
Abstract. It is shown with the help of numerical simulation
that various mechanisms of self-oscillation instability exist
and self-oscillation perturbations of various types may appear
in an unstable resonator with a transverse êow of the active
medium and a nonuniform internal pumping. The interaction
of different self-oscillation perturbations, manifested in
pulling and locking of oscillation frequencies and a variation
of their increments, is studied. Analytic relations describing
the spatial structure of perturbation modes and used for
evaluating their frequencies and increments from steady-state
generation parameters are presented.

Keywords: fast-êow laser, unstable resonator, self-oscillation insta-
bility.

1. Introduction

Self-oscillation instability of steady-state generation in an
unstable resonator with a transverse êow of the active
medium is due to the feedback between the axial and
peripheral resonator regions produced by the moving
medium [1]. In fast-êow lasers, instability is developed
due to éeld nonuniformity in the unstable resonator, while
stabilisation of steady-state generation is facilitated by
uniform pumping in the resonator, energy exchange
processes in the active medium, and a spread of êow
velocities [2 ë 5]. However, steady-state generation becomes
unstable for a nonuniform pumping rate proéle decreasing
towards the unstable resonator axis, and the laser passes to
self-modulated generation regime [6]. The pumping proéle
can be varied by switching the lasing modes.

Experimental data available in the literature point
towards the instability of steady state generation in fast-
êow lasers with an unstable resonator [7, 8]. Most of the
studies were devoted to `transit' self-oscillations whose
frequencies are determined by the transit time tf of the
medium through the resonator. It will be shown below that
oscillations with a higher frequency corresponding to the
transit time of the medium through a certain region in the
unstable resonator can also be excited. We shall call these

self-oscillations intrinsic transit oscillations. In the quasi-
steady-state generation approximation, which was used for
calculations in most cases, a whole range of self-oscillation
perturbations associated with the growth of relaxation
oscillations in an unstable resonator are neglected. Such
perturbations were detected in [9] in which a more general
transit model of the unstable resonator was used. For
typical parameters of fast-êow CO2 lasers, the relaxation
oscillation frequency is much higher than the transit
oscillation frequency.

In this paper, we analyse the instability mechanisms and
the conditions for excitation of various types of self-
oscillations, calculate the mode parameters of perturbation
(frequencies, increments, spatial structure), and study the
mutual inêuence of various types of self-oscillations.

2. Calculating model and basic equations

In our calculations, we used the one-dimensional geo-
metrical optics model of an unstable resonator with
cylindrical mirrors which was completely élled with an
active medium. It was assumed that there are no dissipative
losses in the resonator, while the losses due to magniécation
in y � lnM=2L are distributed uniformly over the length L
of the resonator (M is the magniécation factor per round-
trip transit). The medium was described by the simplest
kinetic equation with one relaxation constant.

The initial system of equations for the gain G(x; t) and
the éeld intensity W(x; t) in the resonator for normalised
quantities had the form

qG
qt
ÿ qG

qx
� ÿÿW� tÿ1r

�
G� q, (1)

tc
qW
qt
� x

qW
qx
� �Gÿ 1�W. (2)

Here G � a=y; a is the gain of the medium; W � sItf; I is
the éeld strength; s is the optical transition cross section;
tf � h=v is the transit time of the medium up to the optical
axis of the resonator (h is the resonator aperture and v is
the êow velocity); tr is the relaxation time of the medium
inversion normalised to tf; q � sStf=y is the normalised
pumping; S is the pump rate; and tc � 2L=(ctf lnM ) is the
normalised time of éeld attenuation in the unstable
resonator. The variables t and x are normalised to tf
and h, respectively. The steady state solutions of the system
of equations (1), (2) describe the distribution of the gain
Gs(x) and the éeld intensity Ws(x) in the cw lasing regime.
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In accordance with the standard procedure of stability
investigations, linearised equations were obtained from (1)
and (2) for small relative perturbations of the steady-state
solutions ~g � dg(x; t)=Gs(x) and ~w � dw(x; t)=Ws(x). By
substituting ~g�x; t) � �g(x) exp (�Gt) and ~w�x; t) � �w(x)
� exp (�Gt) into these equations, we obtained equations
for the complex amplitudes �g(x) Ë �w(x) of perturbation
modes with the complex increment �G (hereafter, the bar
indicates complex quantities):

d�g

dx
�
�

�G� q

Gs

�
�g�Ws �w, (3)

x
d�w
dx
� Gs�gÿ �Gtc �w. (4)

These equations should be solved with the following
boundary conditions at the inlet to the resonator (x � 1):
�g(l ) � 0. It follows from (4) [taking into account Gs(0) � 1]
that the condition

�g�0�
�w�0� �

�Gtc (5)

must be satiséed on the optical axis of the unstable
resonator (x � 0).

