of the principal axis of the polarisation ellipse, and the
rotation direction of the electric éeld vector of radiation at
the sum frequency in the beam cross section strongly depend
on the angle in the polar coordinate system. The ranges of
parameters of elliptically polarised fundamental Gaussian
beams are found where the cross section of the sum-frequency
beam is divided into sectors with different rotation directions
of the electric éeld vector. The equations of the straight lines
determining the boundaries of these sectors contain param-
eters specifying the shape and orientation of polarisation
ellipses of the fundamental waves and the ratio of their wave
vectors. In the case of opposite circular polarisations of these
waves, the ellipticity of the sum-frequency beam does not
change in the beam cross section and the principal axes of
polarisation ellipses of the light éeld are oriented perpendic-
ular to the radius in polar coordinates.

Keywords: sum-frequency generation, elliptic polarisation, Gaus-
sian beam, spatial dispersion, gyrotropy.

1. Introduction

The polarisation self-action and interaction of light beams
is described, as a rule, by obtaining the system of nonlinear
equations for slowly varying complex amplitudes of linearly
or circularly polarised orthogonal components of the light
éeld [1]. The solution of this system allows one to analyse
[2] variations in the intensity I(r, z), the ellipticity M(r, z),
the angle of rotation C(r, z) of the principal axis of the
polarisation ellipse, and the angle a(r, z) determining the
orientation of the electric éeld vector at a éxed instant of

time (measured, for example, from the principal axis of the
polarisation ellipse) at different points of the cross section
of a light beam propagating along the z axis (r is the radius-
vector component in the xy plane).

Different distributions of the light-éeld polarisation in
the plane perpendicular to the beam propagation axis can be
most conveniently and clearly illustrated by polarisation
ellipses constructed at different points of the beam cross
section [2]. The sum of squares of the semiaxes of the
polarisation ellipse is proportional to the light intensity at its
centre, the axial ratio is uniquely determined by the
parameter M(r, z), and the tilt angle of its principal axis
is equal to the angle C(r, z). The orientation a(r, z) of the
electric éeld vector at the éxed instant of time characterises
the phase of its oscillations.

Theoretical and experimental studies performed to date
have shown conclusively that the polarisation self-action
and interaction of waves are delicate but widespread effects
of nonlinear optics [3]. The polarisation of waves incident
on a nonlinear medium substantially determines processes of
nonlinear optical interaction and self-action of light. There-
fore, a time-consuming consideration of a change in the
polarisation of the interacting waves is justiéed and is of
interest. However, this consideration is performed, as a rule,
in the plane wave approximation. In the case of beams, only
linearly polarised waves incident on a nonlinear medium are
usually considered or a change in the elliptical polarisation
near their axes with increasing propagation coordinate is
analysed [4, 5]. This is explained not only by cumbersome
expressions obtained for I(r, z), M(r, z), C(r, z), and a(r, z) in
the problems of nonlinear optics (which are sometimes
represented in quadratures) and diféculties involved in
the interpretation of the found dependences but also by
the absence of stimulating experiments. In addition, many
nonlinear effects of the frequency shift are forbidden in the
plane wave approximation [6] but are quite possible if the
spatial limitedness of light beams is taken into account [4],
and therefore the possibility of the appearance of a signal
wave is discussed érst of all.

The above discussion concerns to a great extent the
problem of sum-frequency generation in an isotropic chiral
medium (the symmetry 11) by two focused coaxial
copropagating Gaussian beams sharing the waist plane
[7]. The appearance of a sum-frequency signal in this
case is related to the local electric dipole optical suscept-
ibility ŵ �2�(o1 � o2;o1;o2) and is forbidden in the plane
wave approximation because the polarisation vector of the
medium at the sum frequency produced by two plane pump
waves with parallel wave vectors has only the longitudinal
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component and cannot be the source of a free transverse
signal wave. Spatially limited beams have small (of the érst
order of smallness in the divergence angle) longitudinal
components of the electromagnetic éeld [to satisfy the
condition divE(o1;2) � 0 in vacuum], which make possible
the experimental observation of sum-frequency generation
in this geometry.

