
Abstract. We consider normalised intensity correlation
functions (CFs) of different orders for light emitted via
parametric down-conversion (PDC) and their dependence on
the number of photons per mode. The main problem in
measuring such correlation functions is their extremely small
width, which considerably reduces their contrast. It is shown
that if the radiation under study is modulated by a periodic
sequence of pulses that are short compared to the CF width,
no decrease in the contrast occurs. A procedure is proposed
for measuring normalised CFs of various orders in the pulsed
regime. For nanosecond-pulsed PDC radiation, normalised
second-order CF is measured experimentally as a function of
the mean photon number.

Keywords: parametric down-conversion, biphotons, multiphoton
correlations.

1. Introduction

Spontaneous parametric down-conversion (SPDC) is one of
the most efécient sources of nonclassical light, i.e., light
whose properties can be described only within the frame-
work of consistent quantum theory. In particular, the
`nonclassicality' of the SPDC radiation is related to the pair
photon correlation, i.e., the extremely large value of the
normalised second intensity moment. Comparison of this
normalised moment with the others (the érst one and the
third one) shows that the SPDC radiation violates the
concept of a classical probability distribution existing for
photon numbers [1]. It is due to this fact that the SPDC
radiation can be considered as nonclassical and called two-
photon, or biphoton, light. This pair correlation disappears
as one passes from small parametric gains (the so-called
spontaneous regime) to large parametric gains (hereafter,
we will call this regime stimulated). Light emitted through
stimulated PDC also manifests nonclassical properties but
they are no longer related to the anomalously large second-
order intensity moment. Such light cannot be already
considered as two-photon light; it can be called even-
photon-number light, and it manifests squeezing effects [1].

The normalised second-order CF for the PDC radiation*

can be represented in the form [2]

g �2��t� � 1� jg �1��t�j2 � g
�2�
nc �t�, (1)

where g �1�(t) is the normalised érst-order CF, so that the
érst two terms give the `thermal' part of g �2�(t). The last
term is its nonclassical part. The maximal value of g �2�nc (t) is
g
�2�
nc (0) � 1=N, where N is the number of photons per mode.

Thus, as the parametric gain and, hence, the number of
photons per mode increases, the value of the normalised
second-order CF at its maximum tends to 2, which is the
typical value for éelds with thermal statistics, and its
nonclassical part disappears. The width of the CF `thermal'
part, jg �1�(t)j2, is equal to the coherence time t0 of the PDC
radiation; the width of its nonclassical part, g �2�nc (t), is in the
general case slightly different from t0 [3] but has the same
order of magnitude.

In a number of recent works PDC was suggested as a
source of three-photon or four-photon entangled states. In
these works, various interference effects were observed in
the measurement of the third-order and fourth-order
intensity correlation functions. In particular, such experi-
ments were interpreted as realisations of the Greenberger ë
Horne ëZeilinger paradox [4] or interference of three-
photon and four-photon states [5 ë 7] and used to test Bell's
inequalities for spin-1 quantum systems [8]. At the same
time, it was mentioned in [9] that the observed effects were a
mere consequence of the well-known two-photon interfer-
ence, and the violation of the `four-photon' Bell's inequality
registered in [8] could be explained by the simultaneous
violation of two `two-photon' Bell's inequalities.

In their turn, the authors of [9] carried out an experiment
that allowed them to distinguish `true' correlations between
photon pairs from `independently generated' pairs. Both the
experiment and its further theoretical description by other
authors [10] showed rather low visibility of four-photon
interference (about 50%). Note that in all such experiments,
as a rule, the visibility of three- and four-photon interference
does not exceed 60%ë 70%. Exceptions are works where
four-photon interference was observed together with two-
photon one [5, 9].

Despite numerous experiments, it is still discussed in the
literature how one can distinguish between four-photon
states and accidentally overlapping photon pairs. The
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question is still open: do four-photon correlations observed
in PDC indicate that entangled four-photon states are
generated?

To answer this question, one can consider the generation
of photon `quadruples' directly, similarly to the generation
of photon pairs via SPDC [11]. Such four-photon correla-
tions can be called `true'. It turns out that the difference
between the four-photon correlations observed in SPDC
and `true' four-photon correlations is in the dependence of
the normalised fourth-order intensity moment on the mean
photon number. However, this dependence was not meas-
ured in any of the known works, although simultaneous
measurement of intensity moments of different orders
depending on the mean photon number was indeed carried
out (see, for instance, [12]).