The system of equations (3), (4) with the above boun-
dary conditions is the boundary value problem for énding
the eigenfunctions (perturbation modes) �g(x) and �w(x) and
eigenvalues �G. In numerical calculations, we solved the
equations for the moduli g � j�gj and w � j�wj and phases
Fg and Fw of perturbation modes, which have the form

dg

dx
�
�
G� q

Gs

�
g�Wsw cosF, (6)

dFg

dx
� OÿWs

w
g
sinF, (7)

x
dw
dx
� ÿGtcw� Gs g cosF, (8)

x
dFw

dx
� ÿOtc � Gs

g

w
sinF, (9)

where F � Fg ÿ Fw; G � Re �G; O � Im �G. The boundary
conditions for this system at the inlet to the resonator were
taken in the form

g�1� � 0, F�1� � p. (10)

On the resonator axis (x � 0) the following relations must
be satiséed:

g�0�
w�0� � j

�Gjtc, F�0� � arctan
O
G
. (11)

The system of equations (6) ë (9) can be reduced to a system
of two equations for the ratio R � g=w and the phase
difference F. In the special case tc � 0, these equations are
transformed into equations for the quasi-stationary model.
In this case, the boundary conditions for Eqns (3) and (4)

take the form �g(0) � �g(1), while for Eqns (6) ë (9), we
obtain

g�0� � 0, F�0� � 0, g�1� � 0, F�1� � p. (12)

The pump proéle descending to the unstable resonator
axis was described by the relation

q�x� � qm

�
1ÿ p exp

�
ÿ xn

hn
0

��
, (13)

where h0 is the width of the nonuniformity pump region
(h0 5 h); qm is the pump parameter; p � 1ÿ q(0)=qm is the
relative depth of the pump proéle dip on the unstable
resonator axis; the exponent n characterises the proéle
steepness (n � 2, 4 for most calculations). The relation
between the pump parameters qm and the relaxation time tr,
as a rule, correspond approximately to a fourfold excess
over the lasing threshold (qmtr � 4) in a homogeneous
medium ( p � 0). The gain Gs(1) of the medium at the inlet
to the resonator was chosen equal to q(1)tr, which
corresponds to identical pump rates inside and outside
the resonator.

3. Analytic model for a weakly inhomogeneous
medium

If the spatial parameters of the system described by the
steady-state distributions Gs(x), Ws(x), and q(x) vary slowly
on the scale of the spatial self-oscillation period L � 2p=O,
we can obtain a useful analytic approximation of numerical
solutions for perturbation modes. The condition for the
applicability of this weak inhomogeneity approximation
(WIA) has the form L5D, where D is the characteristic
scale of spatial inhomogeneity of the system. This condition
is almost always satiséed for relaxation oscillations with
O � 102 and for higher-order transit modes (m > 5).

An analysis of Eqns (3) and (4) shows that under
conditions of applicability of WIA, the quantity �g(x)
must be nearly proportional to Ws(x). Hence, it is expedient
to introduce a slow variable �Z � �g=Ws. The equation for �Z
has the form

d�Z
dx
� ��G� w��Z� �w, (14)

where

w�x� � q

Gs

ÿ 1

Ws

dWs

dx
. (15)

Standard solutions of equations of type (3) and (14),
expressed in quadratures, do not allow us to establish an
explicit relation between the function �g(x) and �Z(x) and
�w(x). For this purpose, it is more convenient to use the
operator form of the solution, which can be represented in
the form of a series. From Eqn (14), we obtain

