
Abstract. The inverse problem of diffuse optical tomography
(DOT) is reduced by the method of photon average
trajectories (PAT) to the solution of the integral equation
integrated along the conditional mean statistical photon
trajectory. The PAT bending near the êat boundary of a
scattering medium is estimated analytically. These estimates
are used to determine the analytic statistical characteristics of
photon trajectories for the êat layer geometry. The inverse
DOT problem is solved by using the multiplicative algebraic
algorithm modiéed to improve the convergence of the
iteration reconstruction process. The numerical experiment
shows that the modiéed PAT method permits the recon-
struction of near-surface optical inhomogeneities virtually
without distortions.

Keywords: diffuse optical tomography, method of photon average
trajectories, multiplicative algebraic reconstruction technique, spa-
tially variant blurring model.

1. Introduction

Like projection tomography (X-ray computed, single-
photon emission computed, positron emission), the diffuse
optical tomography (DOT) of a strongly scattering medium
initially poses a forward problem, i.e. the problem of
propagation of radiation through a medium and then
formulates and solves the inverse problem of the
reconstruction of spatial distributions of optical parameters
of the medium. The main problem of DOT is multiple light
scattering which produces the diffusion of photons and
excludes the presence of any regular photon trajectories.
Because of this, the forward problem is solved by using the
exact models of light propagation through matter: the

radiation transfer equation [1 ë 4], its diffusion approxima-
tion [1, 5 ë 8] or the Monte-Carlo method [9 ë 11]. The
analytic solutions of the radiation transfer equation for the
êat layer geometry studied in our paper were analysed by
Kokhanovsky [2, 3]. The solutions of the diffusion equation
for the same geometry were obtained by many authors, for
example, by Arridge et al. [7] and Contini et al. [8]. When a
êat layer is a random medium, the radiation transfer (or
diffusion) equation is solved numerically by the method of
énite elements [5, 6] or énite differences [4]. The inverse
DOT problem is strongly nonlinear due to the nonlinear
dependence of the photon êux on optical parameters
(absorption and scattering coefécients, the refractive
index) being reconstructed. For this reason, the direct
use of standard algorithms of projection tomography [12 ë
14] based on the linear Radon transformation causes the
distortion and blurring of structures reproduces in tomo-
grams [15, 16].

The local linearization of the inverse problem of DOT is
performed, as a rule, by using multistep reconstruction
techniques [4 ë 6] based on the variational formulation of the
equation describing the propagation of light. A typical
example is the Newton ëRaphson algorithm with the
Levenberg ëMarcuardt iteration procedure [6]. Multistep
algorithms provide a relatively high spatial resolution (�5
mm) for diffusion tomograms, but they are not fast enough
to perform real-time medical diagnostics because the for-
ward problem should be solved numerically many times by
adjusting at each linearization step not only the solution
vector but also the matrix of coefécients of a system of
algebraic equations describing the discrete model.

To accelerate the reconstruction procedure, we devel-
oped the alternative method [17 ë 27] based on the
probabilistic interpretation of radiation energy transfer
by photons from a source to a detector. According to
this method, the inverse problem of DOT is reduced to the
solution of the integral equation integrated along the mean
statistical photon trajectory (PAT). The use of conditional
PATs makes it possible to pass from the multistep to single-
step reconstruction model by employing the fast algorithms
of projection tomography to reconstruct optical parameters
[12 ë 14]. Note that integrals along photon trajectories were
studied analytically by using the radiation transfer equation
in [28]. Perelman et al. [29, 30] used the probabilistic
approach, which is close to that presented in this paper,
to calculate integrals along average (most probable) tra-
jectories and analyse time-resolved signals. However, the
reconstruction of spatial distributions of optical parameters
was not considered in these papers.
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We have shown in our previous papers by the example of
the 2D reconstruction from the data simulated for the
pulsed detection scheme of time-resolved signals that the
PAT method can be successfully realised by using both
algebraic [22, 23, 26] and integral algorithms [24, 25, 27]. By
éltrating shadows from optical inhomogeneities [24 ë 26] or
performing the spatially variant restoration of reconstructed
tomograms [27], it is possible to obtain the spatial resolution
no worse than the resolution of reconstructions obtained
with the use of multistep algorithms. In this case, the
advantage in the calculation time achieves two orders of
magnitude.