Sum-frequency generation in a chiral medium by two
focused coaxial Gaussian beams was considered in [7]. This
problem is of current interest for revealing mechanisms that
can be responsible for second-harmonic generation in an
isotropic non-centrally symmetric suspension of fragments
of purple membranes of bacteria Halobacterium halobium
observed during the propagation of a linearly polarised laser
pulse in the suspension [6].

In [7], quadrature formulas for the electric éeld strength
and the wave power at the sum frequency were obtained and
analytic expressions were found for these quantities in the
case of the exact phase synchronism and tight focusing of
fundamental beams to the centre of an extended medium. It
was shown that in the latter case the sum-frequency
generation is impossible if Dk � k1 � k2 ÿ ksf < 0 (where
k1, k2, and ksf are the wave numbers of elliptically polarised
electromagnetic waves with frequencies o1, o2, and
osf � o1 � o2, respectively, propagating in a medium),
while for some positive Dk quasi-phase matching is
achieved. In the latter case, the transverse intensity dis-
tribution of the beam at the sum frequency has the form of a
ring with radius increasing with Dk. The dependence of the
wave power at the sum frequency on the polarisation of
fundamental beams was also thoroughly studied. The results
obtained in [7] have demonstrated that such interaction
geometry of fundamental beams can be promising for
obtaining quasi-phase matching.

The spatial distribution of polarisation of the light éeld
in a plane perpendicular to the propagation direction of the
signal wave at the sum frequency was studied neither in
classical paper [8] nor later (see, for example, [9 ë 14]). The
only exclusion is the éeld distribution in the beam cross
section at the sum frequency obtained in [7] for the simplest
case of linearly polarised fundamental waves.

In this paper, we studied the formation of a light beam
inhomogeneously polarised in the cross section in an
isotropic chiral medium upon generation of the sum
frequency by two focused collinear homogeneously elliptic
polarised Gaussian beams. The images of polarisation
ellipses at different points of the light beam cross section
at the sum frequency constructed by using the formulas
obtained illustrate strong dependences of the intensity,
parameters of the polarisation ellipse of the light éeld,
and the orientation angle a(r, z) of the electric éeld vector at
a éxed instant on transverse coordinates. A complicated
type of the dependence a(r, z � const) is caused by a
strongly varying phase difference of electric-éeld oscillations
at different points of the light beam cross section at a éxed
instant of time. Note that in the plane wave approximation,
a(r, z) � 0 for any r and z.

2. Formulation of the problem
and its analytic solution

The concepts of the `transverse' and `longitudinal' compo-
nents of the electric éeld of an electromagnetic wave are
convenient only in the case of plane waves. The beam can

be naturally represented as a superposition of the plane-
wave spatial Fourier harmonics whose wave vectors are
slightly noncollinear, and therefore even in the case when
the éeld in the beam is polarised perpendicular to its axis, it
should have nevertheless a small longitudinal component.
The natural generalisation of these two concepts is the
beams of the so-called vortex and potential types. They are
speciéed by the conditions divE � 0 and rotE � 0,
respectively. One can easily see that in this case of such
a deénition, each spatial Fourier harmonic of the potential
or vortex beam is the longitudinal or transverse plane wave,
respectively, and, therefore, all the speciéc properties of
longitudinal or transverse electromagnetic waves will be
`inherited' by the potential or vortex beams, respectively.

Note that the potential beam has a small éeld compo-
nent directed perpendicular to its axis, while the vortex
beam has a small longitudinal component. These compo-
nents are the quantities of the érst order of smallness in the
divergence angle of the beam. It is known that the potential
beam cannot propagate freely and exits only inside a
medium, being `coupled' with the corresponding polar-
isation wave of matter. Having approached the surface,
it makes, due to boundary conditions, the contribution to a
free wave; however, this contribution should be taken into
account as a part of the signal from the surface. In this
paper, as in [5, 7], we will consider only vortex electro-
magnetic waves at the sum frequency because only these
waves are produced in the medium.

