
Abstract. A review of studies on the numerical simulation of
coherent effects in random media performed by using exact
analytic results is presented. The simulation procedure is
based on a comparison of the Monte-Carlo method and the
iteration solution of the Bethe ë Salpeter equation. The results
of calculations of the time correlation function and the
interference component of coherent backscattering for scalar
and electromagnetic éelds are described. The simulation
results are compared for the érst time with known general-
isations of the Milne solution and are in good agreement with
experimental data. The interference component of back-
scattered low-coherent radiation is calculated for the érst
time. The localisation of backscattered low-coherent laser
radiation along the penetration depth is described. The theory
and numerical simulation predict, in accordance with the
experiment, a considerable broadening of the backscattering
peak with decreasing the coherence length, which opens up
essentially new possibilities for the use of this effect,
especially for medical diagnostics.

Keywords: Bethe ë Salpeter equation, Monte-Carlo method, cohe-
rent backscattering.

1. Introduction

In the last two decades coherent effects of multiple
scattering of laser radiation énd expanding applications
in studies of the internal structure and dynamics of
disordered condensed systems such as colloidal suspensions,
foams, aerosols, gels, porous dielectrics, liquid crystals, and
various biological tissues [1 ë 8]. These effects, which include
coherent backscattering (CBS) [9 ë 11], spatial and temporal
intensity correlations [12, 13], and photon-density waves
[14, 15], are caused by the wave nature of light [16 ë 18] and
are observed in random media despite multiple scattering.

Methods of coherent scattering of laser radiation such as
quasi-elastic light scattering, photon correlation, light beat-

ing spectroscopy, intensity êuctuation spectroscopy,
intensity correlation method, laser correlation photometry,
superhigh-resolution Rayleigh spectroscopy, dynamic light
scattering, etc. have been used for diagnostics of optically
inhomogeneous turbid media beginning from the late 1960s
[19 ë 22]. Despite their apparent variety, all these methods
are based on experiments of the same type, namely,
measurements of temporal êuctuations of the scattered
radiation intensity in media in which single scattering
dominates. The size and velocity of scatterers in the medium
are determined by analysing correlations of the intensity
êuctuations.

With the development of diffusion-wave spectroscopy
(DWS) [23 ë 25], which is the extended version of dynamic
light scattering applied to multiply scattering media, it
became possible to describe the diffusion of éeld correla-
tions in a random scattering medium [26]. The DWS
analysis of the time correlation function (TCF) of the
éeld of multiply scattered radiation allows one to character-
ise quantitatively the motion of scattering particles in terms
of their root-mean-square displacement [25] by the distance
of the order of a few nanometres. It has been shown
experimentally that the diffusion of time correlations of
spatiotemporal êuctuations of light éelds in random
medium consisting of different spatially separated scattering
regions is sensitive to the motion dynamics of scatterers in
these regions [27, 28]. The method allows one to distinguish
quantitatively variations in the velocity gradient of scat-
terers in media with the Brownian motion of scatterers [27]
and in media with laminar and Poiseuille êows localised in a
stationary random medium [28, 29]. It was proposed to use
position-dependent TCF measurements to reconstruct the
images of dynamic inhomogeneities inside a medium
[28, 30, 31]. A dynamic inhomogeneity means a region
localised in a random medium in which the motion
dynamics of scatterers differs from the dynamics of the
rest of the volume.

At present DWS is successfully used for diagnostics of
various random media [2 ë 5]. However, in our opinion, the
most interesting are biomedical applications of DWS. DWS
can be used for non-invasive in vivo measurements of the
bloodstream velocity and microcirculation of blood in the
tissue of animals and human [32 ë 35], for studying blood
microcirculation and activity regions of the brain cortex
[36 ë 39], and the in vitro diagnostics of aggregation and
sedimentation of blood samples [40].