So far all our realisations of the PAT method were based
on the three-segment approximation of curvilinear PATs
and time dependences of the velocity of centres of mass of
the instant distributions of diffusion photons (so-called
diffusion photon clouds). Such an approach makes it
possible not only to reconstruct rapidly the image but
also calculate in real time the matrix of the weight
coefécients of the system of equations (when algebraic
algorithms are used) before the image reconstruction.
However, the three-segment approximation is correct and
does not deteriorate the reconstruction quality only if
optical inhomogeneities are located far enough from the
boundaries of a scattering object, where PATs are close to
straight lines and the velocities of the centres of mass of
diffusion clouds are almost constant. Near the boundaries,
where PATs bend and centres of mass are accelerated,
approximation errors can cause distortions in the recon-
struction of the spatial structures of optical inhomogeneities
[22]. To improve the reconstruction quality of boundary
inhomogeneities, we abandoned in this paper for the érst
time the three-segment approximation and used analytic
statistical characteristics of photon trajectories in the
reconstruction. These characteristics include the PAT itself,
the velocity of the centre of mass of the diffusion photon
cloud, and the standard root-mean-square deviation
(RMSD) of the photon position from the PAT. We studied
analytically variations in these characteristics near the êat
surface of a scattering medium. The derived relations were
used to énd average trajectories and velocities correspond-
ing to the speciéed set of point sources and detectors for the
êat layer geometry (the 2D case was considered).

Based on the dependences obtained in the paper, a
discrete reconstruction model is realised. Tomograms were
reconstructed by model shadows from absorbing inhomo-
geneities by using the multiplicative algebraic reconstruction
technique (MART) [12, 13], which we modiéed to improve
the divergence of the iteration process. The matrix of the
weight coefécients of a system of equations was constructed
by considering intersections with the quantisation cells of
the reconstruction region of not PATs themselves but the
so-called banana-like bands whose thickness amounts to
�30% of the RMSD of photons from the PAT. During the
reconstruction, the weight smoothing was performed for
each of the iterations taking into account the nonuniform
introduction of corrections to different quantisation cells.
Tomograms reconstructed from shadows were restored by
using the spatially variant image blurring model, which was
described in detail in [27]. The results were visualised and
compared with similar results obtained by using the three-
segment approximation of the statistical characteristics of
photon trajectories. It is shown that the new realisation of
the PAT method considerably improves the quality of

tomograms in the case of the reconstruction of inhomoge-
neities located near the boundaries of a scattering object.

2. Analytic statistical characteristics of photon
trajectories

Let us assume that the photon density in a volume V of a
scattering medium restricted by the piecewise smooth
surface qO satisées the time-dependent diffusion equation
with an instant point source

qj�r1; t�
qt

ÿ H
�
D�r1�v�r1�Hj�r1; t�

�� ma�r1�v�r1�j�r1; t�

� d�r1 ÿ rs; t�, (1)

where D(r1) is the diffusion coefécient; ma(r1) is the
absorption coefécient; v(r1) � c=n(r1) is the speed of light
in the medium; c is the speed of light in vacuum; n(r1) is the
refractive index; and d(r1 ÿ rs; t) is the Dirac delta function.
Then, the conditional probability density that a photon
migrating from the spatiotemporal point (rs; 0)(rs 2 V ) to
the spatiotemporal point (r; t)(r 2 qO) will be at the instant
t at a spatial point with coordinates r1 2 V will be described
by the expression

P�r1; t; r; t� �
j�r1; t�qG�r; t; r1; t�=qZ

qj�r; t�=qZ (2)

if the Dirichlet boundary condition is used and the
expression

P�r1; t; r; t� �
j�r1; t�G�r; t; r1; t�

j�r; t� (3)

in the Robin boundary condition is used [19, 20, 22]. Here,
G(r; t; r1; t) is the Green function; q=qZ is the derivative
along the external normal to the surface qO at the point r.
The conditional probability density P(r1; t; r; t) as a
function of the variable r1 describes at each éxed moment
t the instantaneous distributions of diffusion photons
(diffusion clouds), while the time integral