One of the main diféculties in the measurement of the
normalised intensity CFs for PDC is their extremely small
width, which prevents, for the case of relatively `slow'
detection, the measurement of the nonclassical part of
the CF. As we will show below, this diféculty can be
overcome by detecting PDC in the regime of suféciently
short pulses. However, no method has been developed so far
for measuring normalised intensity CFs for pulsed radia-
tion. Further, we will consider the measurement of
normalised intensity CFs for cw and pulsed radiation,
present the results of measuring the second-order CF for
pulsed SPDC and show that the fourth-order CF for the
PDC radiation can be measured only in the regime of
femtosecond pulses.

2. Multimode detection and measurement
of intensity correlation functions

Consider measurement of the nth-order intensity correla-
tion function. Similarly to the way one measures g �2�(t) by
means of a beamsplitter, two photodetectors, and double
coincidence circuit, in order to measure the nth-order
correlation function one should split the beam in n parts by
means of nÿ 1 beamsplitters and detect the resulting beams
by n detectors. Further, coincidences of the photocounts of
all detectors should be registered by means of an n-fold
coincidence circuit depending on the delays introduced by
electronics after the detectors. In the stationary case, the
nth-order correlation function has nÿ 1 time arguments.
When photocount coincidences are detected, it is important
that an n-fold coincidence scheme has a énite time

resolution Tc. During the measurement, the correlation
function g �n�(t1; :::; tnÿ1) is integrated over the width of the
instrumental function, which is given by Tc. If
Tc=t0 � m4 1, then the measured value of the CF at its
center is

g
�n�
meas � 1� g �n��0; :::; 0� ÿ 1

mnÿ1 , (2)

where m can be called the number of modes and deéned, as
usual, as the ratio of the detection volume to the coherence
volume*. In this case, however, the detection time should be
understood as the coincidence circuit resolution time Tc if it
is larger than the time constant of the detectors Tdet. In the
opposite case, if Tdet > Tc then m � Tdet=t0. This result
becomes very clear if one considers the second-order CF
(see Fig. 1).

Let g �2�(t) have a width t0 and the coincidence circuit
resolution be Tc 4 t0. Then the measured second-order CF
will be a convolution of g �2�(t) with the instrumental
function, which, in the simplest case, has the form of a
rectangle with the width Tc. As a result, the measured value
of the CF at its center will be

Tc �
� �

g �2��t� ÿ 1
�
dt � Tc �

�
g �2��0� ÿ 1

�
t0,

and its `background' value will be Tc. After the normal-
isation to this background value, the measured CF at the
maximum will become [13]

g
�2�
meas�0� � 1� g �2��0� ÿ 1

m
. (3)

Usually, the spectrum of PDC is rather broad
(Dl � 1ÿ 20 nm). Correspondingly, the coherence time is
not larger than hundreds of femtoseconds. Since the typical
detection time Tdet is about 1 ns, the number of detected
modes in PDC exceeds 103. One can mention works where
the PDC spectrum is specially narrowed by placing the
nonlinear crystal into a cavity [14]. In such cases, m can be
close to unity. However, it is still large in most of experi-
ments, and when the CF is measured, only the érst and the
third terms `survive' in formula (1). The `thermal' part of the
CF can be detected only at m � 1.

The value of the measured CF at the centre at m4 1 is
[see (3)]

g
�2�
meas�0� � 1� 1

mN
. (4)

One can see that if the parametric gain is small enough, so
that N9mÿ1, then, despite the large number of detected
modes, the `noncassical' part of g �2�(t) is still revealed.
However, if it is a higher-order CF that is measured for the
PDC radiation, the `multimodeness' of detection is more
crucial and does not allow one to detect the values of the
normalised CF above unity. This happens namely because
of the fact that SPDC does not have `true' correlations of
the third and higher orders. This question will be discussed
in more detail in Section 5.ÿTc=2 0 Tc=2 t

t0

g �2�

1

Figure 1. Typical shape of the intensity CF g �2��t� of cw radiation. The
rectangle shows the instrumental function of the coincidence circuit with
the resolution Tc. The dashed line shows the background.