Let us assume that the symmetry axes of both homoge-
neously elliptically polarised fundamental Gaussian beams
with Em(r) (m � 1, 2) propagating in a nonlinear isotropic
gyrotropic medium coincide with the z axis and the beams
share the waist plane at z � l0. Then,

Em�r� � �em � ikÿ1m ez�emH��

� E0m

bm�z�
exp

�
ÿ iomt� ikm�zÿ l0� ÿ

r 2

w 2
mbm�z�

�
. (1)

Here, H � q=qr; bm(z) � 1� i(zÿ l0)=ldm; ldm � kmw
2
m=2 is

the diffraction length; wm is the beam waist half-width; E0m

is the scalar complex amplitude; em is the complex
polarisation vector of the beam with frequency om

(jem(r, t)j2 � 1); and ez is the unit vector along the z axis.
Note that expression (1) satisées the equation divE � 0
with an accuracy to the term of the érst order of smallness
in the divergence angle. We assume that the wave number
km is the same for the right- and left-hand circularly
polarised waves, thereby neglecting linear absorption and
linear gyration. The consideration of the latter gives rise
only to small corrections to rather complex analytic
formulas.

The solution of the parabolic equation for the slowly
varying amplitude A of the vortex component E sf

? �
A exp�ÿiosft� iksf(zÿ l0)� of the éeld of the signal wave
at the sum frequency, which contains in the right-hand side
the vortex component of the polarisation vector
P(osf; r) � w �2��E1(r)E2(r)� of matter, was found in quad-
ratures in [7]:

A�r; z� �
���
2
p

F0�r; z�
�
�e1r��eze2� �

k1
ksf

r�ez�e1e2��
�
, (2)

where
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F0�r; z� �
���
2
p

piksfw
�2�E01E02�ld2 ÿ ld1�ls

esfld1ld2�1� i�zÿ l0�=ls�2
J�r;ÿl0; zÿ l0�; (3)

esf is the dielectric constant of matter at the frequency
o1 � o2; w �2� � w �2�xyz (osf;o1;o2) is the only independent
component of the tensor of quadratic local optical sus-
ceptibility of the medium; and ls� (k1 � k2)w

2
s =2; wÿ2s �

wÿ21 � wÿ22 . The dimensionless integral J (z) determines the
dependence of E sf

? on the propagation coordinate

J�r;ÿl0; zÿ l0 � lsz� �
� z

ÿl0=ls
dz 0
�1� iz�2
B 2�z0; z�

� exp

�
ivsfz

0 ÿ r 2

w 2
s

1� il 2s z
0=�ld1ld2�

B�z0; z�
�
, (4)

where z � (zÿ l0)=ls is the normalised propagation coor-
dinate; vsf � Dkls; Dk is the mismatch of the wave vectors
determined earlier; and

B�z0; z� �
�
1� i

ls
ld1

z0
��

1� i
ls
ld2

z0
�

ÿ i
2ls

ksfw 2
s

�z0 ÿ z�
�
1� i

lsz
0

ld1ld2

�
. (5)

The éeld E sf is completely characterised by the nor-
malised intensity I(r, z) � jAj2, the ellipticity M(r, z) �
2 Im(AxA

�
y )=jAj2 (note that ÿ14M4 1), the angle of

rotation of the principal axis of the polarisation ellipse

C�r; z� � 0:5 arg
�jAxj2 ÿ jAyj2 � 2iRe�AxA

�
y �
	
, (6)

and the angle

a�r; z; t� � argfcos�y�r; z; t�� � ig�r; z� sin�y�r; z; t��g, (7)

which determined the orientation of the electric éled vector
at the instant t measured, for example, from the principal
axis of the polarisation ellipse. In expression (7),

y�r; z; t� � 0:5 arg
�ÿ

A 2
x � A 2

y

�
� exp�ÿ2iosft� 2iksf�zÿ l0��

	
, (8)

g�r; z� � �1�M�r; z��1=2 ÿ �1ÿM�r; z��1=2
�1�M�r; z��1=2 � �1ÿM�r; z��1=2

. (9)

The dependence of ~a(r, z) � a(r, z, t � ksf (zÿ l0)=osf) on
r describes a change in the éeld oscillation phase at different
points of the beam cross section, while the parameter jgj is
equal to the axial ratio of the polarisation ellipse at the point
with coordinates r and z. The end of the electric éeld vector
moves not uniformly over the polarisation ellipse with the
angular velocity

