
Abstract. Two related problems are studied by numerical
simulations using the KARAT code: the reêection of the
TM01 mode of an electromagnetic pulse from the subcritical
taper of the section of a circular waveguide and the reêection
of the same pulse from a `cold' collisionless plasma with a
density increasing up to a supercritical value along the
waveguide axis. It is shown that in the former case the pulse
is totally reêected with an insigniécant distortion of its shape,
in accordance with the linear theory. In the latter case, the
character of reêection depends substantially on the plasma
density increase length, the pulse duration, and the wave éeld
amplitude, a signiécant éeld deceleration and amplitude
growth occurring near the critical point; the pulse absorption
in the plasma far exceeds the absorption due to the linear
transformation of the incident transverse wave to the
longitudinal plasma oscillations.

Keywords: electromagnetic pulse, reêection of electromagnetic
waves, metal waveguide, nonuniform plasma.

1. Introduction

This study was initiated by the recently published paper [1]
in which the reêection of a monochromatic wave from the
critical point of a waveguide was considered. The group
velocity of the wave decreases sharply near the critical
point, which should, in the author's opinion [1], lead to the
unlimited growth of the incident-wave amplitude, the
broadening of its frequency spectrum, and the formation
of a shock-like wave. These statements raised our doubts,
and we numerically simulated the reêection of a TM-mode
microwave radiation pulse from the tapering part of a
waveguide with the help of the KARAT code [2] using the
only restriction by retaining the boundary condition of the
ideal metal waveguide surface.* We revealed no signiécant

deviations from linear electrodynamics, the éeld amplitude
enhancement in the vicinity of the critical point not
exceeding a factor of two, which corresponds to the linear
theory of wave reêection from a metal surface, i.e. the
unlimited éeld growth and the production of a shock-like
wave were not observed. The results of numerical
simulations of this problem and a comment to them are
given in Section 2.

The second problem ë that of the TM-mode reêection
from the plasma which élls a waveguide of constant radius
where the density rises to a supercritical value ë is of
substantially greater interest. In this case, near the critical
point, where the plasma frequency coincides with the wave
frequency, the group velocity of the wave becomes lower,
which should result in the éeld enhancement. Because the
plasma is an inherently nonlinear medium, nonlinearities in
this region should be particularly strongly pronounced.
Note that V.L. Ginzburg [3] draw attention to the enhance-
ment of the longitudinal éeld in the vicinity of the critical
point upon oblique incidence of an electromagnetic wave on
the surface of a cold nonuniform-density plasma (this effect
was noted even in monograph [4]).

It was shown in Ref. [5] that at the point of resonance
enhancement (which is referred to as plasma resonance) a
longitudinal plasma wave was excited, resulting in a partial
absorption of the electromagnetic wave incident on the
plasma. Subsequently, this effect was intensively studied (see
reviews [6, 7]) and was called the linear transformation of a
transverse wave to a longitudinal wave in the nonuniform
plasma at the point of plasma resonance. The absorption of
the electromagnetic wave at the point of plasma resonance
essentially depends on the plasma density gradient and
attains a maximum when the characteristic density gradient
scale is comparable with the wavelength of the incident
wave.

In Section 3, the linear wave transformation theory is
generalised to the case of the TM01-mode reêection from the
plasma in a waveguide; we give the results of numerical
simulation of this problem, which takes into account the
plasma density gradient, the plasma nonlinearity for a énite
amplitude of the wave incident on the plasma, as well as the
limited duration of the pulse.

In Section 4, the results of numerical simulations are
compared with the results of the linear theory of wave
transformation at the point of plasma resonance. A signié-
cant discrepancy between them, in our opinion, is due to the
accumulation of the éeld in the region of plasma resonance
and to the manifestation of nonlinear effects in the plasma.
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*We thereby neglected the nonlinear damping at the waveguide walls,
keeping only the possibility for broadening of the spectrum and distortion
of the pulse shape of the incident wave.



2. Reêection from the subcritical taper
of a circular waveguide

Numerical simulations were performed by using the
KARAT code [2], which enabled solving the complete
system of Maxwell equations on shifted grids by an explicit
énite-difference technique correct to the second order.