�Z�x� � ÿ
�
1ÿ 1

~G

d

dx

�ÿ1� �w
~G

�
� ÿ

X1
0

�
1

~G

d

dx

�n �w
~G
, (16)

where ~G(x) � �G� w(x). This series corresponds to the
iterative solution of Eqn (14), obtained by using a small
parameter 1=~G. At large oscillation frequencies, the terms of
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the series decrease quite rapidly. For a slow variable �Z(x),
an acceptable accuracy is attained even when we use only
the érst term in the series:

�Z�x� � ÿ �w
�G� w

� V�x�, (17)

where

V�x� � ÿ �w
~G 2

�
d

dx
ln �wÿ 1

~G

dw
dx

�
� ::: (18)

are higher-order correction terms. Series (16) and formula
(17) describe the `quasi-homogeneous' particular solution of
Eqn (14) that does not contain any oscillations. Denoting in
this case the gain perturbation by �ga(x), we can present it in
the form

�ga�x� � ÿ
Ws �w
�G� w

. (19)

Expression (19) leads to the following type of general solu-
tion of Eqn (3) satisfying the boundary condition �g(1) � 0:

�g�x� � �ga�x� � �gb�x� � ÿ
Ws�x��w�x�

�G� w�x�

�Ws�1��w�1�
�G� w�1� exp

�
ÿ
� 1

x

�
�G� q

Gs

�
dx

�
. (20)

The term �gb(x), which is the solution of the homogeneous
equation, is proportional to exp (iOx) and describes the
spatial oscillations of the gain.

An analysis of Eqns (6) ë (9) and their numerical solu-
tions shows that in typical situations, the normalised
amplitude of the intensity oscillations w(x) remains almost
unchanged over the entire aperture of the resonator (Fig. 1).
To a good approximation, we can assume it to be
independent of x and put, for example, w � 1 [in
Eqns (3) and (4), the quantities �g and �w are deéned to
within a constant common factor]. The variation of the
phase Fw of éeld oscillations is also relatively slow. For
quite high-frequency perturbations (O4 1), the changes in
Fw over a spatial period L are insigniécant and the phase Fg

of gain oscillations manages to `trace' the slow drift of the

phase of éeld oscillations. Under these conditions, the
speciéc form of the function Fw(x) practically does not
affect the magnitude of the phase difference F � Fg ÿ Fw
appearing on the right-hand sides of Eqns (6) ë (9). A phase
shift Fw at the resonator aperture leads only to a slight
variation in the frequency O. In the WIA model, these
peculiarities of the amplitude and phase of éeld perturba-
tions lead to a solution of the boundary value problem for
the perturbation modes of the gain �g(x) in a given éeld
�w � w exp (iFw) on the basis of relation (20) with boundary
condition (5).

4. Relaxation self-oscillations

Purely relaxation self-oscillations, which are unperturbed by
transit resonances, may be excited in a fast-êow laser with
quite high pump and relaxation rates. Figure 1 shows a
typical spatial structure of the relaxation perturbation mode
for this case. The spatial modulation of the gain (edge
modulation) emerging at the sharp éeld gradient at the inlet
to the resonator attenuates rapidly and does not reach the
optical axis of the resonator. The attenuation condition for
gain oscillations [see Eqn (20)], i.e.,� 1

0

�
G� q

Gs

�
dx4 1 (21)

is satiséed in this case with a comfortable margin, and
hence we can put �g(x) � �ga(x) in the axial region. Taking
into account boundary condition (5) at the resonator axis,
we arrive at a quadratic equation for complex eigenvalues
�G:

�G � ÿ w�0�
2
� i

�
O 2

0 ÿ
�
w�0�
2

�2�1=2

. (22)

Here, O0 � �Ws(0)=tc�1=2 is the relaxation frequency [10].
Note that in accordance with Eqns (1) and (2), the quantity
Ws(0) � q(0)� (dGs=dx)x�0 ÿ tÿ1r is the rate of formation
of inversion and gain at the unstable resonator axis on
account of the pump processes, inêow of the excited
molecules, and relaxation. In view of the smallness of
tc � 10ÿ5, the relaxation oscillation frequency OR � Im �G �
O0. For the increment of relaxation oscillations GR � Re �G,
we obtain