_a�r; z; t� � ÿg�r; z�osf

cos 2�y�r; z; t�� � g�r; z�2 sin 2�y�r; z; t�� . (10)

In this case, the value of _a(r, z, t) averaged over period is o.
Note that the rotation direction of the electric éeld vector
[the sign of _a(r, z, t)] is determined by the sign of M(r, z). By
using (2) ë (5), we can easily obtain that

I�r;j; z� � jrF0�r; z�j2
ÿ
1ÿ k�1ÿ k�

��1ÿ �ÿ1ÿM 2
01

�ÿ
1ÿM 2

02

��1=2
cos 2C2 ÿM01M02

	
�Re

�
exp�2ij��k exp�ÿ2iC2�

ÿ
1ÿM 2

02

�1=2
��1ÿ k�ÿ1ÿM 2

01

�1=2�	�
, (11)

M�j� � ÿÿM01 � �1ÿ k�M02 �Re
�
exp�2ij�

��k exp�ÿ2iC2�M01

ÿ
1ÿM 2

02

�1=2
��1ÿ k�M02

ÿ
1ÿM 2

01

�1=2�	�ÿ
1ÿ k�1ÿ k��1ÿM01M02

ÿ�ÿ1ÿM 2
01

�ÿ
1ÿM 2

02

��1=2
cos 2C2

	�Re
�
exp�2ij�

��k exp�ÿ2iC2�
ÿ
1ÿM 2

02

�1=2 � �1ÿ k�ÿ1ÿM 2
01

�1=2�	�ÿ1
, (12)

C�j� � 0:5 arg
�ÿ 2

�ÿ
1ÿM 2

02

�1=2
exp�2iC2��1ÿ k�

� ÿ1ÿM 2
01

�1=2k�� exp�2ij��k 2
��1�M01��1ÿM02�

ÿ 2
�ÿ
1ÿM 2

01

�ÿ
1ÿM 2

02

��1=2
cos 2C2 � �1ÿM01��1�M02�

�
ÿ k
��1�M01��1ÿM02� ÿ 2

�ÿ
1ÿM 2

01

�ÿ
1ÿM 2

02

��1=2
� exp�2iC2� � �1ÿM01��1�M02�

�
ÿ�ÿ1ÿM 2

01

�ÿ
1ÿM 2

02

��1=2
exp�2iC2�

	ÿ exp�ÿ2ij�

���ÿ1ÿM 2
01

�ÿ
1ÿM 2

02

��1=2
exp�2iC2�

�	
, (13)

~a�r;j; z� � arg
�
0:5 exp�ÿij����1�M01��1�M02�

�1=2
� exp�2iC2�rF0�r; z� ÿ

��1ÿM01��1ÿM02�
�1=2

rF �0 �r; z�
	

� i exp�ij��kÿ��1�M01��1ÿM02�
�1=2

Im�rF0�r; z��

ÿ ��1ÿM01��1�M02�
�1=2

Im�rF0�r; z� exp�2iC2��
�

� ��1ÿM01��1�M02�
�1=2

Im�rF0�r; z� exp�iC2�� exp�iC2�
		

ÿ 0:5 arg
�ÿ 2

�ÿ
1ÿM 2

02�1=2 exp�2iC2��1ÿ k�

� ÿ1ÿM 2
01�1=2k

�� exp�2ij�

��2k 2
�
1ÿM01M02 ÿ ��1ÿM 2

01��1ÿM 2
02�
�1=2

cos 2C2

�
ÿ 2k

�
1ÿM01M02 ÿ ��1ÿM 2

01��1ÿM 2
02�
�1=2

exp�2iC2�
�

ÿ ��1ÿM 2
01��1ÿM 2

02�
�1=2 exp�2iC2�

	
ÿ exp�ÿ2ij����1ÿM 2

01��1ÿM 2
02�
�1=2

exp�2iC2�
		
, (14)
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where j is the polar angle determining the direction of the
vector r (0 < j < 2p); C2 is the angle between the principal
axes of polarisation ellipses of the fundamental waves at the
input to the medium, which is the same at all the points on
the plane z � 0; M0m is the ellipticity of these waves; and
k �1=(1� k2=k1). The origin of the polar coordinate system
is located on the beam axis. The straight line j � 0 is
parallel to the principal axis of the polarisation ellipse of
the wave E1(r). The medium under study has the symmetry
11, so that the choice of this coordinate system does not
violate the generality of the study. Expressions (11) ë (14)
were derived taking into account only the terms linear in
small parameters 1=(k1w1) and 1=(k2w2) (in fact, in the
divergence angles of pump beams).