A TM01-polarised pulse (with nonzero éeld components
Ez, Er, and Bj) with a carrier frequency f � 10 GHz and a
duration of � 1 ns is injected into a metal waveguide of
length L � 80 cm and of radius R � 2 cm at the input.
Beginning with z � 40 cm, the waveguide radius decreases
linearly to 0.2 cm for z � 80 cm (the geometry is shown in
Fig. 1).

Figures 1a and 1b show the vector éeld of the wave prior
to reêection and at the instant of its deepest penetration into
the waveguide. The éeld amplitude at the instant of
reêection is two times higher than the amplitude of the
incident wave, which corresponds to the linear theory.

Figure 2 shows the dynamics of the Poynting vector
during the propagation of an electromagnetic pulse through
the section for z � 20 cm. One can see that at érst the 1-ns
pulse propagates and then the reêected electromagnetic
wave appears. The total energies of the incident and
reêected pulses are equal. The pulse shape almost does
not change.

This picture is in complete agreement with the linear
theory of wave reêection from a metal mirror [8], i.e. the
doubling of incident wave amplitude at the mirror surface
without the formation of a shock-like wave near the critical
point. This was to be expected, because both the éeld
equations and the boundary conditions at the waveguide
surface are linear and there are no grounds to expect the
occurrence of nonlinear effects.

3. Reêection from the plasma in a waveguide
with a density increasing to a supercritical value

The second problem consists in the investigation of
reêection of the same pulse from a plasma with a density
increasing to the supercritical value. The plasma élls the
waveguide, beginning from z � 40 cm, and its density
increases linearly over a length L up to the maximum
value nmax � 2:5� 1012 cmÿ3 (or 1013 cmÿ3) and then
remains constant. In our calculations, the length L was
varied from zero to 20 cm, the pulse duration was varied
from 0.2 to 1.0 ns, and the incident wave éeld intensity
from 5 to 5� 104 V cmÿ1. These parameters were varied to
investigate the effect of the maximum plasma density, the
density gradient, the éeld amplitude, and the pulse duration
on the type of reêection of the TM01 waveguide mode. All
of them have a substantial effect on the features of wave
reêection from the critical-density plasma and on the
absorption of the incident wave in the plasma.

3.1 Analytical theory of reêection

Before discussing the results of numerical simulations, we
consider the linear approximate analytic theory of electro-
magnetic wave reêection from the critical point in a plasma
with increasing density. We will follow Ref. [5] (see also
Ref. [9]) by generalising calculations to the cylindrical
geometry.

We assume that the circular metal waveguide of radius R
does not contain plasma for z4 0 (region I). For 0 < z < L
(region II), the plasma density increases to

Nmax > Ncr �
mo 2

4pe 2
,

where m and e are the electron mass and charge; o � 2pf is
the frequency of the pulse incident on the plasma. For
z5L (region III), the plasma density is constant,
N � Nmax.

As mentioned above, we consider the propagation of the
fundamental axially symmetric TM mode with Ez, Er, and
Bj nonzero éeld components. In this case,

Er � ÿ
ic

oe
qBj

qz
, Ez �

ic

oe
1

r

q
qr

rBj,

(1)

e�z� q
qz

1

e�z�
qBj

qz
� q
qr

1

r

q
qr

rBj �
o 2

c 2
e�z�Bj � 0.

0 20 40 60 z
�
cm

r
�
cm

a

0.5

1.0

1.5

0 20 40 60 z
�
cm

r
�
cm

b

0.5

1.0

1.5

Figure 1. Vector éeld in the metal waveguide before reêection (a) and at
the instant of its deepest penetration into the waveguide (b). The solid
line indicates the waveguide boundaries, at the left (the dotted lines) is
the window with the boundary conditions for the input and output of the
wave, close short lines (arrows) stand for the net electric éeld.
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Figure 2. Poynting vectors of the incident and reêected waves during the
propagation of an electromagnetic pulse through the waveguide section
at z � 20 cm.
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Here,

e�z� � 1ÿ o 2
p

o 2
(2)

is the plasma permittivity; o 2
p � 4pe 2N(z)=m; and N(z) is

the longitudinally nonuniform plasma density. Equation (1)
is applicable throughout the entire range of z values, i.e.
outside the plasma (for z < 40 cm), in the density increase
region (04 z4L), and in the region z > 40 cm, where the
plasma is uniform and possesses the highest density equal
to Nmax. It can be easily shown that the solution of Eqn (1)
satisfying the boundary conditions at the side surface of the
metal waveguide can be written as