� t
0 P(r1; x; r; t)dx

describes the instantaneous distributions of trajectories of
diffusion photons. At the instant t � t, this integral forms
the region of the most probable photon trajectories
migrating from point (rs; 0) to point (r; t) (banana-like
region). The function P(r1; t; r; t) allows us to describe
approximately this region with the help of statistical
moments

R�r; t; t� �
�
V

r1P�r1; t; r; t�d3r1, (4)

D�r; t; t� �
� �

V

jr1 ÿ R�r1; t; t�j2P�r1; t; r; t�d3r1

�1=2
. (5)

The érst moment R(r; t; t) is the radius vector describing the
movement of the centre of mass of the photon distribution
from point (rs; 0) to point (r; t). The trajectory of the centre
of mass is in fact the PAT. The second moment D(r; t; t)
describes the standard RMSD of photons from the PAT
and characterises the effective width of the banana-like
region at each instant of time t. The value
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vcl�t� �
���� dR�t�dt

���� � dl�t�
dt

, (6)

where l(t) is the distance propagated along the PAT for the
time t, is the velocity of the centre of mass of the instant
photon distribution propagating along the PAT (hereafter,
the velocity of the diffusion cloud).

It was shown [17, 18, 20] that the centre of mass of the
diffusion cloud in a homogeneous inénite medium moves
from a source to a detector uniformly and linearly. The PAT
bending and a change in the velocity in the absence of
contrast inhomogeneities can be caused only by the close-
ness of the object boundary. Let us study variations in the
statistical characteristics near the êat surface of a scattering
medium. We assume that an instantaneous point source is
located in a homogeneous half-space z5 0 at the point
(0; 0; z0) and z0 4 1=m 0s, where m 0s is the reduced scattering
coefécient. Consider, for example, the Dirichlet boundary
condition j(r1; t)jz�0 � 0. According to [17 ë 19], the func-
tion j(r1; t) and the Green function G(r; t; r1; t) of the
diffusion equation are described by the expressions

j�r1; t� �
�
4pD0ct

n0

�ÿ3=2
exp

�
ÿ ma0ct

n0

�

�
�
exp

�
ÿ x 2

1 � y 2
1 � �z1 ÿ z0�2
4D0ct

n0

�

ÿ exp

�
ÿ x 2

1 � y 2
1 � �z1 � z0�2
4D0ct

n0

��
, (7)

G�r; t; r1; t� �
�
4pD0c�tÿ t�

n0

�ÿ3=2
exp

�
ÿ ma0c�tÿ t�

n0

�

�
�
exp

�
ÿ �xÿ x1�2 � �yÿ y1�2 � �zÿ z1�2

4D0c�tÿ t� n0

�

ÿ exp

�
ÿ �xÿ x1�2 � �yÿ y1�2 � �z� z1�2

4D0c�tÿ t� n0

��
, (8)

where D0, ma0, and n0 are the optical parameters of a
homogeneous medium. Let us assume for simplicity of
calculations that a detector is located at the point (x0; 0; 0)
at the medium boundary z � 0. Then, taking into account
that y � 0 and z � 0, we obtain

q
qZ

G�r; t; r1; t�
����
y�0;z�0

�
�
4pD0c�tÿ t�

n0

�ÿ3=2
� exp

�
ÿ ma0c�tÿ t�

n0

�
z1n0

D0c�tÿ t�

� exp

�
ÿ �x1 ÿ x�2 � y 2

1 � z 21
4D0c�tÿ t� n0

�
, (9)

q
qZ

j�r; t�
����
y�0;z�0

�
�
4pD0ct

n0

�ÿ3=2

� exp

�
ÿ ma0ct

n0

�
z0n0
D0ct

exp

�
ÿ z 20 � x 2

4D0ct
n0

�
. (10)