Due to the intense recent development of interference
optical methods such as optical coherent tomography
(OCT) and confocal microscopy and their use for image
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visualisation and studies of the internal structure of strongly
inhomogeneous biological media [41 ë 43], radiation sources
with a small coherence length have received wide applica-
tions. In the case of a low coherence of probe laser
radiation, the intermediate scattering regime is realised,
when the contribution from several low-order scatterings
is substantial [44 ë 46], which allows the diagnostics of the
state of the surface layers of a medium.

In [47], the dynamic light scattering resolved over the
penetration depth for different scattering orders was ana-
lysed by using low-coherent interferometry. By analysing the
dependence of the intensity spectrum on the optical path,
the authors of [47] have found the relation between the
contribution from multiple low-coherent scattering and
anisotropy parameter and determined in this way the size
of scatterers.

CBS was érst observed in biological tissues by using
ultrashort pulses of duration � 100 fs in paper [48] where
the scattering pattern resolved in the radiation penetration
depth was obtained. It was shown that, as the delay time
was increased, the backward scattering peak virtually
disappeared. First, it is explained by the fact that the signal
is formed with time by contributions from scatterings of
increasing orders, whose absolute values decrease, and,
second, by the fact that the peak width, which decreases
with increasing scattering order, becomes smaller than the
angular resolution and, therefore, cannot be observed.

In [49], the CBS ampliécation was observed at énite time
and spatial coherence lengths. It was shown that, when the
spatial coherence length became smaller than the transport
length, the width of the backward scattering peak could be
two orders of magnitude greater than the width of the peak
of an inénitely extended monochromatic radiation, which
makes the use of low-coherent ampliécation of backward
scattering quite promising for studying biological tissues
and, in particular, for diagnostics of cancerous tumours at
the earliest stages in epithelium [50].

Coherent effects observed in random media upon multi-
ple scattering are often studied by using stochastic Monte-
Carlo simulations [29, 51 ë 60]. The standard simulation
technique is based on the radiation intensity transfer. In
this case, phase relations between the éelds determining the
radiation intensity are not simulated and should be taken
into account by using a special approach. Monte-Carlo
simulations well reproduce the main features of coherent
effects such as the universal linear dependence of the TCF
on the square root of time [55, 61, 62] and the triangle shape
of the CBS peak [52, 54, 56, 59]. However, the results of
numerical experiments, especially for the CBS [52, 53, 56, 57],
considerably differ from theoretical predictions [63 ë 65].

The theory of multiple scattering in random media,
including the theory of coherent and interference effects, is
based on the Bethe ë Salpeter equation [64]. The well-known
exact Milne solution describes scattering of a scalar éeld
from a half-space in the case of isotropic scatterers. The
Milne solution was generalised to describe CBS and TCF in
the cases of weakly and highly anisotropic scatterings
[64 ë 66]. The exact solution was also obtained for Rayleigh
scattering [63, 65, 67]. However, these generalised Milne
solutions have not been used so far to verify directly the
results of numerical simulations. Note in addition that no
reliable solution exists yet for an electromagnetic éeld in the
presence of anisotropic scatterers. It is commonly assumed
[68] that the scattering anisotropy in the case of a scalar éeld

is simply taken into account by replacing the spatial scale,
namely, by passing from the photon mean free path l to the
transport length l � � l=(1ÿ cos y), where cos y is the scat-
tering angle cosine averaged over the scattering indicatrix.
However, numerical simulations in the general case do not
conérm [52, 56] that such a scale replacement is sufécient for
the electromagnetic éeld.

In this paper, we discuss a new semianalytic approach
involving a comparison of the Monte-Carlo method [69]
with the iteration procedure of solution of the Bethe ë
Salpeter equation represented in the form of a series in
scattering orders and based on a direct stochastic calculation
of the terms of the iteration series. We show how the
standard Monte-Carlo technique is generalised within the
framework of the uniéed approach in numerical simulations
of the TCF intensity, CBS, and other coherent effects
requiring the consideration of phase shifts. The developed
simulation technique allows one to verify for the érst time
the numerical results by comparing them directly with exact
results following from the above-mentioned generalised
solutions.