Bj�z; r� � B�z�J1
�
mr
R

�
, (3)

where m ' 2:41 and B(z) satisées the equation

e
q
qz

�
1

e
qB
qz

�
ÿ m 2

R 2
B� o 2

c 2
eB � 0. (4)

In region I,

B�z� � Cin exp�ÿiot� ikz1z� � Cout exp�ÿiotÿ ikz1z�, (5)

where Cin and Cout are the amplitudes of the incident and
reêected waves.

In region III (supercritical-density plasma), the wave
does not propagate and

B�z� � Ctr exp�ÿiotÿ ikLz�, k 2
L �

m 2

R 2
ÿ o 2

c 2
e. (6)

In region II (the plasma with increasing density) there is
a point of plasma resonance; for f � 10 GHz, at this point

o 2
p �z� � o 2 � 3:94� 1021 sÿ1. (7)

Let us next consider the limiting case l � c=f > L (a
rapid density growth), when Eqn (4) can be solved by
following Ref. [9], i.e. assuming the second and third terms
to be small. In the region of plasma resonance for 04 z4L
we obtain (see Ref. [9], exercise 1 in Chapter VII)

Bj�0; r� � Bj�L; r� � CJ1

�
mr
R

�
,

where C is an arbitrary constant determined from the
boundary conditions

Er�L; r� � Er�0; r� �
cp
o

Bj�0; r�
m 2

R 2
Z, (8)

where Zÿ1 � jde=dzj, with Er(z, r) / J1(mr=R). By sewing
together the solution in the region 04 z4L and the
evanescent solution for z > L, we obtain

Er�L; r� �
ikLc
o

Bj�L; r� �
ikLc
o

Bj�0; r�, (9)

where kL is the éeld attenuation coefécient in the region
z > L;

k 2
L �

m 2

R 2
ÿ o 2

c 2
e > 0. (10)

Finally we obtain

Er�0; r� �
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4p
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Here, Z(0, r) is the surface impedance of the reêective
plasma layer (with increasing density), which is related to
the complex amplitude reêectivity for the TM wave:
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The parameter jrj2 characterises the reêectivity in power
and the quantity A � 1ÿ jrj2 characterises the power
absorbed in the plasma.

From expressions (11) and (12) we énally obtain
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(13)

For invariable parameters of the problem employed in the
numerical simulations, expression (13) can be rewritten in
the form

jrj2 � (13a)

�1ÿ 2:61LNcr=N�2�N=Ncr ÿ 1�2 � 0:48� 1:48�N=Ncr ÿ 1�
�1� 2:61LNcr=N�2�N=Ncr ÿ 1�2 � 0:48� 1:48�N=Ncr ÿ 1�.

Here, Ncr � 1:3� 1012 cmÿ3 and L is measured in centi-
metres. Expressions (13) and (13a) are approximate: they
are applicable only for l > L, only for a monochromatic
éeld (i.e. for an inénitely long pulse), and only in the linear
approximation. Despite this fact, we shall use them when
discussing the results of numerical simulations, which are
free from the above restrictions.

3.2 Results of numerical simulations

As indicated above, the éeld was simulated by using the
KARAT code [2], which was employed to solve the
complete system of Maxwell equations, while the plasma
was simulated by the PIC technique, which is a numerical
realisation of the solution of the kinetic plasma model. That
is why account is accurately taken of not only the geometry
of the system, but also of the self-consistent nonlinear
dynamics of electrons in the éelds of the incident and
reêected waves. The majority of calculations were carried
out for numerical parameters when the Debye length was
smaller than or of the order of the grid pitch; however,
checking calculations showed that this fact had no effect on
the results of simulations. All parameters of the system were
analysed, but the pulse reêectivity was regarded as the main
one. The reêection coefécients calculated for different
parameter sets are collected in Table 1.