*The total number of modes also includes the number of transversemodes,
which is deéned as the ratio of the detection area to the coherence area.
However, in practice, the number of transversemodes can bemade close to
unity, so that further onmwill be considered as the total number ofmodes.
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However, it turns out that the CF intensity can be still
measured in the single-mode regime if PDC is excited by a
sequence of short (femtosecond) pulses. In order to show
this, consider CFs for pulsed radiation.

3. Intensity correlation functions
of pulsed radiation

Consider the case where radiation is `modulated' by a
periodic sequence of pulses whose duration Tp is much
larger or much smaller than the coherence time t0. In both
cases, the intensity êuctuations of PDC and the modulation
of its envelope occur at essentially different time scales, and
can therefore be considered as independent.

Let the radiation under study be modulated by a
sequence of pulses with the shape Y(t) (

�
Y(t)dt � 1) and

the period Dt. Then the second-order intensity correlation
function has the form [15]

g
�2�
mod�t� � g �2��t�g �2�p �t�, (5)

where g �2�(t) is the CF of the nonmodulated radiation and

g
�2�
p �t� � Dt

X1
j�ÿ1

�
Y�t� jDt� t�Y�t�dt (6)

is the intensity CF for a periodic sequence of pulses with the
shape Y(t). Note that the value of g �2�p (t) in all its maxima,

g
�2�
p �t � jDt� � Dt

Tp

,

is determined by the relative pulse duration of the sequence.
It is this well-known fact that provides high eféciency of
pulsed radiation for the excitation of two-photon (or
multiphoton) processes compared to cw radiation with the
same mean intensity.

In order to measure the CF of cw radiation at its
maximum [g �2�(0)], one can measure the corresponding CF
of the modulated radiation [g �2�mod(0)] and then calculate
g �2�(0) as [15]

g �2��0� � hNci
hN1ihN2iK

, (7)

where hN1i, hN2i are the mean photocount numbers per
pulse for two detectors detecting pulsed radiation and hNci
the mean number of their coincidences per pulse. The factor
K is given by the expression

K �
� Tc=2

ÿTc=2

dt
�
Y�t� t�Y�t�dt. (8)

Consider the two limiting cases: when the êuctuations of
the radiation under study are `very fast' or `very slow'
compared to the pulse duration.

(i) The most interesting situation is realised when
Tp 5 t0, so that intensity êuctuations occur at times that
are considerably larger than the pulse duration. Hence, they
only lead to the êuctuations of the pulse amplitude, while
the pulse shape remains constant.

In this case, the CF (5) consists of a sequence of peaks
with the same shape. Figure 2 shows the shape of the

correlation functions: the dashed line corresponds to g �2�(t)
and the solid line, to g

�2�
mod(t) normalised by Dt=Tp. The

height of the central peak of g
�2�
mod(t) is

g
�2�
mod�0� � g �2��0�Dt

�
Y 2�t�dt � g �2��0� Dt

Tp

, (9)

and the heights of the other peaks are

g
�2�
mod� jDt� � Dt

�
Y 2�t�dt � Dt

Tp

. (10)

When photocount coincidences are detected, the CF is
integrated over the time interval Tc given by the coincidence
circuit resolution. For the ratio of the central peak height to
the height of the side peaks not to be changed by this
integration, it is sufécient that the condition Tc < Dt is
satiséed. Then the height of the central peak becomes
g �2�(0)DtK and the height of the side peaks, DtK.

One can see that the value of the CF for the non-
modulated radiation at its maximum can be found as the
height ratio of the central and side peaks of the CF for the
modulated process. If it is impossible in experiment but the
shape of the pulse is known, one can use relation (7) instead.

This situation is typical when PDC is excited by femto-
second pump pulses, as in many experiments with two-
photon light. The pump is usually the second-harmonic
radiation of a Ti : sapphire laser with a repetition rate of
about 100 MHz (or 10 kHz, if a regenerative ampliéer is
used). Then, the condition Tc < Dt always holds. Therefore,
if PDC is excited by femtosecond pulses, CF intensities can
be measured in the single-mode regime. It is due to this fact
that the authors of Ref. [16] managed to observe the
bunching effect for signal and idler PDC radiation sepa-
rately.