The description of the TCF and CBS proves to be
different for scalar and electromagnetic éelds. In the case of
a scalar éeld, as assumed within the framework of the
diffusion approximation [68], the dependence of CBS on the
scattering angle in terms of the transport length l � as the
spatial scale becomes universal. However, for the electro-
magnetic éeld this universality is violated: compared to the
universal velocity predicted by the diffusion approximation,
CBS proves to be weaker with increasing the angle for a
smaller scattering anisotropy and stronger for a greater
anisotropy. The generalised Milne solution and diffusion
approximation in the case of Rayleigh scattering predict
that the time dependences of the TCF for polarised and
depolarised components of linearly polarised light will be
different. We conérm these theoretical results by showing
that the polarised and depolarised components are virtually
coincident in the case of strong anisotropy.

Note that the Monte-Carlo method was applied for
calculating the backscattered radiation intensity, including
the coherent component, in [52]. However, the CBS peak
intensity for Rayleigh scattering proved to be much smaller
than that predicted by the exact solution [63, 65]. In [61], the
backscattering of an electromagnetic éeld was simulated and
the depolarisation rate of linearly polarised light was
calculated as a function of the number of scattering events.
The dependence obtained for Rayleigh scattering coincides
with that predicted within the framework of the diffusion
approximation [68]; however, in the case of high anisotropy
of the single scattering cross section, the result of numerical
simulations noticeably differs from the theoretical result.

By comparing the theoretical description of the transfer
of correlations based on the Bethe ë Salpeter equation or
Monte-Carlo method, a method of stochastic simulation of
coherent effects taking into account the polarisation of the
electromagnetic éeld was developed in [70]. The calculations
performed for Rayleigh scattering within the framework of
this model well agree with theoretical results, which suggests
that the data obtained for the general case of the anisotropic
scattering cross section can be considered reliable.

In systems where CBS and TCF were discovered and
énd practical applications [5], the weak scattering condition
l=l5 1 is fulélled, where l is the incident light wavelength.
Under this condition, the coherent components of scattered
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radiation are smaller that the incoherent component by the
value of the order of (l=l )2 or higher. However, the CBS
signal and the TCF at the zero time delay are exactly equal
to signals from the incoherent component. As the angular or
temporal parameters increase, the contribution of these
effects decreases but still remains much greater than the
contribution from the rest of the coherent components of
scattered radiation, whose smallness is determined by the
ratio l=l. Therefore, there exists the region of parameters
where these coherent correlation effects greatly exceed other
coherent effects. It is also important that they can be
simulated by the methods developed for simulation of
the incoherent component. In the general case, beyond
the framework of the weak scattering approximation and
taking into account the limitedness of light beams, the
methods of simulation of coherent and diffraction effects
considered here becomes inadequate, and a much more
complicated direct simulation of the éeld is required [71].

The aim of this paper is to review the state of the art in
the studies on Bethe ë Salpeter-equation-based simulations
of coherent backscattering and correlation functions in
random media for which the weak-scattering approximation
is valid. We present for the érst time the éeld theory of low-
coherent backscattering. Numerical calculations based on
semianalytic Monte-Carlo simulations developed in
[59, 70, 72] well agree with the available data. The local-
isation of the interference component over the penetration
depth has been found, which allows the use of low-coherent
backscattering for the optical-path-resolved diagnostics of
strongly inhomogeneous media [45 ë 47].

We considered the case of optical radiation scattering in
a medium occupying a half-space with a plane interface,
which has been often studied theoretically. In section 2, we
present general relations for the TCF and the interference
backscattering component. In section 3, the method for
summation of ladder diagrams is compared with the Monte-
Carlo method and the results of simulation of the TCF and
CBS for a scalar éeld are presented. In section 4, the results
of simulation performed for linearly polarised light are
considered. In section 5, the theory and simulation of the
low-coherent backscattered interference component are
discussed. In conclusion, the main results are summarised.

