
Abstract. The time proéle of a femtosecond pulse
propagating in media with a high scattering anisotropy
( g5 0:9) is studied in detail. The iteration method based on
the expansion of the light éeld in a series in photon scattering
orders with the account for the multiply scattered component
is proposed to study analytically the structure of a scattered
radiation pulse. The small-angle approximation of the
radiation transfer theory used for calculations of low-order
scatterings is modiéed to take into account the spread in the
photon delay times. The shape of a scattered ultrashort pulse
calculated theoretically well agrees with the shape obtained
by the Monte-Carlo simulation. It is shown that the pulse
proéle in a scattering medium depends on the shape of the
scattering phase function with the conservation of the
anisotropy factor. A comparative analysis of contributions
from different scattering orders to the pulse structure is
performed depending on the optical properties of a scattering
medium.

Keywords: femtosecond pulse, multiple light scattering, radiation
transfer theory, small-angle approximation, numerical simulation,
Monte-Carlo method.

1. Introduction

The study of propagation of femtosecond pulses in a
scattering medium is of current interest due to the
development of optical methods for diagnostics of bio-
logical tissues with a submicron resolution. Modern
compact femtosecond lasers tunable in the visible and IR
spectral regions are used in optical coherence tomography
(OCT) [1 ë 3] and multiphoton êuorescence microscopy

(MFM) [2, 3]. However, the application of these methods
for detailed visualisation of the structure of biological
tissues at depths exceeding one millimetre is restricted by a
strong spreading of an ultrashort pulse due to scattering in
the tissue resulting in the impairment of resolution over the
penetration depth and a decrease in the peak power of the
pulse.

The ultimate depth of high-resolution pulsed imaging
depends on the optical parameters of a medium such as the
refractive index n, scattering ( ms) and absorption ( ma)
coefécients, and the scattering phase function p(y), which
is characterised by the average scattering cosine or the
anisotropy factor g. The prediction of the ultimate depth of
informative probing is an important problem. The solution
of this problem, which should be based on the adequate
models of interaction of pulsed radiation with a scattering
medium, will reveal the possibilities of diagnostics of
biological tissues by femtosecond pulses.

The propagation of light in an optically inhomogeneous
medium is described by the integro-differential radiation
transfer equation (RTE) [4, 5], which has no analytic
solution in the general form. For this reason, the simpliéed
forms of the RTE are studied which were obtained in
different approximations and can be applied to describe the
asymptotic regimes of the evolution of an optical beam in a
scattering medium. The scattering of laser pulses was
studied in detail analytically in the diffusion approximation
[4, 6, 7], which is valid when the typical observation depth
in the medium under study exceeds the transport length
ltr � 1=( m 0s � ma), where m 0s � (1ÿ g)ms is the reduced scat-
tering coefécient. This condition means that the radiation
éeld in the observation region is formed by photons
multiply scattered by large angles. For a broad class of
objects of biomedical diagnostics having a large anisotropy
factor ( g5 0:9), diffusion scattering is typical for depths
exceeding several millimetres. In near-surface observation
schemes with a high spectral resolution, on the contrary, a
regime is realised in which a signal is mainly determined by
the so-called snake photons which are scattered at a small
angle in each scattering event during their propagation.

Such a regime is described in the small-angle RTE
approximation [4, 8] assuming that the deviation angle y
of a photon from the beam axis is small, so that sin y � y
and cos y � 1. However, the study of the role of small-angle
scattering in the propagation of light pulses should take into
account the delay of scattered photons with respect to
unscattered ones in the case of their deviation from a linear
trajectory, which distorts the pulse shape. The elongation of
the trajectory of a scattered photon in the small-angle
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approximation can be taken into account with the help of
the quadratic addition in the expansion of trigonometric
functions of the scattering angle [9 ë 11]: sin y � y, cos y �
1ÿ y 2=2, which considerably complicates the solution of the
problem. The analytic expression for the proéle of a
scattered pulse taking into account the scatter in the delay
times of photons was obtained in [12] in the small-angle
diffusion approximation [4], which can be used only if the
thickness of a scattering layer is much greater than the
photon mean free path [deéned as 1=( ms � ma)] but does not
exceed the transport length. The érst restriction makes this
model unacceptable for the description of the pulse dis-
tortions caused by low-order scattering.