GR � ÿ
w�0�
2
� 1

2

�
1

Ws�0�
�
dWs

dx

�
x�0
ÿ q�0�

�
. (23)

It follows from Eqn (2) that the relation
�1=Ws(0)��dWs=dx �x�0 � (dGs=dx)x�0 holds at the axis of
the unstable resonator. Hence, the condition for the
appearance of instability �1=Ws(0)��dWs=dx �x�0 > q(0) can
also be written in the form (dGs=dx)x�0 > q(0). This means
that relaxation instability occurs in the case when entrain-
ment of excited molecules by the êow prevails over internal
pumping during the formation of inversion at the axis of
the unstable resonator. For the conditions corresponding to
Fig. 1, when there is no pumping at the axis and the
distributions Gs(x) and Ws(x) are characterised by consid-
erable gradients in the axial region, numerical computations
lead to the value G � 3:23, while the value obtained by
calculations using formula (23) is G � 3:4. The value of the
frequency OR in both cases is close to O0 � 126:23.
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Figure 1. Relaxation mode structure (OR � 125:89, GR � 3:23): steady
state proéles of the gain Gs, intensity Ws, and pumping q, and
amplitudes of oscillations of the gain g and intensity w; F is the phase
difference. Calculations were made for tr � 0:2, qm � 19, tc � 10ÿ4.
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Note that a decline of steady-state distributions Ws(x)
and Gs(x) towards the unstable resonator axis is a character-
istic feature of almost all lasers with transverse êow of the
medium. When there is no pumping at the resonator axis,
relaxation-type self-oscillations will be always excited in the
resonator in accordance with formula (23). Such a para-
doxical conclusion is due to the fact that we have used in our
calculations a simpliéed (single-level) model of the active
medium, in which the processes of energy exchange between
the levels and components of the working mixture are
disregarded. In real lasers, e.g., in a CO2 ëN2 fast-êow
laser, these processes lead to pumping of the working
transition at the unstable resonator axis.

The instability relaxation mechanism in an unstable
resonator with a pump proéle of type (13) is associated
with a variation in the phase difference F of the éeld and
gain oscillations, as a result of which the ratio of phases at
the unstable resonator axis becomes favourable for the
enhancement of oscillations. Qualitative analysis shows
that the movement of the active medium through the region
of éeld with diminishing intensity causes a delay in the phase
of gain oscillations as compared to the éeld oscillations. In
its turn, the decrease in the pump rate in the inhomogeneity
region also leads to an analogous phase shift. The dis-
tribution F(x) is described by an approximate relation
following from (19):

F�x� � p
2
� arctan

G� w�x�
O

. (24)

In the peripheral part of the unstable resonator, where the
pumping rate is quite high and the éeld gradient is
insigniécant, the quantity w(x) is found to be positive as
a rule, and the phase difference F(x) > p=2 for the mode
with G > 0. However, it can be seen from (11) that
instability arises for a phase difference F(0) < p=2 at the
axis of the unstable resonator. A decrease in the phase
difference in the inhomogeneity region below the level
F � p=2 can be seen in Fig. 1. Equation (6) describes the
connection between F(0) and the relaxation oscillation
amplitude gradient (dg=dx)x�0 on the axis of the unstable
resonator: cosF(0) � (1=2O0)�(d ln g=dx)x�0 ÿ q(0)�. Thus,
instability arises under the condition (d ln g=dx)x�0 > q(0).
For the relaxation oscillations, the quantity (d ln g=dx)x�0 is
determined unambiguously by the gradients of the steady

state éeld and gain distributions (d ln g=dx)x�0 �
�1=Ws(0)�(dWs=dx)x�0 � (dGs=dx)x�0.

The above feedback mechanism for relaxation-type
oscillations is essentially of non-resonant type. The oscil-
lation frequency OR � O0 is determined by the steady-state
lasing parameters on the unstable resonator axis and can be
tuned smoothly by varying these parameters. For active
media with a low pump level, when condition (21) is not
satiséed, the mode parameters of relaxation oscillations are
affected by resonances of transit oscillations. Figure 2 shows
the values of O and G as functions of O0 (the values of O0

were varied by changing the parameter tc). The period of the
curves is close to 2p, which corresponds to the frequency
interval between transit resonances. The maximum values of
G are attained at frequencies O � OR � O0 [the difference
between OR and O0 is manifested in a downward shift of
curve ( 1 ) in Fig. 2a].