2. Transfer of éeld correlations

The éeld E(r; t) in a random medium experiencing
scattering from êuctuations of the dielectric constant
De(r) is described by the wave equation

E�r; t� � E0�r; t� �
�
drdt 0T̂�rÿ r 0; tÿ t 0�

�De�r 0�E�r 0; t 0�; (2.1)

where E0(r; t) is the incident éeld representing either a plane
monochromatic wave or a short pulse with the carrier
frequency o0; T̂(r; t) � (4p)ÿ1(Îk 2

0 � H� H)rÿ1d(tÿ r=c) is
the spatiotemporal Green function of the wave Maxwell
equation in a homogeneous medium with a weak dis-
persion; k0 � o0=c; and c is the speed of light. By
integrating Eqn (2.1), the scattered éeld dE(r; t) �
E(r; t)ÿ E0(r; t) can be represented by the series

dE�r; t� �
X1
n�1

�Yn
i�1

De�ri�driT̂s�rÿ rn�:::T̂s�r2 ÿ r1�

�E0

�
r1; tÿ

jrÿ rnj � Rn

c

�
; (2.2)

where T̂s�r� � �Îk20 � H� H� exp (ik0r)=r is the éeld Green
function in a static case;

Rn �
X

14 j<n

jrj ÿ rj�1j

is the optical path between n scattering events (from point
r1 to point rn). The product of éeld (2.2) by the complex
conjugate éeld gives the intensity of scattered radiation.
Upon static averaging over conégurations of scatterers,
individual terms of the products of the series contain many-
particle averaged êuctuations of the dielectric constant.
Due to the phase-difference randomisation appearing upon
multiple scattering, only the incoherent (ladder) component
remains, which describes the sequence of scattering events
for the éelds dE and dE � on the common sequence of
êuctuations,

hDe�r1�:::De�rn�De��r 01�:::De��r 0m�iL

� dnm
Yn
i�1
hDe�ri�De��r 0i�i: (2.3)

For scattering angles close to the backscattering angle,
the interference (cyclic) component [16, 18] formed by the
sequences of backscattering (minus the contribution of
single scattering) is of the same order of magnitude:

hDe�r1�:::De�rn�De��r 01�:::De��r 0m�iC

� dnm
Yn
i�1
hDe�ri�De��r 0nÿi�1�i: (2.4)

Physically, this mean value describes the process in which
éelds dE and dE � are scattered by the same sequence of
scatterers passing through them in opposite directions.
Other (coherent) contributions from many-particle mean
êuctuations of the dielectric constant are small compared to
the incoherent component when the weak scattering
condition l=l5 1 is fulélled, which is valid for dielectric
systems under study.

The observed values are the mean strength of the éeld
E(r; t) and the higher moments, or correlators, of its êuc-
tuations dE(r; t) � E(r; t)ÿ hE(r; t)i. The second moment, or
the coherence function hdE �(r1; t1)dE(r2; t2)i, in the case of
coinciding arguments determines the mean value of the
scattered radiation intensity hI(r; t)i � hjdE(r; t)j2i. The
fourth moment determines the spatiotemporal intensity
correlation function. In the Gaussian approximation, which
makes the main contribution, the correlator of the fourth
order in the éeld is represented as the product of pair
correlations

hI�r1; t1�I�r2; t2�i � hdE ��r1; t1�dE�r1; t1�
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� dE ��r2; t2�dE�r2; t2�i � hI�r1; t1�ihI�r2; t2�i

�jhdE ��r1; t1�dE�r2; t2�ij2: (2.5)