The data given in columns VII and VIII in Table 1
correspond to expressions (13). They should be compared in
the érst place with the data of numerical reêection simu-
lations in the weak-éeld case (columns III and V) for a
strong gradient corresponding to L � 0ÿ 1:5 cm. However,
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even in this case a strong discrepancy is observed, which we
attribute to the manifestation of plasma nonlinearity in the
nonuniform éeld of the wave which experiences reêection.
Electrons oscillate in the wave éeld of énite amplitude and,
due to nonuniformity of the éeld, as if constitute a `heated'
plasma, in which there occur both the wave energy
absorption and the production of the reêected wave.

Nonlinearity is somewhat different in character in the
long-pulse case: due to the slowing down of the wave in the
vicinity of the critical point, the éeld energy is accumulated
and nonlinear oscillations appear once again, and therefore
the energy is absorbed even for a low amplitude of the
incident wave (see Table 1, columns III, V, and VI). In
addition to the energy absorption of the reêected pulse at
the critical point, this pulse is severely distorted. On the
whole, the approximate theory is only qualitatively con-
sistent with numerical simulations: the strongest absorption
is observed for a wavelength comparable with the non-
uniformity length L.

Consider the results of numerical simulations in greater
detail.

Figure 3 shows three time dependences of the kinetic
energy of plasma electrons for the maximum density equal
to 2:5� 1012 cmÿ3. The dependence in Fig. 3a corresponds
to the case when the nonuniformity length L exceeds the
wavelength. In this case, the data for amplitudes of 5 and
5� 104 V cmÿ1 are close and the electron energy vanishes
upon reêection of the wave. For a strong gradient (L �
5 cm) and a low éeld amplitude (E � 5 V cmÿ1), the kinetic
electron energy remains nonzero upon the reêection and
oscillations are observed throughout the region occupied by
the plasma. When the amplitude is increased to 5� 104

V cmÿ1, upon the reêection the kinetic energy of plasma
electrons remains nonzero and is inherently thermal rather
than oscillatory.

Figure 4 shows the time dependences of the magnetic
and electric éeld energies for the maximum plasma density
of 2:5� 1012 cmÿ3. One can see that for a strong gradient
the oscillations of the electron plasma component are
excited even in a low-amplitude éeld, which are not radiated
and remain in the plasma.

Figures 5 and 6 show the phase portraits of the éeld at
the instant of and after reêection of the wave. In the case of
a small density gradient, the electrons experience an
ordered, coherent motion in the wave éeld. This motion
is observed both in front of the point of reêection (the

critical point), where the incident éeld is weakly distorted,
and behind the critical point, where the éeld decays
exponentially. For a stronger gradient (L � 5 cm), the
oscillation wavelength decreases as the plasma density
increases.

After the wave reêection (for L � 20 cm), the plasma
remains cool, and therefore the phase plane is not depicted
in this case. For a stronger gradient, the electrons gain
energy, this energy being oscillatory in the low-éeld case,
and these oscillations propagate into the plasma. In the case
of higher-intensity éeld (5� 104 V cmÿ1), after the pulse
reêection there are no oscillations and only the thermal
electron motion is observed.

4. Discussion of results

We begin with the problem of pulse reêection from the
supercritical waveguide taper, for which our numerical
simulations yielded results coinciding with the results of the
linear theory of reêection from a mirror. This comes as no
surprise, because the taper length (40 cm) in this problem is
much longer than the average wavelength of the incident
radiation (l � 3 cm) and its satellites (due to the éniteness
of the pulse). As a consequence, the ray optics approx-

Table 1. Reêection coefécients r for electromagnetic pulses for different
parameter sets (columns I ëVIII) of the system under study.

L
�
cm

Numerical simulation
Analytic
calculation

I II III IV V VI VII VIII

0 0.82 0.82 0.92 0.82 0.995 0.73 1.0 1.0

0.5 0.64 0.60 0.60 0.60 0.93 0.67 0.46 0.58

1.0 0.56 0.51 0.51 0.53 0.86 0.55 0.30 0.49

1.5 0.53 0.52 0.52 0.51 0.65 0.54 0.29 0.22

2.0 0.53 0.54 0.54 0.52 0.65 0.53 0.35 0.14

5.0 0.68 0.70 0.70 0.70 0.50 0.50 0.52 0.10

10.0 0.88 0.94 0.91 0.91 0.57 0.55 0.75 0.48

20.0 0.96 0.99 0.99 0.99 0.70 0.71 0.83 0.58

No t e . For variants I and II, the éeld amplitude is E � 5� 102 V cmÿ1

for pulse durations T � 0:2 and 1 ns, respectively; for variants IV and V,
5� 104 V cmÿ1 for T � 1 ns. The plasma density nmax

