
Abstract. It is shown that the stability of the Henyey ë
Greenstein phase function allows the calculation rate of light
propagation through strongly scattering objects to be
drastically increased by using the same a priori information
on interaction processes as in the initial formulation of the
problem. The increase in the calculation rate is accompanied
by a gradual impairment of simulation accuracy from the
accuracy of the Monte-Carlo method to that of the diffusion
approximation. By using a standard assumption about the
statistical independence of the photon mean free path and
photon scattering angle, an exact analytic expression relating
the effective number of scattering events with the optical path
is obtained.

Keywords: Henyey ëGreenstein phase function, multiple-scattering
phase function, fast path integration.

1. Introduction

The problem of light propagation under multiple-scattering
conditions is usually solved numerically by the methods of
radiation transfer theory [1, 2], Monte Carlo [3, 4] or path
integration [5 ë 7]. These calculations are based on the
parameters that a priori describe the statistics: absorption
and scattering coefécients ma;s and the phase function
P
�1�
s (H) characterising the distribution of the probability

density of single scattering within the two-dimensional
angle H� (y;j), where y and j are the azimuthal and polar
scattering angles [1 ë 4]. Because the problem of multiple
scattering cannot be solved analytically in such `exact'
formulation based only on a priori statistics [ma;s and
P
�1�
s (H)], it is usually simpliéed by introducing some

approximations [2, 7 ë 11]. Unfortunately, the veriécation
of the results obtained within the framework of these
approximations by the methods mentioned above for
propagation over distances �1000 scattering lengths
becomes virtually impossible due to enormous calculation
times. The matter is that more or less reliable calculation

(with the relative error �1%) of only the distribution of
the probability density for propagating photons from a
source to a detector certainly requires simulations of more
than 1013 realisations, which simply follows from the
necessity to éll the data matrix (104 photons per cell)
corresponding to this distribution.

The numerical calculation rate in any of the above-
mentioned exact methods can be considerably increased by
introducing the 2D distribution P

�k�
s (H) a priori describing

k-fold scattering [11 ë 14]. It was assumed in this method [13,
14] that the function

P
�k�
s �H� � 1

4p
1ÿ g 2

k

�1� g 2
k ÿ 2gk cos y�3=2

, k � 1, 2, ... (1)

is the Henyey ëGreenstein phase function [15] with the
anisotropy parameter gk � gk

1 � hcosHi, which determines
the mean cosine of the angle of k-fold scattering and varies
from 0 (isotropic scattering) to 1 (forward scattering). It
was assumed that the number k of scattering events on the
path of length Dz transforms to a new effective constant
keff, which depends on Dz and is expressed in terms of the
mean value hki � msDz [12 ë 14]. The dependence keff(Dz)
required for calculations was introduced semiempirically.

We will show below that, because the distribution
P
�1�
s (H) belongs to the class of stable distributions [16]

and the dependence P
�k�
s (H) reproduces the dependence

P
�1�
s (H) [see (1)], there is no need to use semiempirical

considerations and the dependence keff(Dz) can be found
exactly. Therefore, within the framework of any of the
above-mentioned exact methods, by using the same a priori
information on a scattering medium as in the initial
formulation of the problem, a principal advantage in the
calculation rate can be achieved in the solution of the
problem of multiple small-angle scattering.

2. Multiple-scattering phase function

We will assume that a photon k � 0, 1, ... times changes its
propagation direction by the angle Hk � (yk;jk) on an
interval of length Dz parallel to the z axis. By considering
only the énal change in the photon propagation direction
(H �P1

k�0 H ) and assuming that all scattering events are
independent, we introduce the effective multiple-scattering
phase function in the form

Ps�H;Dz� �
X1
k�0

P �k��Dz�P �k�s �H�. (2)
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Here, P �k�(Dz) is the probability of k-fold scattering on the
interval Dz, which will also take into account below the
probability of the absence of absorption (path integration
method);