By substituting expressions (7), (9), and (10) into (2), we
obtain

P�r1; t; r; t�
����
y�0;z�0

� 2

z0

�
4pD0ct

n0

�ÿ3=2�
1ÿ t

t

�ÿ5=2

� exp

�
ÿ z 20 n0�tÿ t�

4D0ctt
ÿ x 2n0t
4D0ct�tÿ t�

�

� exp

�
ÿ x 2

1

n0t

4D0ct�tÿ t� � x1
xn0

2D0c�tÿ t�
�

� exp

�
ÿ y 2

1

n0t

4D0ct�tÿ t�
�
z1 sinh

�
z1

z0n0
2D0ct

�

� exp

�
ÿ z 21

n0t

4D0ct�tÿ t�
�
. (11)

By substituting (11) into (4) and integrating over the
volume of the scattering medium z5 0, we obtain the
expressions for coordinates of the centre of mass of the
diffusion cloud that moves from the point (0; 0; z0) of the
source to the point (x0; 0; 0) of the detector:

X�t� � x0
t
t
,

Y�t� � 0,

(12)

Z�t� � z0

��
1� t

t

�
a
2
ÿ 1

��
erf

�
tÿ t
at

�1=2

�
�
at�tÿ t�

pt 2

�1=2
exp

�
ÿ tÿ t

at

��
,

where a � 4D0ct=(z
2
0 n0) and erf x is the probability integral.

Correspondingly, the velocity of the diffusion cloud is

vcl�t� �
��

dX

dt

�2
�
�
dY

dt

�2
�
�
dZ

dt

�2 �1=2
, (13)

where

dX

dt
� x0

t
;

dY

dt
� 0 ;

(14)

dZ

dt
� z0

t

��
a
2
ÿ 1

�
erf

�
tÿ t
at

�1=2
ÿ
�

at
p�tÿ t�

�1=2

� exp

�
ÿ tÿ t

at

��
.

The aim of this paper is to study the possibility of the
qualitative reconstruction of optical inhomogeneities of a
scattering medium restricted by two planes. A typical
example of the practical application of the êat layer
geometry (the case of d4 1=m 0s, where d is the layer
thickness) is the diffuse optical reconstructive mammog-
raphy [31 ë 34]. A woman breast is tightly placed between
two glass plates, on which radiation sources and detectors
are located, thereby taking the form of a layer. It is obvious
that the derivation of relations of the type (12) and (14) for
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the êat layer geometry involves bulky calculations. There-
fore, it is expedient to énd the PAT and velocities of
movement of diffusion clouds between the two planes by
using analytic results obtained for the half-space.

The basic assumption in this case is that the character of
PAT bending and the change in the velocity vcl(t) near the
planes of the source S and detector D is the same (Fig. 1)
and the inêuence of the opposite boundary is negligibly
small [19, 20]. In this case, the centre of mass of the
diffusion cloud propagates the distance SO, as the distance
OD, for the time t=2. If the centre of mass moved in the half-
space z5 0 from a point S0 to the point D through the point
O, it would pass the interval S0O for the time t=2. Because
the velocity component along the x axis is a constant, the
point S0 lies on the perpendicular to SS 0 to the medium
boundary. The distance S0S

0 can be found by solving
numerically the equation Z(t � t=2) � d=2 with respect to
z0 [see relation (12)]. Then, the part OD of the trajectory can
be calculated by expression (12) and the part SO can be
obtained by its symmetric reêection with respect to the point
O.

Figure 2 presents the geometry of data detection that we
selected for the case of the 2D reconstruction. Triangles and
circles indicate the positions of radiation sources and
detectors, respectively. As an example, Fig. 2 also shows
six average trajectories constructed by using the above-
described algorithm for the time t � 3000 ps and optical
parameters D0 � 0:066 cm and n0 � 1:4. For comparison,
the dashed curves present piecewise linear approximations
of the PAT. We studied in this paper the object probing
regime in transmission, i.e. only connections between
radiation sources and detectors located on the opposite
sides of the object were considered. The total number of
average trajectories was 32� 16.