It will be shown below that the relaxation frequency in
this case coincides with the frequency Om of one of the
transit resonances, which is shifted due to pulling. Thus, a
`double resonance' O � OR � Om is realised for self-oscil-
lations in this case. The pump rate in Fig. 2a is 2.4 times
lower than in Fig. 1, and the effect of transit resonances is
still insigniécant. For a weak perturbation of the relaxation
mode by transit resonances, we can obtain from formula
(20) with boundary condition (5) approximate expressions
for the frequency and increment:

O � O0 ÿ
O0

2
exp

�
w�0�
2
ÿ
� 1

0

wdx
�
cos�O0 ÿ DFw�, (25)

G � ÿ w�0�
2
ÿ O0

2
exp

�
w�0�
2
ÿ
� 1

0
wdx

�
sin�O0 ÿ DFw�, (26)

where DFw is the phase advance of éeld oscillations at the
resonator aperture. The absolute modulation depth of O
and G is found to be the same upon a variation of O0,
which is conérmed by numerical calculations (see Figs 2a
and b). This fact can be explained graphically by
considering the summation of quantities �ga(0) and �gb in
(20) on the complex plane. Upon a further decrease in the
pump rate, the effect of transit resonances is enhanced.
Frequency jumps (see Fig. 2b) and frequency capture by
transit resonances (see Fig. 2c) are observed. In the latter
case, the frequencies O are found to be localised in quite
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narrow intervals in the vicinity of Om. Under the conditions
of strong interaction of self-oscillations, their division into
relaxation and transit parts becomes meaningless. In such a
case, it is more appropriate to speak of mixed type of
oscillations.

5. Transit edge self-oscillations

Resonance properties of the feedback sustaining transit
oscillations are caused by the spatial modulation of the gain
due to éeld discontinuity at the mirror edge at the inlet to
the resonator. Hence these self-oscillations may be called
transit edge oscillations. Such a feedback is effective only in
a medium with a quite slow relaxation (tr 4tf) and a
moderate pump level (qm < 1). In this case, the edge
modulation propagates towards the unstable resonator axis
so that the boundary condition for �g is satiséed at the axis.
The transit oscillation modes can be calculated in most
cases with boundary conditions (12). The characteristic
features of the spatial structure of transit modes are their
quasi-periodicity, sawtooth distribution of the phase diffe-
rence F, and the presence of nodal points at which g � 0
(Fig. 3). At these points, the initial unperturbed state of the
medium at the input to the resonator is reproduced
approximately.

Figure 4 shows the space ë time structure of perturbation
of the gain ~g(x; t)Re��g(x) exp (�Gt)� of the transit edge mode
with m � 5. The perturbation of ~g(x; t) can be presented as a
superposition of an attenuating travelling wave propagating
towards the unstable resonator axis and the quasi-homoge-
neous `component' oscillating in time. In expression (20),
this component corresponds to the terms �gb(x) and �ga(x).
Such a peculiar type of wave movement is characterised by

the presence of stationary nodes separated, in contrast to an
ordinary standing wave, by the spatial period Lm � 2p=Om

of the travelling wave.
Expression (20) with the quasi-stationary boundary

condition �g(0) � 0 can be used to derive a relation for
the complex increment �G:

�G� w�1�
�G� w�0� �

Ws�1�
Ws�0�

exp

�
ÿ �G� iDFw ÿ

� 1

0

q

Gs

dx

�
. (27)

For transit modes of suféciently high orders, we can assume
that Om 4 jwj and obtain from Eqn (27)

Om � 2pm� DFw �
Dw
2pm

, (28)