P �k�s �H� �
� �

dH 0P �kÿ1�s �H 0�P �1�s �H ÿH 0�, k � 1, 2, ... (3)

is the k-fold scattering phase function; and P
�0�
s (H) � d(H)

is the delta function over the angle H � (y;j).
By using the mathematical apparatus of characteristic

functions, we can easily show that for any phase function
P
�1�
s (H) it follows already from the condition of the

independence of single-scattering events for any integer
n > 1 thatD

cos
Xn
k�1

Hk

E
� hcosH1in. (4)

Therefore, if the single-scattering phase function were
determined by distribution (1) and this distribution were
stable [16], we would obtain a rather simple and convenient
relation gk � gk

1 [14].

3. Stability of the Henyey ëGreenstein phase
function

To illustrate the stability of the Henyey ëGreenstein phase
function (1) we present the result of numerical integration
of (3) for P

�1�
s (H) given by expression (1) and

0:99 > g1 > 0:15 and k � 1, 2, ... 50. Figure 1 shows the
dependences F �k�(y) � � 2p0 djP �k�s (H) on the plane y; k
calculated by this method (points) and dependences

F �k��y� � 1

2

1ÿ g 2k
1

�1� g 2k
1 ÿ 2gk

1 cos y)
3=2

, (5)

calculated by using expression (1) and the condition

gk � gk
1 for g1 � 0:95 (solid curves). It is easy to verify

that for gk � 0:99ÿ 0:07 (almost isotropic scattering), the
deviation of the results of numerical integration of (3) from
those obtained by expression (5) does not exceed 10ÿ3.
Taking into account the accuracy of numerical calculations,
this conérms that distribution (1) is indeed stable [16]. Note
that the same result can be also obtained analytically
[11, 14].

4. Statistical moments in k-fold scattering

Note at once that due to the different lengths of paths with
a different number of scattering events, it cannot be assu-
med that the function P �k�(Dz) in (2) is given by the
standard Poisson distribution (see, for example, [13, 14]).
Therefore, we will calculate the statistical moments of the
distribution P �k�(Dz) by using the following simple consid-
erations.

Let us assume that the path of any photon upon k-fold
scattering is a broken line consisting of k� 1 linear segments
Dli (i � 0, 1, ..., k) at the ends of which a photon is scattered
by the 2D angle Hi (Fig. 2). We assume that the lengths Dli
of these segments are distributed exponentially with the érst-
and second-order moments hDlii � hDl i � mÿ1s and hDl 2i i �
hDl 2i � 2mÿ2s , respectively. In this case, the mean length
hDl �k�i � (k � 1)mÿ1s of the paths under study depends on
the total number k of scattering events, and h�Dl �k��2i �
2(k� 1)mÿ2s . By projecting now all scattering points to the
segment Dz, which is the continuation of Dl0, we construct
on it k� 1 successive segments with different lengths
Dzi � Dli cos (

P i
m�0 Hm), where H0 � 0 because H0 is the

entrance angle of a photon to the path under study. By
averaging Dzi over Dli and Hi assuming that the mean free
paths Dli and single-scattering angles are statistically inde-
pendent (the approximation of point scattering centres), we
obtain



Dz �k�

� �Xk
i�0
hDzii � mÿ1s

Xk
i�0

g i
1 � mÿ1s

1ÿ gk�1
1

1ÿ g1
, (6)

where hDz �k�i is the mean displacement length of a photon
along the z axis after k-fold scattering. It follows from
expression (6) that

k � ln
�
1ÿ ms



Dz �k�

��1ÿ g1�
�

ln g1
ÿ 1, (7)

and the total mean path for such scattering multiplicity is

hDl �k�i � mÿ1s

ln�1ÿ mshDz �k�i�1ÿ g1��
ln g1

. (8)