The alternative of the theoretical description of radiation
scattering is the numerical Monte-Carlo (MC) method of
statistical tests based on the repeated calculation of random
trajectories of photons in a medium under study and
subsequent generalisation of the results obtained [13, 14].
This method can be used in a broad range of observation
depths and for an arbitrary spatiotemporal structure of
probe radiation. Monte-Carlo simulations are often applied
to study the propagation of short pulses in scattering media
[15, 16]. A disadvantage of the method, restricting its
applications for solving inverse problems, is a long calcu-
lation time determined by the thickness of the medium in
photon mean free paths and by the number of calculated
photon trajectories. However, this restriction becomes now
less substantial due to the development of computers and an
increase in the computational resources required for accu-
mulation of the sufécient statistics of tests.

In this paper, we studied analytically the propagation of
a femtosecond pulse in a scattering medium with optical
parameters close to those of biological tissues. We proposed
the original model to describe pulse scattering, which takes
into account small-angle scattering of both low and high
orders and, therefore, can be used in a broader range of
scattering depths compared to the model based on the small-
angle diffusion approximation. Analytic expressions were
obtained for the time proéle of the two érst scattering orders
of the delta pulse in a medium with a Gaussian phase
function. The pulse scattering was also studied by the MC
method. The role of contributions from different scattering
orders and ballistic component to the formation of a pulse
scattered forward is analysed based on numerical calcu-
lations. The results of numerical calculations are compared
with the results of the proposed theoretical model. It is
shown that within the framework of approximations made
in the solution of the problem, the theoretical model well
agrees with MC simulations and can be used to describe
distortions of the shape of a short pulse caused by small-
angle scattering in an optically inhomogeneous medium.
The method of approximate solution of the transient RTE
can be applied for solving a broad class of problems of the
optics of dispersion media, in particular, atmospheric optics
and optics of aqueous media.

2. Materials and methods

2.1 Theoretical model of propagation of an ultrashort
pulse in a turbid medium

The proposed model of scattering of an ultrashort pulse is
based on the expansion of the light éled in a énite series in
scattering orders. Contributions from individual scattering

orders were calculated recurrently based on the RTE taking
into account the effects of multipath propagation [11]. The
last term of the series describes a source of a multiply
scattered component, which is calculated in the small-angle
diffusion approximation. This method was proposed in [17]
to énd the self-similar solution of the stationary RTE in a
medium with strongly anisotropic scattering. Such an
approach allows one to describe correctly the change in
the pulse shape due to small-angle scattering at depths
smaller than 10 mean free paths and the formation of the
speciéc `depth' time proéle of the pulse in the regime of
multiple scattering.

Consider the propagation of a pulsed unidirectional
beam of brightness L(r; n; t)* in a plane layer of a scattering
medium of thickness z. The beam brightness at the medium
boundary (z � 0) is speciéed by the expression L0(r?; n; t) �
WR(r?)d(nÿ z0)d(t), where W is the total pulse energy, the
function R(r?) determines the transverse structure of the
beam at the input to the medium, and z0 is the unit vector of
the z axis. The unit vector n � n? � nzz0 speciées the
direction of beams with respect to the z axis. In the case
of predominant small-angle scattering, the characteristic
transverse deviations of beams from the z axis are small
(jn?j5 1). The difference of the longitudinal projection of
the vector n from unity can be taken into account with the
help of the expression nz � 1ÿ n 2

?=2. Under the assump-
tions made above, the transfer equation [4] for the
brightness L(r?; z; n?; t) at the depth z in a medium with
small-angle scattering is written in the form [8]�

1
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where v is the speed of light in the medium, and the narrow
scattering phase function depends on the angle between the
directions of the beam before (n 0) and after (n) scattering:
p(n 0?; n?) � p(jn 0? ÿ n?j). It is convenient to use the spectral
form of the RTE:�
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where

Lo�r?; z; n?� �
1

2p

�1
ÿ1

L�r?; z; n?; t� exp�iot�dt

is the spectral brightness satisfying the boundary condition
Lo(r?; z � 0; n?) �WR(r?)d(n?)=2p. Note that the form of
Eqn (2) is similar to the stationary RTE in a medium with
the effective absorption coefécient ~ma � ma � io=v and
effective attenuation coefécient ~mt � ~ma � ms � mt � io=v.