Gf � ln
Ws�1�
Ws�0�

ÿ
� 1

0

q

Gs

dx, (29)

where Dw � w(1)ÿ w(0). The last term in (28) can be
omitted. Due to the phase shift DFw � 1, the frequency Om

is not exactly a multiple of 2p. Expression (29) was derived
in [4] for a particular type of an unstable resonator. This
expression reêects the fact that in accordance with (19) and
(20), the ratio gb(1)=gb(0) of amplitudes of spatial
oscillations of the gain at the resonator inlet and on its
axis must be equal to the ratio of amplitudes of intensity
oscillations, which is approximately equal to Ws(1)=Ws(0).
The decrease in the éeld towards the unstable resonator
axis is a necessary condition for instability. Pumping causes
attenuation of spatial modulation and hence prevents
instability. A comparison with numerical computations
shows that expression (29) describes quite correctly the
increments of transit modes with m > 5 away from the
relaxation resonance (Om 5O0). Thus, for the mode with
m � 6 (see Fig. 3b), the value obtained by calculations
using expresion (29) is Gm � 0:82, while numerical calcu-
lations lead to the value Gm � 0:86. The spatial mode
structure is also approximated quite well by relation (20).
For lower-order modes, the accuracy of analytic calcu-
lations becomes lower.

Expression (29) pertains to an unstable resonator with a
sharp edge of the mirrors. Under actual conditions, the éeld
gradient at the inlet to the resonator is smoothed [11], which
leads to an attenuation of the edge modulation and hence to
a lowering of the transit mode increments. This can be seen
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from a comparison of Figs 5a and b. [Smoothing was
simulated by introducing additional losses into the narrow
(d � 0:05) region at the edge of the unstable resonator
aperture.] Higher-order modes, for which the quasi-period
Lm becomes comparable with the quantity d, are suppressed
more strongly. These data emphasise the important role of
the edge modulation in the mechanism of transit self-
oscillation excitation. Note that a complete suppression
of edge modulation is possible in the case when a perturbed
êow is incident at the unstable resonator inlet at gain
oscillations are matched with éeld oscillations in such a
way that the boundary condition �gin � �ga(1) is satiséed at
the inlet. This is possible in a system consisting of an
unstable resonator and a multipass amplifying cell placed
upstream. In actual fast-êow lasers, the quasi-periodic
spatial structure of transit modes can also be smoothed
due to turbulent mixing of the gas in the active medium
êow. The resulting decrease in the mode increment depends
on the relation between the spatial period Lm and the
characteristic size of turbulent vortices in the êow. The
decrease in increments is most pronounced for higher-order
modes, which is in accord with the results obtained in [5],
where the effect of velocity spread in the êow on the self-
oscillation increments was calculated.

Figure 5a illustrates the effect of the relaxation reso-
nance on the transit mode characteristics. The égure shows
the mode frequencies and increments for the case when O0

coincides with the frequency of the mode with m � 15. For
modes with m > 5, an increase in the increments is observed
as the mode frequency approaches O0. The maximum value
Gm is attained when the frequencies Om and O0 coincide. In
the region Om > O0, the mode increments decrease rapidly.
The narrowing of the frequency intervals between the modes
adjoining O0, which is a result of transit mode frequency
pulling by the relaxation resonance, is worth noting. The
analytic model gives an approximate relation connecting the
frequencies and increments of the interacting modes:

exp�ÿ2�Gm ÿ Gf�� �
�
2�Gm ÿ GR�

O0

�2
�
�
1ÿ O 2

m

O 2
0

�2
, (30)

where GR and Gf are the increments of unperturbed
relaxation and transit modes deéned by expressions (23)

and (29). The dependence Gm(Om) obtained from relation
(30) is in good agreement with numerical calculations
(Fig. 5a). In the frequency resonance region (Om � O0), the
increments become considerably larger. It follows from
Eqn (30) that positive increments Gm in resonance are also
possible in the case when both values (GR Ë Gf) are
negative.

Figure 6 illustrates the variation of frequency and incre-
ment of a éxed transit mode with m � 11 during tuning of
O0. These data, as well as the data presented in Fig. 5, show
that the range of interaction between the relaxation and
transit modes is quite wide and embraces �10 frequency
intervals between transit modes. One can see from Fig. 6
that the transit mode frequency is pulled downwards by the
relaxation resonance. The maximum value of the frequency
shift is close to p, i.e., half the mode interval. For frequency
resonance (Om � O0), the frequency shift Om is half the
maximum value, i.e., is of the order of �p=2. The increment
of mode Gm attains its maximum value in this case. In the
limit O0 !1, the value of Gm approaches the value
Gf � 0:86 calculated for an unperturbed transit mode.
The same value is attained for O0 � Om=

���
2
p � 48. A

kink in the curve Gm(O0) is observed at this point; upon
a further decrease in O0, the increments decrease rapidly and
soon become negative. These peculiarities in the behaviour
of the curves in Fig. 6 are associated with changes in the
spatial structure of the mode caused by tuning of the
relaxation resonance frequency. These variations can be
explained quantitatively by the analytic model which is not
presented here.