3. Algorithm for solving the inverse problem

Let us deéne the relative shadow g of optical inhomoge-
neities as the logarithm of the ratio of intensities I0 and I of
the unperturbed and perturbed signals, respectively,
detected on the surface qO at the instant t. We assume
that the érst approximation of the perturbation theory is
valid (I0 ÿ I5 I0), and the perturbation of a signal is
caused by the presence of the local change dma(r1) �
ma(r1)ÿ ma0 in the absorption coefécient ma0 (without the

loss of generality of the PAT method, we restrict ourselves
here to the case of an absorbing inhomogeneity). Then, the
inverse problem of the time-domain DOT is reduced to the
solution of the integral equation [19, 21, 22]

g�L; t� �
�
L

c

n0vcl�l �
� �

V

dma�r1�P�r1; t; r; t�d3r1

�
dl, (15)

where L is the PAT and vcl(l ) is the velocity of the diffusion
cloud as a function of l(t). Equation (15) can be solved for
the function in the brackets in the integrand, i.e. the
function dma(r1) averaged over the spatial distribution of
photons contributing to the signal detected at the instant t.
Thus, the solution of the inverse problem assumes the
performance of the two successive steps: (i) the reconstruc-
tion of tomograms blurred due to averaging from a set of
relative shadows and (ii) the restoration of the obtained
tomograms by using a blurring model to compensate for
the blurring effect.

The generalised discrete model of the 2D reconstruction
problem is constructed as usual [22]. A Cartesian grid of
square image elements covering an object is introduced. Let
the function

�
V dma(r1)P(r1; t; r; t)d

3r1 being reconstructed
have a constant value fkl within the image element with the
subscripts k and l [hereafter, the (k; l ) cell]. Let Lij be the
PAT connecting the ith source with the jth detector, and gij
be the relative shadow of the ith source measured with the
jth detector. Then, the discrete model of the reconstruction
problem can be described by the system of linear algebraic
equations

gij �
X
k;l

Wijkl fkl, (16)

where Wijkl is the weight of the contribution of the (k; l ) cell
to the total change in the signal gij along the entire
trajectory Lij. To improve the convergence of the iteration
reconstruction process compared to [22], we modiéed the
method for calculating the matrix of the weight coefécients
W � fWijklg by using the approach often employed in
projection geometry [35, 36]. The idea is to consider the
intersection of not the PAT itself with the (k; l ) cell but of a
narrow band of énite thickness. In projection tomography,
such bands have the form of an elongated rectangular or a

S 0 O 0 D x

S

S0

O

z

Figure 1. Construction of the PAT for the êat layer geometry.

z
�
cm

ÿ2

2

ÿ4 ÿ2 0 2 4 x
�
cm

S5

D17 D20 D23 D26 D29 D32

Figure 2. Geometry of the data detection for a rectangular object.
Coordinates of the indicated sources and detectors (in centimetres): S5 ë
(ÿ2:52, 4), D17 ë (ÿ5,ÿ4), D20 ë (ÿ3:06,ÿ4), D23 ë (ÿ1:13,ÿ4), D26 ë
(0:81,ÿ4), D29 ë (2.74,ÿ4), and D32 ë (4.68,ÿ4).
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cone. In our case, it is expedient to use a banana-like band
of width directly proportional to the RMSD of a photon
from the PAT: e � gD(t). The high calculation accuracy of
the PAT is this case is not of principal importance.
Therefore, according to the conclusion [19] that the RMSD
is independent in fact of the object shape, a simple
expression for an inénite space can be used

D�t� �
�
2D0c�tÿ t�t

n0t

�1=2
. (17)

The proportionality coefécient g 2 (0; 1) is selected to
provide the complete élling of the object area by all the
bands. Figure 3 shows such a élling for g equal to 0.05
(Fig. 3a) and 0.3 (Fig. 3b) and the delay time of detectors
t � 300 ps. Optical parameters correspond to the values
presented in section 2. The delay time used in calculations
corresponds to the initial part of the leading edge of the
temporal point spread function in the case of oppositely
located sources and detectors or to the initial part of the
trailing edge when sources and detectors are most removed
from each other. Figure 3a demonstrates large regions
which are not intersected by bands (shown by white). This
means in fact that a thickly grid will contain cells to which
no correction will be introduced during the reconstruction
process. These regions are negligibly small in Fig. 3b, which
reduces the probability of appearance of `dead' cells to a
minimum. Because of this, we used the value g � 0:3 in
calculations.