The distortion of a short pulse propagated through a
plane scattering layer of thickness z is determined from the

*In the radiation transfer theory, along with the term `brightness', the term
`radiation intensity' is also used, which is deéned as the radiation êux per
unit area per unit solid angle [18].
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proéle of the transmitted signal power. We will assume that
radiation leaving the medium is detected with a detector
with the Gaussian receiving diagram D(n) �
exp�ÿ(n ÿ z0)

2=O0� having a maximum in the direction of
the z axis and the spatial aperture of size greatly exceeding
the characteristic spread of the beam caused by scattering.
The width of the directivity diagram of the detector is
characterised by the solid angle pO0 �

�
nz 5 0 D(n)dOn. The

quantity O0 corresponding to the `dispersion' of the receiv-
ing diagram is assumed small compared to the dispersion of
the scattering angle hg 2i (O0 5 hg 2i). The received power is
related to the brightness of radiation emerging from a layer
of thickness z by the expression

Po�z� �
��
1
d2r?

�
nz 5 0

D�n�Lo�r?; z; n?�dOn

'
��
1
d2r?

��
1
Lo�r?; z; n?� exp

�
ÿ n2

?
O0

�
d 2n?,

from which it follows that for the detector geometry
proposed above the spatial distribution of scattered
radiation on the aperture is insigniécant. In this case, it
is convenient to introduce the integral characteristic

Io�z; n?� �
��
1
Lo�r?; z; n?�d2r?

describing the angular structure of scattered light in the
medium in an arbitrary section z � const. The power of the
scattered signal measured with a detector with the receiving
solid angle pO0 is determined by the integral from the
angular distribution of radiation Io(z; n?) taking into
account the receiving diagram:

Po�z� �
��
1
Io�z; n?� exp

�
ÿ n 2

?
O0

�
d2n?. (3)

The time proéle of the scattered pulse can be recon-
structed by the inverse Fourier transform of the spectral
power

P�z; t� �
�1
ÿ1

Po�z� exp�iot�do. (4)

The angular distribution of scattered light can be
obtained from the stationary RTE with the effective
attenuation index taking into account the multipath prop-
agation of light and independent of the transverse
coordinates:��

1ÿ n 2
?
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�
q
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�
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��
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Equation (5) describes in the corpuscular treatment a
change in the distribution of photons over coordinates and
propagation directions due to absorption and scattering
[19], and the function p(n 0?; n?) represents the probability
density distribution for photon scattering from the direction
n 0 to the direction n. The factor (1ÿ n 2

?=2) in front of the
derivative with respect to the longitudinal coordinate causes

the spread of a pulse due to the multipath propagation of
light [20]. The solution of Eqn (5) can be represented as an
inénite series in the powers of the dimensionless parameter
L � ms=mt (Neumann series), which corresponds to the
expansion in radiation scattering orders [21]. In this paper,
we will seek the distribution Io(z; n?) in the form of a énite
series in scattering orders by assigning higher scattering
orders to the multiply scattered (`diffusion') component [17]:

Io�z; n?� � Iob �z; n?� �
XN
i�1

Ioi �z; n?� � Iod �z; n?�. (6)

Here, Iob is the brightness of unscattered radiation (which is
formed by ballistic photons and is known as the érst
approximation of the multiple scattering theory); Ioi is the
brightness of scattering of the ith order; Iod is the brightness
of light multiply scattered by a small angle. The brightness
of unscattered light can be found from the Beer ëLambert
law taking into account the boundary condition

Iob �z; n?� �
W exp�ÿ~mtz�

2p
d�n?�,

which leads to the obvious expression

Pb�t� �
v
z
W exp�ÿmtz�d

�
vt
z
ÿ 1

�
(7)

for the power of the unscattered component of the pulse.
The angular distribution of the ith-order scattering

(i � 1, ... ,N ) satisées the truncated RTE with the zero
boundary condition and a source in the right-hand side
formed by the (iÿ 1) component of scattered radiation��
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(8)
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��
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Ioiÿ1�z; n 0?�p�n 0?; n?�d2n 0?.

These relations allow one to obtain expressions for any
scattering order in the small-angle approximation with the
help of the iteration expression by integrating the density of
sources along the propagation path of length
x0 � z=nz ' z(1� n 2

?=2):

Ioi �z; n?��
� x0

0

exp�ÿ~mtx�Qo
i �zÿ nzx; n?�dx (i � 1, ...,N �.(9)

The last term in sum (6), the multiply scattered
component Iod , can be found from the RTE with a
distributed source whose density is determined by the
brightness of light that has experienced N small-angle
scatterings. We will calculate Iod by using the RTE in the
small-angle diffusion approximation [4], which is valid when
the dispersion of the angular distribution of brightness is
large compared to hg 2i:��

1ÿ n 2
?
2

�
q
qz
� ~ma ÿ

1

4
mshg 2iDn?