Note that in the general case, the shape of the down-
converted light for pulsed PDC is different from the pump
pulse shape. However, in the linear (SPDC) regime, the
pulse shape for the pump and the down-converted light is
the same. Further, measurement of the correlation functions
will be always considered in the linear PDC regime.

A similar situation was experimentally realised in [15] for
`quasi-thermal' radiation with the typical times of intensity
êuctuations on the order of milliseconds, modulated by
nanosecond pulses with a repetition rate of 50 Hz.

(ii) If the pulse duration is much larger than the CF
width for the `nonmodulated' radiation, the CF of the

11

ÿTc=2 0 Tc=2 Dt t

t0

g �2�, g �2�mod

Figure 2. Typical shape of the intensity CF g �2��t� of the radiation
modulated by a sequence of pulses that are short compared to the CF
width. The dashed line shows the background.
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modulated radiation can be also represented as a product of
the `nonmodulated' radiation CF and the CF of the pulse
sequence. The result (normalised by Dt=Tp) is shown in
Fig. 3 by the solid line. The dashed line again shows the CF
of the nonmodulated radiation. For simplicity, the side
maxima are not shown here but their height is equal to
unity.

From the viewpoint of the number of detected modes,
the situation is qualitatively the same as for cw radiation: if
time resolution is not good enough, a background will be
inevitably added to the `useful' part of the CF. However, the
number of modes can be reduced if the pulse duration is
smaller than the coincidence time resolution.

It is interesting that when the CF is measured in the
regime of relatively short pulses (of nanosecond duration or
shorter), there is a simple relation between the measured CF
at its maximum and the mean photon number per pulse.
Indeed, according to relation (4), the `contrast' of the CF,
i.e., the ratio of the CF maximum to its background, is

g2 �
g �2��0�
g �2�� jDt� �

1

mN
, (11)

where N is the number of photons per radiation mode, i.e.,
per coherence volume. This relation is valid for both the
case Tp 5 t0 and the case Tp 4 t0. In the érst case, m � 1.
The value in the denominator of (11) is the mean number of
photons in the detection volume. For pulses with the
duration smaller than maxfTdet;Tcg, the mean number of
photons per pulse is Np � mN, hence,

Np � gÿ12 . (12)

Relation (12) shows that to achieve high contrast in the
measurement of the intensity CF for pulsed radiation, the
mean number of photons per pulse must be quite small.
This, especially for the case of low repetition rates, is a
considerable diféculty.

4. Measurement of normalised second-order CF
for nanosecond-pulsed PDC

We have measured the normalised second-order CF for
nanosecond-pulsed PDC. The experimental setup is shown
in Fig. 4.

PDC was excited in the lithium iodate crystal under
collinear frequency-degenerate type-I phase-matching. As a

pump, the third-harmonic radiation of a Nd :YAG laser
was used, with a repetition rate of 50 Hz and a pulse
envelope duration of 5.6 ns. The pump power was varied
from 1 microwatt to 10 milliwatt by means of two Glan
prisms placed in front of the crystal. After the crystal, the
pump radiation was rejected by a UV mirror and a BS-8
glass élter, and the PDC radiation was directed to the
measurement part of the setup. Selection of a single spatial
mode was provided by a 1-mm aperture placed in the
measurement part of the setup at the distance 2.64 m from
the crystal, where the pump diameter was 1.2 mm. A KS-13
élter placed in front of the measurement part transmitted
the PDC radiation and rejected the most part of background
light. The PDC radiation was detected with two avalanche
photodiodes placed behind the beamsplitter, and the photo-
count pulses of the photodiodes were fed to two gated
ampliéers forming TTL pulses. The gate signal, with the
duration 40 ns, was triggered by the photodiode PD
detecting the pump pulse. Photocount coincidences were
detected by a coincidence circuit with the resolution
Tc � 4:2 ns. The measured values were mean photocount
numbers per pulse in both detectors, hN1i, hN2i, and the
mean coincidence number per pulse, hNci. In order to make
the mean photocount numbers per pulse optimal for the
measurement (about 0.1) at any pump intensity, the PDC
radiation intensity was attenuated at the input of the
measurement part using a polarisation élter.