The weight Wijkl is determined from the expression

Wijkl �
c

n0v cl
ijkl

Sijkl

d
, (18)

where Sijkl is the intersection area of the banana-like band
connecting the ith source and the jth detector [hereafter, the
(i; j) band] with the (k; l ) cell (Fig. 4); v cl

ijkl is the discrete
value of the velocity of the diffusion cloud calculated for
the (kl ) cell and (i; j) band; and d is the cell size. The set of
values {v cl

ijkl} is found by using the following algorithm.

(i) The sequence {tp} of discrete values of instants of
time is speciéed.

(ii) Perpendiculars to the tangents of the considered
trajectory Lij are constructed at points corresponding to
times {tp} (Fig. 5).

(iii) The cycle over p is organised in which
ë the intersection cells of the (i; j) band and the band

formed by two adjacent perpendiculars corresponding to the
instants tp and tp�1 are found (these cells are shown by grey
in Fig. 5);

ë the value of the mean velocity �vcl(tp)� vcl(tp�1)�=2 for
the two instants is written into all the cells found;

ë if some value (v cl
ijkl)old was already written in a cell, the

recalculation is performed by the expression

b

a

4

ÿ4 ÿ2 0 2 4
ÿ4

ÿ2

0

2

4

ÿ4 ÿ2 0 2 4
ÿ4

ÿ2

0

2

Figure 3. Regions of the object élling by banana-like bands for g � 0:05
(a) and 0.3 (b) (axes are in centimetres).

�k; l � cell

�i; j � band

SSiijjkkll

Figure 4. Intersection of the �i; j � band with the �k; l � cell.

tp

tp�1

Figure 5. Scheme for determining discrete velocities of the diffusion
cloud.
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v cl
ijkl �

�v cl
ijkl�oldN� �v cl

ijkl�new
N� 1

, (19)

where (v cl
ijkl)new is a new value and N is the number of

recalculations that have been already performed.
(iv) All the PATs are successively sorted out and the pro-

cedure is repeated for each of them beginning from step (ii).
Corrections are introduced to the image being recon-

structed in each (s� 1)th iteration by using the expression

f
�s�1�
kl � f

�s�
kl

�
gij

.X
k;l

Wijkl f
�s�
kl

�lWijkl= ~Wkl

, (20)

where ~Wkl �
P

i; j Wijkl; l 2 (0; 1) is the parameter control-
ling the convergence rate of the iteration process. To
improve the convergence, we performed smoothing in each
of the iterations taking into account the distributions of the
number of introduced corrections {Akl} and the sum of
weights { ~Wkl} over cells:

f
�s�1�
kl � 1

�2r� 1�2
Xr
m�ÿr

Xr
n�ÿr

f
�s�1�
k�m; l�n ~Wk�m; l�nAk�m; l�n, (21)

where the integer r speciées the size (r� r) of the smoothing
window. Expressions (20) and (21) describing the MART
modiéed by us take into account, unlike other realisations
of this algorithm [22, 35, 36], the nonuniformity of the
number of corrections introduced into different cells.
Distributions {Akl} and { ~Wkl} for the 100� 137 net that
we used for calculations are presented in Fig. 6. The
iteration process is interrupted when the speciéed con-
vergence rate vconv is achieved

r �s�1� ÿ r �s�

r �s�
4 vconv, (22)

where

r �s� �
X
i; j

�
gij ÿ

X
k; l

Wijkl f
�s�
kl

�2
.