�
Iod �z; n?��Qo

d �z; n?�, (10)

Qo
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ms
4p

��
1
IoN �z; n 0?�p�n 0?; n?�d2n 0?. (11)
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The method of solving the RTE in the small-angle
diffusion approximation with a source distributed over
the depth is described in [22] and is as follows. If the
radiation distribution of the source is described by a
Gaussian

Qo
d �z; n?� �

Po
s

pOo
s

exp

�
ÿ n 2

?
Oo

s

�
, (12)

and its power Po
s and angular diagram pOo

s are functions
of the medium thickness z, the detected power Po

d of
multiply scattered radiation can be represented in the form
of the one-dimensional integral

Po
d � O0

� z

0

Po
s �zÿ z 0� exp�ÿ~maz�dz 0

�
��

Oo
s �zÿ z 0� � O0

�
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�
�
2~b
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o
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2~b

�
sinh� ~bz 0�

�ÿ1
, (13)

where ~b � ( ~mamshg 2i=2)1=2.
The iteration procedure (8) allows one to obtain analytic

expressions for the contributions of the érst scattering
orders if the phase function has the form convenient for
integration. The simplest form of the small-angle phase
function giving the analytic solution is the Gaussian
distribution with the dispersion hg 2i [4]:

p�n 0?; n?� �
4

hg 2i exp
�
ÿ �n? ÿ n 0?�2

hg 2i
�
. (14)

By using this function satisfying the normalisation con-
dition

1

4p

��
1
p�n 0?; n?�d2n? � 1,

the time distributions of singly and doubly scattered
photons are represented in the form of tabulated integrals.
Taking into account relations (3) and (4), the time proéles
of the radiation power of the érst two scattering orders (as
functions of the relative delay t � vt=zÿ 1) have the form

P1�t� �
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msz
hg 2iW exp�ÿmtz�1� t��
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2t ��O0�hg 2i�=O0hg 2i�

exp�ÿx�
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exp�ÿx�
x 2

�
xÿ 4t
hg 2i

�
dx. (16)

Figure 1 presents typical time proéles calculated for the
ballistic component and components of singly, doubly, and
multiply scattered radiation. One can see that singly
scattered photons detected with a detector with a narrow

receiving diagram do not distort considerably the delta pulse
because they weakly deviate from a linear trajectory after
scattering. At the same time, photons that have changed
twice the direction of their propagation can acquire a
considerable delay with respect to unscattered photons,
which is manifested in the elongation of the trailing edge
of the pulse. The inêuence of doubly scattered photons on
the pulse shape is most considerable when the layer thick-
ness is equal approximately to two mean free paths of
photons in the medium. As the layer thickness increases, the
role of higher-order scatterings in the distortion of the pulse
shape also increases. The analytic calculation of high-order
scatterings is quite time-consuming, and the solution is
represented in the form of multiple integrals. Therefore, we
will restrict in further calculations the series in expression (6)
to two terms and will assume that the scattered pulse is
described by four terms: Io � Iob � Io1 � Io2 � Iod . In this
case, the pulse power can be calculated from the expression

P � Pb � P1 � P2 � Pd. (17)

In this approximation, photons scattered by more than
two times are treated as `diffusion' photons, and the source
of the `diffusion' component is doubly scattered photons:
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� 2
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�x� 1��Z� 2� ÿ 1

�x� 2��Z� 2� ÿ 1

�

���x� 2��Z� 2� ÿ 1�ÿ1dZ. (18)

This relation cannot be further analytically simpliéed;
however, the numerical calculation shows that it can be
approximated by a Gaussian of type (12) whose parameters
Po
s and Oo

s are calculated as the zero and second moments
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Figure 1. Typical analytic distributions of the relative delay times
t � vt=zÿ 1 of photons of different scattering orders after the propaga-
tion of the delta pulse through an nonabsorbing layer of thickness
msz � 10 with the Gaussian phase function (hg 2i � 0:2).
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of the angular distribution (18), respectively. The moments
are expressed in the form of single integrals. The analytic
approximations of these expressions which were used to
calculate the proéle of the `diffusion' component of the
pulse have the form

Po
s �z� '

2Wm 3
s exp�ÿ~mtz�
phg 2i2~m 2

t

ln

�
~mthg 2iz

8
� 1

�
ln
ÿ
~mthg 2iz� 1

�
,

Oo
s �z� ' hg 2i

ln
ÿ
~mthg 2iz� 1

�
ln
ÿ
~mthg 2iz=3� 1

� . (19)

By substituting (19) into (13) and (4) and taking into
account the replacements ~ma � ma� io=v and ~mt � mt� io=v,
we obtain the required expression for the time distribution
of multiply scattered photons.