6. Intrinsic transit self-oscillations

The feedback mechanisms in lasers with high pump and
relaxation rates becomes ineffective due to edge modu-
lation. However, spatial modulation of the gain can also
appear in the region adjoining the unstable resonator axis
for high internal gradients of the parameters of the system.
Because the transit time through this region is t 0f 5 tf, these
oscillations may reach the unstable resonator axis and
ensure a positive feedback. As in the case of edge transit
oscillations, this feedback is also resonant. The frequency of
the lowest intrinsic transit mode is O � 2p=t 0f. Because the
intrinsic éeld gradients are not as high as the edge gradient,
modulation of the gain is much weaker than the edge
modulation. Figure 7 shows the structure of the lowest
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Figure 5. Frequencies Om and increments Gm of edge transit modes for
tr � 5, qm � 0:8, tc � 10ÿ4 in the case of an unstable resonator with (a) a
sharp mirror edge and (b) a mirror with a smoothed edge. Dark squares
correspond to calculations made by (30).
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Figure 6. Effect of the relaxation resonance on frequency Om and
increment Gm of the 11th transit edge mode for tr � 5, qm � 0:8. Dark
squares correspond to calcualtions made by (30).
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intrinsic transit mode with frequency O � 27:5. The pump
rate is increased and corresponds approximately to an
eightfold increase over the threshold value. In spite of a
small depth of the spatial modulation, the increment of this
mode is quite high (G � 4:47).

The frequency ranges of the intrinsic and edge transit
modes overlap, and these types of oscillations can interact
with each other. Figure 8 shows the frequencies and incre-
ments of mixed self-oscillations appearing due to such an
interaction. The pump rate in this égure is much lower than
in Fig. 7, and hence the edge modulation of the gain reaches
the resonator axis. However, it can be seen from the égure
that the increments of unperturbed intrinsic modes remain
negative. In the range of intrinsic transit resonances with
m � 1 and 2, the increments increase and instability sets in.
Note that for a high degree of pumping nonuniformity, the
WIA model becomes inapplicable. This is manifested in
Fig. 7 in that the perturbation amplitude of the éeld w(x)
changes quite strongly at the resonator aperture. At the
same time, the WIA model may be applicable for calculating
mixed self-oscillations in unstable resonators with a mod-
erate pump rate when the next terms of series (16) are
included in relation (19).

7. Conclusions

We have shown that self-oscillation instability in fast-êow
unstable resonator lasers is quite complicated due to
different mechanisms and various types of instabilities
that can interact with one another. In all cases, the
instability mechanisms are associated with the presence of
spatial gradients of steady-state lasing parameters (pump
rate, éeld strength, and gain) in the resonator or at the
input to the resonator. The transit self-oscillations are
excited by the éeld jump at the edge of the unstable
resonator aperture, which leads to spatial modulation of the
gain perturbation. The latter is an indispensable feature of
transit modes since it ensures the fulélment of the boundary
condition on the unstable resonator axis. The application of

mirrors with a smoothed edge suppresses the edge
modulation and lowers the increments of transit modes.
Relaxation instability is associated with the presence of
gradients in the vicinity of the unstable resonator axis.
Calculations show that self-oscillation increments at fre-
quencies close to the relaxation frequencies O0 in lasers with
a moderate internal pump rate may substantially increase
due to interaction between transit and relaxation mecha-
nisms. Interaction of intrinsic transit self-oscillations with
edge transit and relaxation self-oscillations also leads to a
considerable increase in the increments. The results of our
studies may be useful for developing methods of suppress-
ing self-oscillation instability in fast-êow lasers, as well as
methods of controlling temporal lasing parameters [6].
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