The blurring of tomograms f reconstructed from shad-
ows was compensated during using the spatially variant
blurring model [37]. According to this model, the discrete
restoration problem is described by the system of linear
algebraic equation

f � Px, (23)

where P is a large ill-conditioned matrix describing the
blurring operator, and x is the discrete representation of the
required solution dma(r1). The model is based on the
division of an image into regions, each of them being
described by its own spatially invariant point spread
function (PSF). These functions are interpolated and are
written into the matrix P so that the matrix contains all the
nonzero elements of each of the spatially invariant PSFs
corresponding to separate regions of the tomogram. In
addition, the matrix P takes into account a priori
information about the extrapolation of the restored
image outside boundaries, i.e. the boundary conditions.
This is necessary to compensate for near-surface artefacts
appearing due to the Gibbs effect. For example, in the case
of the reêection boundary conditions that we used in the
restoration, the matrix P is a sum of two matrices: the
extended block Toeplitz matrix [38] with extended Toeplitz
blocks and the extended block Hankel matrix with extended
Hankel blocks [39].

Each spatially invariant PSF corresponding to a separate
region of the tomogram was simulated by performing the
following sequence of operations.

(i) A point inhomogeneity with the amplitude that is an
order of magnitude greater than the amplitude dma(r1) is
speciéed on a triangle grid by three values at the nodes of a
triangle located at the centre of the region.

(ii) Shadows from the point inhomogeneity are simulated
by solving numerically Eqn (1) by the method of énite
elements.

(iii) A tomogram with the PSF is reconstructed from the
obtained model shadows by using the modiéed MART.

The system (23) was inverted by using the iterative
algorithm of steepest descent with the minimisation of the
residual norm of the solution [40]. This algorithm converges
rapidly enough and has a quasi-convergence with respect to
the relative error kxs ÿ xk=kxk, where xs is the approx-
imation at the sth iteration. This is important for obtaining
the regularised solution. The restoration procedure of
diffuse optical tomograms reconstructed by the PAT
method is described in detail in [27] and is not considered
here.

4. Results and discussion

To demonstrate the possibilities of the modiéed PAT
method, we carried out the calculation experiment by
specifying numerically scattering objects with absorbing
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Figure 6. Distribution of the number of corrections {Akl} introduced to
the reconstructed image (a) and sums of weights { ~Wkl} (b) on the
100� 137 grid.
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inhomogeneities, simulating the relative shadows from
inhomogeneities, and performing the reconstruction and
restoration procedures described in section 3. We consid-
ered two scattering rectangular objects of size 11� 8 cm
(Fig. 2). The refractive index, the diffusion and absorption
coefécients of the objects were 1.4, 0.66 cm, and 0.05 cmÿ1,
respectively. Each of the objects contains two circular
absorbing inhomogeneities of diameter 0.8 cm separated by
a distance of 0.8 cm. The Cartesian coordinates of the
centres of inhomogeneities in the coordinate system in
Fig. 2 were (in centimetres) (ÿ0:8; 0) and (0:8; 0) for the érst
object and (ÿ0:8; 3:3) and (0:8; 3:3) for the second object.
The absorption coefécient of the inhomogeneities was
0.075 cmÿ1. The arrangement of sources and detectors is
shown in Fig. 2.

Figure 7a shows inhomogeneities speciéed on the tri-
angle high-resolution grid containing 13859 nodes and 7108
elements. The relative shadows from inhomogeneities were
simulated by solving numerically Eqn (1) by the method of
énite elements. Each object was reconstructed from model
shadows on the 100� 137 grid by using the modernised
MART. The stabilised solution was obtained already after
ten ë twelve iterations. The reconstruction time per iteration
was �12 s, from which 5 s were spent for introducing
corrections by expression (20) and 7 ë 8 s were spent for
smoothing with the 3� 3 window [according to (21)].
Hereafter, the calculation times are presented for programs
written for MATLAB and a 1.7-GHz Pentium PC with the
256-Mb random-access memory. Figure 7b presents the
results of the reconstruction of inhomogeneities of the
objects.