2.2 Monte-Carlo simulation of the scattered pulse
structure

2.2.1. Scheme of the numerical experiment. As mentioned
above, the MC method is based on repeated calculations of
a random walk of photons in a scattering medium. Photon
trajectories are simulated by using the input parameters ma
and ms of the medium, the scattering phase function of
inhomogeneities, and the geometry of the medium, incident
beam, and detector. An advantage of numerical simulation
of the photon trajectory in a scattering medium is the
possibility of separation of detected photons in scattering
orders, which is almost impossible to do experimentally
[23]. This allows one not only to compare the analytically
obtained distribution of photons over their propagation
times in the medium with the results of MC simulations but
also to compare contributions of each scattering orders
under study.

We simulated the propagation of a Gaussian pulse of
duration 50 fs (at the 1/e level) in a scattering layer of
thickness 1 mm. Simulations were performed by using the
MC algorithm developed and tested in papers [24, 25] with
the statistics including 50 millions of photons. To obtain the
correspondence between the conditions of the numerical
experiment and the assumptions of the theoretical model, we
assumed that a beam is incident on the medium surface
perpendicular to the layer surface. An extended detector is
located on the rear boundary of the medium and detects
photons emerging from the medium at angles no more than
one degree (which corresponds to O0 � 3� 10ÿ4) to the
normal to the medium boundary. Depending on the optical
parameters of the medium, one computer calculation took
from 4 to 10 hours (2.4-GHz Pentium 4). The time resolu-
tion equal to 10 fs was determined by the optimal relation
between the smoothness and the required calculation time.

2.2.2. Parameters of model media. The optical properties
of the model medium were selected in accordance with the
typical parameters of biological media and their phantoms
in the wavelength range from 800 to 1300 nm. Because the
optical characteristics of the medium in this spectral range
weakly depend on the wavelength, we did not consider
dispersion effects during the propagation of a femtosecond
pulse with a rather broad spectrum. In addition, we
neglected the inêuence of absorption on the pulse shape
because the chosen spectral range corresponds to the
transparency window of biological media where scattering
greatly exceeds absorption.

Monte-Carlo simulations of pulse scattering and corre-
sponding theoretical calculations were performed for three
values of the scattering coefécient ms � 5, 10, and 20 mmÿ1

and for two values of the anisotropy factor g � 0:9 and 0.98
speciéed for each scattering coefécient. By combining these
parameters in pairs, we simulated different scattering
regimes: from the `quasi-ballistic' regime, in which low-
order scatterings dominate, to the `quasi-diffusion' regime in
which small-angle multiple scattering of photons plays a
main role. When the anisotropy factor is close to unity, the
dispersion of the scattering angle hg 2i can be expressed in
terms of g by the relation g ' 1ÿ hg 2i=2. For the anisotropy
factor equal to 0.9 and 0.98, the dispersion of the scattering
angle was 0.2 and 0.04, respectively. The solid receiving
angle was speciéed to satisfy the condition O0 5 hg 2i.

It is important to note that the distortion of the pulse
proéle depends not only on the value of g but the shape of
the scattering phase function itself. To demonstrate this fact,
we considered two phase functions of different shapes but
corresponding to the same anisotropy factor. The érst
function is the Gaussian phase function (14) for which
the dispersion of a random scattering angle is unambigu-
ously determined from the value of g [7]. This function
allows one to calculate analytically the scattered pulse
proéle and compare it with the MC simulation. A dis-
advantage of calculations based on this function is that they
give a very weak scattering into the rear hemisphere. For
this reason, scattering in real media is sometimes described
by approximating the phase function by the sum of a
Gaussian and a constant [26]. However, in the small-angle
scattering approximation and for the chosen values of the
anisotropy factor, the contribution of the Gaussian compo-
nent to the total phase function dominates. The second
function is the Henyey ëGreenstein phase function

p�y� � 1

2

1ÿ g 2

�1� g 2 ÿ 2g cos y�3=2

which is widely used in MC simulations of the propagation
of light in biological tissues [1].