First of all, we measured the dependence of hN1i, hN2i
on the average pump power �P (Fig. 5). The value of hN1ieff
plotted along the vertical axis should be understood as the
effective photocount number, since the measured average
number of photocounts per pulse never exceeded 0.1 and
hN1ieff was calculated with an account for the polarisation
élter transmission. The dependence of hN1ieff on the average
pump power has a nonlinear form at �P � 1ÿ 7 mW. This
indicates that the stimulated regime of PDC was reached.

By using the obtained dependence, one can énd the peak
value of the parametric gain Fmax within the whole range of
interest. Indeed, the instantaneous pump power P and the
instantaneous parametric ampliécation coefécient F are
related linearly,

ÿTc=2 0 Tc=2 t

t0

g �2�, g �2�mod

1

Figure 3. Typical shape of the intensity CF g �2��t� of the radiation
modulated by a sequence of pulses that are long compared to the CF
width. The dashed line shows the background.

SG

³³

A

APD1

PD2KS-13

P3

BS-8P1 P2

PD

Nd :YAG laser 3o LiIO3

Figure 4. Experimental setup for the study of the intensity CF of pulsed
SPDC as a function of the pump power: (3o) the module generating the
third harmonic of a Nd :YAG laser (with the pulse envelope duration 5.6
ns and the repetition rate, 50 Hz); (PD) the photodiode whose signal
triggers the gate of the detection system; (P1) and (P2) polarising prisms;
(LiIO3) the nonlinear crystal; (P3) a polarisation élter; (PD1) and (PD2)
avalanche photodiodes; (A) ampliéers; (SG) the strobe generator; (CC)
pair coincidence circuit; (BS-8) a glass élter; (KS-13) a glass élter
selecting the PDC radiation.
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F � KP, (13)

where the constant K is determined by the parameters of the
crystal (quadratic nonlinearity, length, refractive index) and
the pump (the beam diameter and the wavelength). At the
same time, for a given pulse shape, the mean photocount
number per pulse hN1i is linearly related to the number of
photons per mode N at the pulse maximum. In its turn, the
peak number of photons per mode depends on the peak
parametric gain Fmax as

N � sinh2
����������
Fmax

p
. (14)

Fitting by this formula the dependence shown in Fig. 5, we
obtained the relation between the peak parametric gain
Fmax and the average power of the pump �P (in mW): Fmax �
(0:27� 0:03) �P. Theoretical calculation of Fmax from the
reference data and the parameters of the experimental setup
give the value K � 0:24. However, because of the large
spread of the reference data on the quadratic susceptibility,
the accuracy of this theoretical estimate is not better than
30%.

It is important that in experiment we measured the
integral number of photocounts per pulse (averaged over all
pulses), while the nonlinear dependence (14) contains the
peak photon number per mode and the peak parametric
gain. Therefore, when étting the experimental dependence
with Eqn (14), the value of hN1ieff was normalised by the
correction coefécient

k�F � �

�1
ÿ1

sinh2
�������������
FY�x�

p
dx

sinh2
���
F
p ,

which was calculated numerically (for �P � 0ÿ 7 mW, the
values of k were between 1 and 1.1).

Further, the normalised second-order intensity CF was
measured as a function of the average pump power. Because
of a large number of longitudinal modes, the measurements
could be performed only at very small values of the power
(in the spontaneous PDC regime). The normalised intensity
CF was calculated using relations (7), (8), the shape of the
pump pulse being measured by means of a coaxial PhEC-15
photoelement. The value of K was measured by two
independent methods: from the measured pulse shape

(yielding K � 0:62) and from the number of photocount
coincidences in the regime where the `nonclassical' corre-
lation is absent, since both detectors register only the signal
radiation of frequency-nondegenerate SPDC (yielding
K � 0:64� 0:03).

By passing, with the help of relation (13), from the
average pump power to the parametric gain, which is equal,
for the case of SPDC, to the number of photons per mode,
one can énd the dependence g �2�(N ) for SPDC. The
obtained dependence is presented in Fig. 6. Fitting it by
equation (4) with the only variable parameter being the
number of modes m, we found that m � 43000� 3000. This
value is close to the number of modes calculated from the
known parameters of the crystal (and, hence, the known
width of the spectrum) and the value Tc: m � 46500.