It is easy to verify that, although hDl �k�i ! 1 for
k!1, the mean displacement hDz �k�i of the photon along
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�
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k
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Figure 1. Dependence F �k��y� as a function of k for g1 � 0:95. Points are
the results of numerical integration of expression (3), solid curves
correspond to expression (5).
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Figure 2. Schematic representation of the photon path upon four-fold
scattering (see the text).
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the z axis cannot exceed Dz �1� � ( m 0s )
ÿ1, where m 0s � ms(1ÿ

g1) is the transport scattering coefécient. This well-known
result [see expression (28) in [17]] is explained by the fact
that hDz �k�i increases only due to the regular component
(the mean projection on the z axis is nonzero) of the photon
velocity directed strictly along the z axis. It is the distance
Dz �1� that determines the possibility of passing to the diffu-
sion approximation in which the further propagation of
photons is already described in terms of the second-order
moment taking also into account the irregular component
(the mean projection on the z axis is zero) of the total
displacement.

To take into account this component of the photon
displacement, we calculate the quantity


�Dz �k��2� � D�Xk
i�0

Dzi
�2E
�
Xk
i�0
hDz 2i i � 2

Xk
j>i�0
hDziDzji. (9)

Note at once that the main problem of the calculation is
that Dzi and Dzj in the second term in the right-hand side of
expression (9) are statistically dependent. Indeed, the
direction of photon propagation after the jth scattering
event described by the angle

P j
m�0 Hm depends on all the

previous events because it also includes the sum
P i

m�0 Hm

characterising the direction of photon propagation after the
ith single-scattering event. However, taking into account
the stability of the Henyey ëGreenstein function (see above)
and statistical independence of free mean paths Dli and
single-scattering angles Hi, it is possible to perform exact
averaging in (9) because

Xk
i�0



Dz 2i

��hDl 2iXk
i�0

D
cos 2

�Xi
m�0

Hm

�E
�
Dl 2�Xk

i�0

1� 2g 2i
1

3

� 1

3



Dl 2
��

k� 3� 2g 2
1

1ÿ g 2k
1

1ÿ g 2
1

�
, (10)

2
Xk
j>i�0
hDziDzji�2hDl i2

Xk
j>i�0

D
cos
�Xj

m�0
Hm

�
cos
�Xi

m�0
Hm

�E

� 2hDl i2
�Xk

j�1
g j
l �

Xk
j>i�0

g jÿi
1 � 2g j�i

1

3

�

� 2hDl i2
�
g1

1ÿ gk
1

1ÿ g1
� 1

3

g1
1ÿ g1

�
kÿ 1ÿ gk

1

1ÿ g1

�

� 2

3

g 2
1

1ÿ g1

�
g1

1ÿ g 2k
1

1ÿ g 2
1

ÿ gk
1

1ÿ gk
1

1ÿ g1

��
. (11)

After some simple transformations taking the relation
hDl 2i � 2hDl i2 into account, we obtain from this the exact
analytic expressionDh

Dz �k�
i2E
� 2

3

hDl i2
1ÿ g1

�
k� 3�1ÿ g1� � g1�2ÿ g1�

1ÿ gk
1

1ÿ g1

ÿ 2g 3
1

1ÿ g 2k
1

1ÿ g 2
1

�
. (12)

Note that for k � 0ÿ 3, relation (12) can be transformed to
expressions obtained earlier in [17]. At the same time, the
result of exact averaging that we obtained differs from
expression (13) presented in [18]. This is explained by the

fact that expression (13) from [18] is not valid for small
values of k because it was derived by assuming that the
three spatial projections of the second displacement
moment were initially equivalent.

The expressions for second-order moments h�Dx �k��2i �
h�Dy �k��2i of the photon displacement along the two x and y,
which are orthogonal to each other and the z axis, upon k-
fold scattering can be also easily written taking into account
the exact analytic relationDh

Dx �k�
i2E
�
Dh

Dy �k�
i2E
�
Dh

Dz �k�
i2E

� 2
hDl i2
1ÿ g1

�
kÿ 1ÿ gk

1

1ÿ g1

�
, (13)

which corresponds to expression (25) in [19].