3. Results and discussion

The dependence of the signal-wave intensity [expression
(11)] on the polar angle j for éxed values of r and z is
rather simple:

I�r;j; z� � s1 cos 2j� s2 sin 2j� s3, (15)

where s1;2;3 � s1;2;3(M01,M02,C2, k). The maximum value
of I is achieved on the straight lines j � j0 and j � j0 � p
(04 2C2 < p=2) or j � j0 � p=2 and j � j0 � 3p=2
(p=2 < C2 < p), while the minimum value is achieved on
the straight lines j � j0 � p=2 and j � j0 � 3p=2 (04C2

< p=2) or j � j0 and j � j0 � p (p=24C2 < p). In the
latter expressions,

j0 �
1

2
arccot

�
cot 2C2 �

R

sin 2C2

�
, (16)

where R � (k2=k1)�(1ÿM 2
01)=(1ÿM 2

02)�1=2. Note that
j0 � C2 for R � 0. If C2 � p=2, the maximum is achieved
on the straight line j � 0 (R > 1) or j � p=2 (R < 1), and
the minimum ë on the straight line j � p=2 (R > 1) or
j � 0 (R < 1). When both fundamental waves are circularly
polarised or R � 1 and C2 � p=2, the intensity distribution
is radially symmetric (I is independent of j).

The roots of the equation M(j) � 0 give polar angles
determining in the beam cross section the directions of
straight lines propagating through the beam centre on which
radiation at the sum frequency is linearly polarised. For the
nonnegative values of the parameter

D �M01M02

��2k�1ÿ k� ÿ 1�M01M02

� 2k�1ÿ k�� cos 2C2��1ÿM 2
01��1ÿM 2

02�
�1=2 ÿ 1

�	
(17)

two such straight lines j � j� and j � jÿ exist, where

j� � arctan
��
k sin�2C2�M01

ÿ
1ÿM 2

02

�1=2 � ����
D
p �

��kM01

�ÿ
1ÿM 2

02

�1=2
cos 2C2 ÿ 1

�
��1ÿ k�M02

�ÿ
1ÿM 2

02

�1=2 ÿ 1
�	ÿ1	

. (18)

The beam is divided by them into four sectors so that the
directions of rotation of the electric éeld vector E sf

? (r,j) in
neighbouring sectors are opposite.

The above-considered results are illustrated in Fig. 1a
where the polarisation ellipses are shown at different points
of the beam cross section at the sum frequency. The sum of
squares of the half-axes of each of the ellipses is propor-
tional to the radiation intensity at the ellipse centre
(speciéed by the radius vector r), the axial ratio of the
ellipse is uniquely expressed in terms of M(r), and the tilt
angle of the principal axis coincides with the angle C(r). The
direction of the electric éeld vector at a éxed instant at a
point speciéed by the vector r is indicated with a small circle
at the ellipse boundary. Light and dark ellipses correspond
to the clockwise and counter-clockwise rotation of the
vector E sf

? , respectively. One can easily see that radiation
at the sum frequency is polarised inhomogeneously. There
exist regions of the beam with linear [M(r,j) � 0], elliptic
[ÿ1 < M(r,j) < 1], and circular [M(r,j) � �1] polarisa-
tions, and the direction of rotation of the electric éeld vector
can change to the opposite with increasing j. Also,
variations in the intensity with increasing j are observed
(for éxed r), which are determined by expression (15), and a

x (arb. units)

y (arb. units)

ÿ1:0 ÿ0:5 0 0.5 1.0

b

ÿ2 ÿ1 0 1 2

y (arb. units)

x (arb. units)

a

ÿ2

ÿ1

0

1

2

ÿ1:0

ÿ0:5

0

0.5

1.0

Figure 1. Transverse spatial distributions of polarisation of the sum-frequency beam for M01 � 0:6, M02 � ÿ0:4, C2 � p=2, k2=k1 � 2 (a) and one of
the fundamental beams for M01 � 0:5 (b).
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strong dependence of ~a on r. For comparison, the transverse
distribution of polarisation for one of the fundamental
beams is shown in Fig. 1b. Unlike Fig. 1a, all the ellipses
here are oriented identically and have the same eccentricity,
and ~a(r, z) � 0.