Tomograms were restored by the spatially variant
method [37] by dividing the image into two regions, each
of them containing its own inhomogeneity. The PSF was
simulated by specifying a point inhomogeneity in a triangle
at the centre of the circular inhomogeneity. A tomogram
with inhomogeneities remote from boundaries was restored
by performing ten iterations. In the case of near-boundary
inhomogeneities, the regularised solution was obtained
already after three iterations. The restoration time per
iteration was 6 s. The results of the restoration are presented
in Fig. 7c. Figure 7d shows the énal results of the
reconstruction ë restoration procedure for the case of the
three-segment approximation of statistical characteristics
(the 50� 68 grid). In this case, the reconstruction was
performed by lines rather than by bands, as described
above. We failed to obtain adequate results on a thickly
grid because of a strong rarefaction of the matrix of weight
coefécients. Note that the time of reconstruction by lines
with smoothing was smaller by a factor of three than in the
case of reconstruction by banana-like bands for the same
number of iterations. The spatial resolution of the modiéed
PAT method was quantitatively estimated by measuring
modulation transfer coefécients from the proéles of
obtained images [22, 24, 25, 27] for structures of size
0.8 cm. These estimates are presented at the right bottom
corners of the corresponding images in Fig. 7.

An analysis of the results shows that structures of size
0.8 cm are reliably resolved in all tomograms presented in
Fig. 7. However, in passing from the reconstruction by
piecewise-linear PATs to the reconstruction by banana-like
bands, we obtain more than the twofold advantage in the
reproduced contrast: 78% versus 37% in the case of
inhomogeneities remote from boundaries and 83% versus
37% in the case of near-boundary inhomogeneities. In the
latter case, not only the spatial resolution is improved, but
also structure distortions caused by the three-segment
approximation are compensated to a great extent. Indeed,
Fig. 7d (on the right) demonstrates the false displacement of
structures to the boundary. As a result, inhomogeneities
completely merge with the boundary. On the contrary, in
Figs 7b and c the gap between the boundary and inhomo-
geneities is distinctly resolved. In this case, positions of the
centres of inhomogeneities coincide with those in the initial
model image. The restoration effect for near-boundary
structures was small: the image contrast increased from
72% to 83% after restoration. This can be explained by a
relatively weak blurring of structures compared to the
central region. As a whole, the modiéed PAT method
provides higher quality imaging compared to its previous
realisations based on the three-segment approximation of
statistical characteristics.

It follows from the data presented above that the
described method is inferior in the calculation time to
ultrafast line reconstruction algorithms. This is explained
by a more rareéed matrix of the weight coefécients, which
requires more calculations. In this paper, we did not
optimise the duration of the reconstruction ë restoration
procedure. The aim of the paper was to demonstrate the
principal outlook of the new method of calculating weight
coefécients for improving the quality of tomograms. In the
future, algorithms that are faster than the MART can be
used to invert system (16), for example, the conjugated
gradient algorithm for the least square problem [41] and the
least square algorithm with the QR factorisation [42]. The
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Figure 7. Results of the reconstruction and restoration of tomograms
(axes are in centimetres, the palette scale is in inverse centimetres). The
image regions of size 5� 4 cm containing inhomogeneities are shown.
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structure blurring effect can be compensated by the éltration
of shadows in the frequency region instead of the time-
consuming post-processing of reconstructed tomograms
[26]. In addition, it is expedient to use a faster calculation
medium than MATLAB. All this will reduce the time of
calculations by the modiéed PAT method.

5. Conclusions

We have studied the principal possibility of improving the
quality of diffuse optical tomograms by using the modiéed
method of photon average trajectories with the pulsed
detection scheme of a time-resolved signal. The modiéca-
tion consists in abandoning the piecewise-linear
approximation of statistical characteristics of photon
trajectories used previously and employing analytic depend-
ences for calculations. We have reéned the method for
calculating the weight coefécients in the discrete recon-
struction problem, which considerably improved the
convergence of the multiplicative algebraic reconstruction
technique used for the reconstruction of tomograms. The
possibilities of the modiéed method of photon average
trajectories have been demonstrated in the computational
experiment on the 2D reconstruction of two scattering
rectangular objects with absorbing inhomogeneities. It has
been shown that when inhomogeneities are located near the
boundary, the image quality can be considerably improved
compared to the previous realisations of the method. It has
been pointed out that, although the realisation of the
method considered in the paper is somewhat inferior in the
calculation rate to previous realisations (due to the increase
in the amount of calculations), the reconstruction time can
be optimised in the future.
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