5. Fast solution of the light propagation problem
by the path-integration method

Taking into account the exact analytic expressions pre-
sented above, the effective phase function (2) describing the
probability distribution of photon propagation over the
path of length Dz with a change in the propagation
direction by the 2D angle H� (y;j) takes now the form

Ps�H;Dz� � exp

�
ÿ �keff�Dz� � 1

�ma
ms

�

� 1

4p
1ÿ g

2keff�Dz�
1�

1� g
2keff�Dz�
1 ÿ 2g

keff�Dz�
1 cos y

�3=2 , (14)

where keff(Dz) is determined by the solution of tran-
scendental equation (12). Figure 3 illustrates the typical
dependence of keff on Dz normalised to the transport
scattering length ( m 0s)

ÿ1 for g1 � 0:95. Here, the solid curve
shows in double logarithmic coordinates the exact depend-
ence of Dz(keff) calculated from analytic expression (12),
while the dashed curve presents this dependence calculated
by expression (13) from [18]. It is easy to verify that for
Dz < (2� 3)(m 0s)

ÿ1, the difference between these two

ln��1ÿ g1�msDz�

0 1 2 3 4 5 6 ln keff

ÿ2:0

ÿ1:5

ÿ1:0

ÿ0:5

0

0.5

1.0

1.5

Figure 3. Dependences of �1ÿ g1�msDz on keff for g1 � 0:95. The solid
curve is the dependence Dz�keff� calculated from (12), the dashed curve is
this dependence calculated from expression (13) in [18].
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calculations is considerable, and they coincide only in the
diffusion limit Dz4 (m 0s)

ÿ1.
Because analytic relation (12) used to obtain (14) is

expressed in terms of the same parameters that describe
information on scattering (ms and g1) and absorption ( ma)
processes in the initial formulation of the problem and is
exact, the possibility of a fast and exact (in the above
described sense) solution of the problem of multiple small-
angle scattering by the path-integration method can be
considered proved [5, 6, 12, 13]. This is illustrated in
Fig. 4a which shows the central cross sections of the
probability distribution PS(r) of propagation of photons
through different points of a model object represented by a
strongly scattering and weakly absorbing ( ma � 0:01 mmÿ1

and ms � 14 mmÿ1, g1 � 0:95) medium in a cylindrical vessel
of diameter 2R � 35 mm with absorbing walls (r is the
distance to the cylinder axis). A detector is located on the
side surface of the cylinder at an angle of 908 to a radiation
source (Fig. 4b). Distributions PS(r) were calculated by the
Monte-Carlo and path-integration methods by using the
procedure described in [13] for hDzi � 8mÿ1s and employing
the Henyey ëGreenstein phase function. The value of
keff(Dz) was expressed in terms of hki(Dz) and calculated
from (12). The angular aperture of the radiation source in
the Monte-Carlo method was 108 and the receiving area was
1 mm2.

6. Conclusions

Thus, the problem of light propagation through strongly
scattering objects can be solved considerably faster by
introducing the multiple-scattering phase function (2). In
the case of independent single-scattering events and stable
distributions P

�1�
s (H), the same a priori information on the

object is used [ ma;s and P
�1�
s (H)]. In the case of small-angle

scattering, the calculation rate can be increased by �104

times (g1 � 0:95) and more when Dz varies from Dz < mÿ1s

to Dz � ( m 0s)
ÿ1, although this is accompanied by a gradual

decrease in the calculation accuracy from the accuracy of
the Monte-Carlo method to that of the diffusion approx-
imation [8]. This allows one to optimise (in the calculation
rate and accuracy) the solution of the problem of multiple
scattering and verify fast approximate algorithms proposed
earlier for the diffusion optical tomography of objects of
size of the order of 1000 scattering lengths [19].

Note also that the approach described in the paper can
be easily extended to the known more complicated models
of single-scattering processes, in which the function P

�1�
s (H)

is described by a linear superposition of two or more
Henyey ëGreenstein phase functions [8, 9].
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