e is 2:5� 1012 cmÿ3

(I ë IV, VII) and 1� 1013 cmÿ3 (V, VI, VIII).
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Figure 3. Time dependences of the electron kinetic energy Wkin for
Nmax � 2:5� 1012 cmÿ3 and different values of L and E.
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imation can be used, which retains the shape of incident
and reêected pulses to approximately within a factor
l=L � 7%. Because the boundary conditions and the
éeld equations themselves remained linear, there were no
ground to expect the occurrence of nonlinear effects in the
reêection problem.

The situation is different in the problem of pulse
reêection from the plasma with a density increasing along
the waveguide axis. In this case, there is only a qualitative
agreement between the linear theory (columns VII and VIII
in Table 1) and the numerical simulations: the highest-
eféciency absorption of the incident radiation and a
decrease of reêection are observed when L � l, where l
is the in-plasma radiation wavelength, which strongly
depends on the plasma density. The discrepancy between
the approximate linear theory and the numerical simulations
is, in our opinion, attributable to plasma nonlinearity. In
particular, we attribute the discrepancy for L � 0 (reêection
from the plasma with a sharp boundary) to the penetration
of the incident wave éeld into the plasma. In the region
located upstream of the critical point, this penetration takes
place almost without distortions, behind this point it is
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Figure 4. Time dependences of the total energies of magnetic (WB) and
electric (WE) éelds for Nmax � 2:5� 1012 cmÿ3 and different values of L
and E.
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Figure 5. Phase plane of the plasma electrons at the instant of wave
reêection for different values of L and E.
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attended with an exponential decay of the éeld intensity
over a depth of c=op, where op is the Langmuir plasma
frequency at the highest density. The nonuniform éeld with
a énite amplitude results in nonuniform oscillations of the
plasma electrons and the intersection of their trajectories,
which shows up in the form of temperature changes and is
responsible for the collisionless absorption of the wave éeld
of the Landau damping type. This effect should become
stronger with lowering nmax and increasing the amplitude of
the incident wave, which follows from Table 1. Further-
more, this absorption should become stronger with
increasing the pulse duration, because the effect of wave
éeld accumulation at the critical point should manifest itself
due to the lowering of group velocity. This effect is in turn
equivalent to the increase of the wave amplitude and to the
effect of `thermal' absorption indicated above. Quite unex-
pected is the observation of strong absorption for a weak
plasma density gradient (L � 20 cm), which contradicts
both the above-outlined approximate theory and the ray
optics. We believe that this is caused by the Landau
damping over the long region of slowly varying éeld.

Finally, we draw attention to yet another quite serious
discrepancy between the linear theory and the numerical
simulations: in the theory, the absorption turns out to be
stronger than in the simulations. This is due to the
appearance of regular oscillations of plasma electrons in
the incident wave éeld, which eventually come back in the
form of radiation (backscattered incident radiation). This
effect is not included in the theory, where any electron
oscillations excited by the incident wave are associated with
absorption. From the phase portraits of the éelds and
oscillations it is evident that regular electron oscillations
do entail strong reêection. When the éeld and electron
oscillations manage to become randomised, the absorption
is strong and the reêection becomes low.

Therefore, the data obtained using numerical simu-
lations and the linear theory differ primarily due to
nonlinear effects. The latter should be signiécant when
the electron oscillation velocity exceeds the thermal velocity,
which we estimated on the basis of the intersection of
electron velocities. For éeld amplitudes E � 102 ÿ 103

V cmÿ1, this estimate corresponds to a plasma temperature
of 0.1 ë 1 eV. For vTe

� 3� 107 cm sÿ1 (i.e. T � 1 eV), the
condition

eE

mo
5 vTe

is fulélled in the éelds with intensities above 103 V cmÿ1.
Note that the above estimate of the nonlinearity threshold
in the plasma is purely illustrative in character.
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