Figure 2 presents these two phase functions for scatter-
ing angles in the range from 0 to 908 (functions are
normalised to the integral over the total solid angle).
One can see that for the same anisotropy factor, the
Henyey ëGreenstein function is more elongated forward
than the Gaussian phase function, which affects the group
delay of the signal. Unfortunately, the iteration problem of
calculating the contributions of the érst scattering orders
cannot be solved analytically by using (8) with the Henyey ë
Greenstein function. Therefore, the results of the theory and
simulations were not compared for this phase function.

3. Results and discussion

To verify the developed analytic model of pulse scattering
and determine the region of its applications, we compared
theoretical calculations with MC simulations of the proéle
of a 50-fs pulse scattered in a layer of thickness 1 mm and
recorded with an extended detector with the diagram
pO0 � 9:7� 10ÿ3 sr. The contributions of the ballistic
component, the érst two scattering orders, and multiple
scattering to the pulse were calculated from relations (7),
(13), (15), (16), and (19) for Gaussian function (14). Monte-
Carlo simulations were performed for the same parameters
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of the medium. The calculated and simulated results were
normalised by matching energies stored in ballistic compo-
nents.

For convenience, we present érst the results of MC
simulations.

3.1 Inêuence of optical parameters
on the scattered pulse shape: MC simulations

The structure of a scattered pulse is determined by
contributions from photons that have experienced different
numbers of scattering events. In turn, there exists a spread
in the delay times of photons scattered by a certain number
of times. The relation between contributions from different
scattering orders to the detected signal, as the distribution
of photons in their paths within one scattering order,
considerably depends on the characteristics of a scattering
event such as the phase function and scattering coefécient.
To demonstrate this, we performed MC simulations of the
proéle of a 50-fs pulse scattered forward in a layer of
thickness 1 mm and studied the distribution of the arrival
times of singly, doubly, triply, and multiply scattered
photons. We investigated the inêuence of the following
factors: (i) the degree of anisotropy of the phase function of
the speciéed shape for the invariable scattering coefécient;
(ii) the scattering coefécient of the medium for the speciéed
phase function; and (iii) the phase function shape for
invariable values of the anisotropy factor and scattering
coefécient.

The results of calculations of the pulse proéle are
presented in Figs 3 ë 5. On the abscissa in all the égures
the arrival time (in picoseconds) of photons to the detector
measured from the instant of entrance of the pulse max-

imum to the medium is plotted. Figure 3 shows the time
distributions of photons with different scattering orders for
a medium with the Henyey ëGreenstein phase function, the
anisotropy factors g � 0:98 and 0.9, and the scattering
coefécient ms � 10 mmÿ1. Detection is performed with a
detector with a narrow angular diagram. It is obvious that
the absolute contribution of the ballistic component to the
pulse is the same for both values of g because its intensity
depends only on the scattering coefécient but not on the
anisotropy factor of the medium. However, the relative
contribution of the ballistic component proves to be higher
for g � 0:9 because at lower values of g the phase function is
less elongated forward and a greater part of scattered
photons is `éltered out' by a small detection angle. For
the case g � 0:98, which is characterised by smaller scatter-
ing angles of photons, the contribution of low-order
scatterings exceeds the contribution of the ballistic compo-
nent (for the speciéed scattering coefécient). A smaller
anisotropy factor results in greater scattering angles of
photons, which is manifested in the formation of a slowly
decaying trailing edge of the pulse caused by long delay
times of scattered photons.

Figure 4 illustrates the inêuence of the scattering coefé-
cient on the pulse shape. Pulse proéles are presented for
three values of the scattering coefécient of the medium with
the Henyey ëGreenstein phase function and the anisotropy
factor equal to 0.98. As the scattering coefécient increases,
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Figure 2. Henyey ëGreenstein (&) and Gaussian (*) phase functions
p�y� with the anisotropy factor 0.9 (a) and 0.98 (b).

S
ig
n
al

p
o
w
er

(a
rb
.u
n
it
s)

S
ig
n
al

p
o
w
er

(a
rb
.u
n
it
s)

a

b

4.5 4.6 4.7 4.8 4.9 5.0
Delay time

�
ps

0.01

0.1

1

10

100

1000
ballistic component
single scattering
double scattering
triple scattering
multiple scattering

4.5 4.6 4.7 4.8 4.9 5.0
Delay time

�
ps

0.01

0.1

1

10

ballistic component
single scattering
double scattering
triple scattering
multiple scattering

Figure 3. Contributions of photons of different scattering orders to the
propagated pulse for a medium with ms � 10 mmÿ1 and the Henyey ë
Greenstein phase function for g � 0:98 (a) and 0.9 (b).
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the ballistic component forming the front power peak
delayed by 4.5 ps decreases and its energy is transferred
to scattered photons. The intensity of the trailing edge of the
pulse increases due to multiple scattering forming a signal in
the region of large delays. For ms � 20 mmÿ1, the power
maximum shifts to longer delays, which suggests that
multiply scattered photons dominate in the signal.