For D � 0, the straight lines j � j� and j � jÿ
coincide and the direction of rotation of the electric-éeld
vector in the beam cross section at the sum frequency does
not change (Fig. 2a). If M01 � 0 and M02 6� 0 (M01 6� 0 and
M02 � 0), the éeld E sf

? will have linear polarisation only on
the straight line j � p=2 (j � p=2�C2). The sum-fre-
quency beam will be linearly polarised at all the points
in the beam cross section only for M01 �M02 � 0; however,
the direction of oscillations of the éeld E sf

? will coincide with
the vector r only on the straight lines j � p=2 Ë j �
p=2�C2 (Fig. 2b).

Figure 3a shows polarisation ellipses at different points
of the beam cross section at the sum frequency for D < 0. In
this case, M(j) 6� 0 and the direction of rotation of the
electric éeld vector does not change. In the case of the
oppositely directed circular polarisations of fundamental

beams, the ellipticity at the sum frequency is independent of
r and j:

M�j;M01 � �1;M02 � �1� � �1�
�k2=k1�2

1� �k2=k1�2
, (19)

and the principal axes of polarisation ellipses are oriented
azimuthally (Fig. 3b).

Figure 4 shows the typical arrangement of the regions of
ellipticity M01;02 of fundamental waves, where the above-
described variations in the polarisation of sum-frequency
radiation occur, for different values of C2 and k2=k1. The
light and grey regions correspond to D > 0 and D < 0,
respectively. The thick lines correspond to D � 0. WhenM01

and M02 have the same signs, radiation is always elliptically
polarised and the direction of rotation of the electric éeld
vector does not change. The necessary condition for the
appearance of regions with different polarisations (linear,
elliptic, and circular) and opposite directions of rotation of
the electric éeld vector is the negative sign of the product
M01M02.

ÿ2 ÿ1 0 1 2

y (arb. units)

x (arb. units)

b

ÿ2

ÿ1

0

1

2

ÿ2 ÿ1 0 1 2

y (arb. units)

x (arb. units)

a

ÿ2

ÿ1

0

1

2

Figure 2. Transverse spatial distributions of polarisation of the sum-frequency beam for M01 � 0:6, M02 � 0, C2 � p=3, k2=k1 � 2 (a) and M01 � 0,
M02 � 0, C2 � p=4, k2=k1 � 2 (b).
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Figure 3. Transverse spatial distributions of polarisation of the sum-frequency beam for M01 � 0:4, M02 � 0:2, C2 � 5p=12, k2=k1 � 2 (a) and
M01 � 1, M02 � ÿ1, k2=k1 � 2 (b).
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4. Conclusions

Polarisation effects described above can be observed by the
method proposed in [15] where the distribution of polar-
isation in the beam cross section was analysed upon the
self-action of light. Radiation under study at frequency osf

is passed through a polariser and the transverse distribution
of its intensity is recorded with a CCD array. The polariser
is rotated with a small step and the intensity distribution is
measured at each of its positions. The intensity values
corresponding to different orientations of the polariser and
measured by a pixel of the CCD array located at the point
speciéed by the vector r allow us to measure I(r), M(r), and
C(r), i.e., to determine the polarisation state of the light
éeld at the point of the beam cross section where this pixel
is located. The larger is the number of pixels of the CCD
array, the better is the correspondence between the
measured and real polarisation distributions. The appro-
priate dimensions of the beam incident on the CCD array
can be obtained by using a system of lens.