Thus, the experimental dependence of the second-order
normalised CF on the number of photons per mode is well
described by relation (4). The obtained agreement between
the experimental and theoretical dependencies conérms the
validity of the proposed method of measuring the CF
intensity in the pulsed regime.

5. Fourth-order CF for PDC and the problem
of its measurement

In order to énd out whether the four-photon correlations in
SPDC are `true' or not, it is necessary to measure the
normalised fourth-order CF. It follows from Eqn (3) that

g
�4�
meas � 1� g �4��0; :::; 0� ÿ 1

m 3
. (15)

In Ref. [11], the normalised fourth-order CF was calculated
for PDC with an arbitrary parametric gain. Various types
of phase matching were considered: single-mode PDC, two-
mode PDC, as well as PDC leading to the generation of
two-photon entangled states. In all these cases, the
dependence of g �4�(0) on the parametric gain F is similar
and differs only in the coefécients standing by the powers
of the hyperbolic cotangent:

g �4��F � � k1 � k2 coth
2
���
F
p
� k3 coth

4
���
F
p

. (16)

0 1 2 3 4 5 6 �P
�
mW

0

20

40

60

80

hN1ieff

Figure 5. Average PDC signal (effective mean number of photocounts
per pulse) for one of the detectors as a function of the pump average
power. At hN1ieff > 0:1, the PDC radiation was attenuated in a known
way by means of a polarisation élter.

0 1 2 3 4 5 6 7 N
�
10ÿ4

0.8

1.0

1.2

1.4

1.6

g �2�

1.8

Figure 6. Dependence of the SPDC correlation function g �2� on the
number of photons per mode N at the pulse maximum (points). Solid line
is the theoretical dependence (10), the number of modes m being the
étting parameter.
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The normalised fourth-order CF takes maximal values in
the single-mode case, where

k1 � 24, k2 � 72, k3 � 9.

It follows from Eqns (15) and (16) that in the case of
multimode detection, the measured fourth-order CF will be
noticeably different from unity at F5 1:

g
�4�
meas�F5 1� � 1� 9

m 3N 2
. (17)

One can see that in the measurement of the fourth-order
CF, to `compensate' for the increase in the number of
modes it is necessary to reduce the number of photons per
mode not to N � mÿ1, as in the measurement of the
second-order CF, but to N � mÿ3=2, which is much smaller.
The relation between the mean number of photons per
pulse and the `contrast' of the fourth-order CF has the form

g4 � 9Nÿ2p mÿ1. (18)

Thus, it is almost impossible to distinguish g �4� from unity
in the case of multimode detection. For instance, at
m � 104, the `contrast' g4 � 10 is provided when the
number of photons per pulse is 10ÿ2.

Note that the diféculty of measuring the fourth-order
CF is caused by the fact that, according to Eqns (16), (17),
the asymptotic of the normalised fourth-order CF at small
N is not Nÿ3, as would be the case for four-photon light, but
Nÿ2 [11].

Normalised fourth-order CF can still be measured using
femtosecond-pulsed SPDC, where m � 1 and a high `con-
trast' can be achieved at mean numbers of photon per pulse
about 1 or less, which, with the repetition rate being on the
order of hundred MHz, is not difécult.

6. Conclusions

Thus, we have analysed the effect of multimode detection
on the measured intensity CFs of higher orders. It was
shown that single-mode measurement of the intensity CF is
indeed possible for PDC if it is excited by suféciently short
(femtosecond) pulses.

For the measurement of normalised intensity CFs in the
pulsed regime, formulas [15] were obtained, relating the
value of the normalised CF with the measurable values ë
mean numbers of photons and coincidences per pulse ë as
well as the parameters of the measurement setup, the pulse
shape and the coincidence resolution. These formulas, which
were previously used only for the study of classical radiation
(thermal and coherent), are now used for the measurement
of the second-order CF for SPDC. The obtained dependence
of the normalised CF on the number of photons per mode is
in good agreement with the theoretical dependence, which
conérms the validity of the presented method.

For the measurement of the second-order CF in the
pulsed regime and single transverse-mode detection, a
simple relation has been obtained: the product of the
measured CF at its maximum and the mean number of
photons per pulse is equal to unity.
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