Figure 5 presents the integrated contributions of all
components under study to the pulse for different values of
the scattering coefécient and anisotropy factor calculated
for a medium with the Henyey ëGreenstein phase function.
One can see that, as the scattering coefécient increases, the
fraction of ballistic photons and photons of lower scattering
orders decreases for both values of the anisotropy factor,
while the fraction of photons of higher scattering orders
increases. This is explained by the increase in the average
number of scattering events experienced by photons prop-
agating through the layer. In addition, for any speciéed
value of ms, the fraction of ballistic photons for a lower ani-
sotropy factor (g � 0:9) exceeds the fraction of ballistic pho-

tons for a higher anisotropy factor. This, as mentioned abo-
ve, is explained by the peculiarity of the problem geometry
and is related to a high angular selectivity of the detector.

The inêuence of the shape of the scattering phase
function on the time structure of the pulse is illustrated
in Fig. 6 where the pulse proéles are presented for media
with phase functions of two types and ms � 10 mmÿ1 and
g � 0:9. For these scattering parameters, the medium thick-
ness is equal to one transport length, so that the light éeld
near the detector is mainly formed by diffusively scattered
photons. One can see from Fig. 6 that the structure of the
scattered pulse is predominantly determined by the shape of
the phase function even when the anisotropy factor remains
constant. In a medium with the Henyey ëGreenstein phase
function, the energy of the scattered pulse is mainly
contained in ballistic photons and photons arriving at a
detector with a small delay (because the pulse peak
corresponds to the arrival time of photons of the ballistic
component with an error of the order of the time resolution
of the detector equal to 10 fs); however, these photons are
not necessarily photons of low orders of scattering. At the
same time, in a medium with the Gaussian scattering
function, the pulse is divided into two distinct fractions,
of which the érst one contains mainly ballistic photons,
while the second one is formed by multiply scattered
photons having large delays compared to the width of
the initial pulse. Such a difference in the proéles of the
scattered pulse is determined by the degree of forward
elongation of the scattering function, i.e., by the relation
between the probabilities of photon scattering near the zero
direction and scattering by angles exceeding the mean angle.
For the speciéed anisotropy factor, 50% of light is scattered
inside a cone with the cone angle 108 in the case of the
Henyey ëGreenstein phase function and 14% in the case of
the Gaussian function. This affects the delay times of
photons forming the trailing edge of the pulse and gives
rise to a gap between fractions in the proéle of the pulse
propagating in a medium with the Gaussian distribution
function.

3.2 Comparison of the theoretical and numerical
calculations of the scattered pulse structure

The shape of a scattered pulse of duration 50 fs in analytic
calculations is determined by the time convolution of the
Gaussian proéle of the incident pulse with a speciéed
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Figure 4. Shape of the pulse propagated through a scattering medium
(the Henyey ëGreenstein phase function, g � 0:98) for different scatte-
ring coefécients ms.
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medium.
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Figure 6. Pulse shapes at the output from the medium (ms � 10 mmÿ1,
g � 0:9) for the Henyey ëGreenstein (solid curve) and Gaussian (dashed
curve) phase functions.
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energy and functions Pb, P1, P2, and Pd determining the
contributions of corresponding scattering components of
the input delta pulse with the unit energy W � 1. The
proéles of a scattered pulse calculated by using the
developed analytic model and MC simulations for two
different anisotropic factors of the Gaussian phase function
are presented in Fig. 7.

One can see from the égure that the theoretical model
reêects adequately as a whole the main features of the
scattered pulse and describes accurately enough the pulse
shift and broadening. For all the proposed combinations of
scattering parameters, except a medium with ms � 10 mmÿ1

and g = 0.9, the model well agrees with the MC simulation
for small time delays; however, the theory predicts the
understated signal intensities for large delay times. This is
obviously explained by the use of the small-angle scattering
approximation in the theoretical model, which incorrectly
considers strong deviations of photons from the longitudinal
axis responsible for large delays. The maximum discrepancy
between analytic calculations and MC simulations is
observed for a medium with ms � 10 mmÿ1 and g � 0:9;
in this case, the theory predicts the insufécient number of
scattered photons with the time delay on the order of the
initial pulse duration. A similar feature is also observed in
Fig. 8 where the contributions of doubly and multiply
scattered photons to the scattered pulse are compared.