Recall that the power of the sum-frequency signal and
the dependence of the radiation intensity on the polar radius
are determined not only by the polarisation of pump waves
and the relation between their wave numbers specifying the
change of polarisation in the beam cross section. The power
also depends on the intensity and radii of the fundamental
beams, the ratio of their diffraction lengths, the mismatch
Dk of the wave vectors, beam-waist position in the medium
and the medium length. The optimal choice of these
parameters is discussed in detail in [7]. Under the most
favourable conditions, the above-considered scheme for
sum-frequency generation can be even more efécient than
three-wave mixing in the noncollinear geometry. Calcula-
tions performed in [7] have shown that the coherent
interaction length in the quasi-phase-matching region for
the collinear geometry can achieve (k1 � k2)w

2
1w

2
2 =�2(w 2

1�
w 2
2 )�, whereas in the case of a strongly noncollinear

interaction this length is of the order of 1=(k1 � k2).
Therefore, the eféciency increases approximately by a factor
of (k1 � k2)

2w 2
1w

2
2 =(w

2
1 � w 2

2 ) due to the increase in the
phase-matching length. An additional increase can be
achieved by optimising all parameters of radiation and
medium.

The results obtained in the paper have shown that the
sum-frequency beam is always inhomogeneously polarised
in its cross section (even in the simplest case when only the
local quadratic susceptibility is taken into account and
linearly polarised fundamental waves are considered in
the collinear interaction geometry). This circumstance
refutes the widespread opinion that polarisation changes
weakly or insigniécantly in nonlinear optical processes.
Moreover, our preliminary studies have shown that drastic
dependences of the intensity, parameters of the polarisation
ellipse, and the orientation angle of the electric éeld vector
at a éxed instant on transverse coordinates also appear in
various problems of nonlinear optics. Among them are
second harmonic generation from a chiral surface, self-
focusing and compression of elliptically polarised light
beams and pulses in an isotropic optically active medium.
Despite this, at present the intensity of the signal wave
rather than its polarisation is used in many known practical
applications. The reason is the same mistake that polar-
isation does not change in nonlinear optical interactions.
The results of our paper will undoubtedly stimulate the
search for possible applications. Nevertheless, the informa-
tion that the beam is inhomogeneous is very important for
more exact calculations of its integrated parameters required
to optimise the operation of quantum-electronic devices.

These results are also of interest for problems of
nonlinear spectroscopy when it is necessary to analyse
contributions from the components of tensors of local or
nonlocal nonlinear susceptibilities to the process of inter-
action of waves. In this case, spectroscopic information is
obtained by comparing the signal-wave intensities measured
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Figure 4. Regions corresponding to different regimes of sum-frequency generation in which k2=k1 � 2 and C2 � p=2 (a), p=3 (b), p=4 (c), and p=6 (d),
and C2 � 0 and k2=k1 � 2 (e) and 5 (f).
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for different orientations of a polariser through which the
wave passes (similarly to the measurements of the Stokes
parameters). In particular, in experiments on sum-frequency
generation (in the geometry considered in our paper), these
intensities averaged over some region of the beam cross
section will be measured. The average values of the intensity,
ellipticity, and the rotation angle of the principal axis of the
polarisation ellipse can be introduced by using different
expressions with different weight factors in the integrand.
When I(r), M(r), and C(r) described by expressions (11) ë
(13) change drastically, these average values can consid-
erably change with increasing the size of the integration
region. This circumstance should be taken into account
especially in the case of local measurements of nonlinear
susceptibilities, for example, in spatially inhomogeneous
media and also measurements performed near the phase-
transition temperature in liquid crystals, which can give
unique information on the physics of the liquid-crystal state.

Our study has revealed the presence of the stringent
relation between polarisations and wave numbers of the
fundamental waves and the transverse structure of the sum-
frequency beam éeld. This relation is found in our paper
only for collinear homogeneosly polarised Gaussian beams
propagating in a nonlinear isotropic gyrotropic medium.
The obtained results are promising for the development of
new methods for generating inhomogeneously polarised
beams with the speciéed transverse structure drastically
varying at relatively small scales. The latter is difécult to
obtain by standard methods of linear optics. A separate
interesting problem is the determination of optimal inho-
mogeneous distributions of the polarisation of fundamental
waves allowing the generation of the signal wave at the sum
frequency in a broad range of parameters with the homoge-
neous distribution of the required polarisation.
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