One can see that the partial contribution of doubly
scattered photons can be calculated analytically with an
acceptable accuracy for both values of the anisotropy
parameter. However, when doubly scattered radiation is
used as a source of multiply scattered photons, good
agreement between the theoretical model and MC simu-

lations is possible only in the case of a rather narrow
scattering phase function. The reason is that the small-angle
diffusion approximation used in the model is valid when
ms(1ÿ g)z < 1 [12], which corresponds to g5 0:9 for ms � 5
mmÿ1 and g5 0:95 for ms � 10 mmÿ1. Figure 7 shows that
for media with the anisotropy factor g � 0:98, the theory is
in good agreement with numerical calculations for all
selected values of the scattering coefécient. The discrepancy
between theoretical and simulation results for g � 0:98 is
probably caused by the fact that the small-angle diffusion
approximation is invalid for a part of multiply scattered
photons. It can be expected that this discrepancy will dec-
rease if photons of higher scattering orders are used as a
source of the diffusion component. Unfortunately, we failed
to obtain an analytic expression for calculating the con-
tribution of photons of scattering orders above the second
order, even by using the Gaussian scattering phase function.

Note that this discrepancy between the theory and MC
simulation is observed for the thickness of a scattering layer
of the order of the transport length (for example, for a
medium with ms � 10 mmÿ1 and g � 0:9, the transport
length is lt � 1 mm), when other approximations should
be used for solving the RTE. At the same time, the
parameters of all media with g � 0:98 correspond to the
regime of multiple, but `prediffusion' scattering, i.e. the
thickness of the media does not exceed the transport length.
A comparison with the MC simulation also demonstrates
that the proposed analytic solution can be also applied in
the case of low-order scattering (msz < 10). Thus, the model
containing the contributions of the ballistic component, the
érst two scattering orders, and multiply scattered compo-
nent can be successfully used to describe the scattering of a
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Figure 7. Proéles of the pulse propagated through a scattering medium
calculated theoretically and numerically for the anisotropy factors of the
Gaussian phase function g � 0:9 (a) and 0.98 (b).
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Figure 8. Comparison of contributions from photons of different
scattering orders to the pulse propagated through a scattering medium
[ ms � 5 mmÿ1, Gaussian phase function, g � 0:9 (a) and 0.98 (b)]
calculated theoretically and by the MC method.
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femtosecond pulse in a broader range of thicknesses of
scattering layers than the region of applications of the small-
angle diffusion approximation.

4. Conclusions

We have analysed theoretically and numerically the
evolution of the proéle of a femtosecond laser pulse
propagating in a scattering medium and proposed the
analytic model of scattering of an ultrashort pulse based on
the calculation of contributions from photons of different
scattering orders. The iteration calculation of the partial
components of the pulse was performed by solving the
radiation transfer equation taking into account the spread
in the delay times of photons. In the case of the Gaussian
scattering phase function, analytic expressions have been
obtained for the contributions of singly and doubly
scattered photons upon detection of radiation with an
extended detector with a narrow angular diagram. The
brightness of multiply scattered radiation was calculated in
the small-angular approximation of the RTE with doubly
scattered light as a distributed source. The proposed model
is valid in the region of scattering parameters where other
known approximations cannot be used. We also performed
MC simulations of the scattered pulse structure by
separating the ballistic component, singly, doubly, and
multiply scattered photons. Numerical calculations have
shown that the pulse shape strongly depends on the form of
the scattering phase function with the anisotropy factor
being preserved because the degree of elongation of the
phase function determines the time delay of photons during
small-angle scattering. We also have analysed quantitatively
the fractions of different components in the scattered pulse
depending on the optical properties of the medium. In the
case of the Gaussian phase function, the proéles of the
scattered pulse calculated theoretically and in MC simu-
lations have been compared. It has been demonstrated that
the analytic model of propagation of a femtosecond pulse
in a scattering medium has a broader scope of applications
and can be used to describe both quasi-ballistic and quasi-
diffusion regimes of pulse scattering in an optically
inhomogeneous medium.
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