Thus, the observed intensity correlation function in the
Gaussian approximation is deéned as the product of pair
correlators of the éeld strength. In the case of the incident
monochromatic éeld, the time dependence appears if
êuctuations of the dielectric constant describe the dynamics
of scatterers, thereby depending on time. When a plane
monochromatic wave with the wave vector ki is incident on
the surface of a medium and the scattered wave with the
wave vector kb is observed at a large distance, each pair of
the éelds gives the factor rÿ2S, where S is the illuminated
area from which the scattered radiation is detected. Let us
deéne the time correlation function of the éeld observed at a
large distance r from the scattering medium as

hdEf�r; t�dEf�r; 0�i � �S=r 2�Tfb1Tfb2

�Cb1b2a1a2�tjkf; ki�E
�0�
a1 E

�0�
a2 ; (2.6)

where f and a are polarisations of the scattered and
incident light with the wave vectors kf and ki, respectively;

T̂ � Îÿ kb 
 kb
k2

(2.7)

is the operator making the scattered wave transverse; and
E�0� is the incident éeld amplitude.

Radiation transfer in the case of a monochromatic wave
in an inhomogeneous dispersion medium with random
êuctuations of the dielectric constant is described by the
integral Bethe ë Salpeter equation

Ĝ�R2;R1 j kb; ki� � k40 eG�kb ÿ ki; t�d�R2 ÿ R1�Î� k 4
0

�
�
dR3

eG�kb ÿ k23�L̂�R2 ÿ R3�Ĝ�R3;R1 j k23; ki�: (2.8)

Here, Gb1b2a1a2�R2;R1 j kb; ki� is the propagator, or the
Green function, of the Bethe ë Salpeter equation, which is
the fourth-rank tensor. It describes the transfer of two
complex conjugate éelds, which come to the point R1 with
the wave vector ki and polarisation described by the
Cartesian subscripts a1 and a2 and come out from the point
R2 with the wave vector kb and polarisations b1 and b2;
ks � ki � k � nk0; n � n1 � in2 is the refractive index of a
random medium; n1 and n2 are the real and imaginary pars
of n, respectively; and the photon mean free path l �
(2n2k0)

ÿ1 is determined by the imaginary part n2. The
quantity kij � k�Ri ÿ Rj�jRi ÿ Rjjÿ1 speciées the wave vec-
tor between the ith and jth scattering events. The fourth-
rank tensor

Labmn�R� �
�
Îÿ R
 R

R2

�
am

�
Îÿ R
 R

R2

�
bn

� exp�ÿR=l�
R2

(2.9)

is the direct product of the complex conjugate pair of Green
functions of the wave Maxwell equation in the far-éeld
region and describes the transformation of a pair of éelds
with polarisations m and n into a pair of éelds with pola-
risations a and b after one scattering event. The Bethe ë
Salpeter equation is formed by multiplying series (2.2) by a
complex conjugate series and subsequent summation and
averaging over conégurations of random inhomogeneities.

We consider also the case when êuctuations of the
dielectric constant describe the dynamics of scatterers
de(r)! de(r; t). Fluctuations of the dielectric constant
become spatially dependent in this case. The Bethe ë Sal-
peter equation describing the transfer of time correlations is
formed by multiplying and averaging a complex conjugate
pair of éelds delayed in time by t. The time factors of the
form exp (ÿ io0t) can be omitted in this case because they
are mutually compensated in the construction of products
(2.5). The Bethe ë Salpeter equation can be easily generalised
to describe the transfer of time intensity correlations in a
medium with the speciéed dynamics of scatterers, i.e. in a
medium with the Brownian diffusion of inhomogeneities
laminar, and turbulent êows, etc. [12, 13] (see also [73]) by
including the dependence of the pair of complex conjugate
éelds on the time shift t to the propagator
G(R2;R1j kb; ki)! G(R2;R1; tj kb; ki).

In the weak-scattering approximation (l5 l), which is
usually fulélled in dielectric systems under study, the
function eG�q; t� is the Fourier transform of the correlation
function of spatiotemporal êuctuations of the dielectric
constant,

eG�q; t� � 1

�4p�2
�
drhde�0; 0�de�r; t�i exp�ÿiqr�: (2.10)

The optical theorem relating the single scattering cross
section and scattering length ls plays a key role in problems
of multiple scattering [74]. For the electromagnetic éeld, the
optical theorem in the weak-scattering or Born approx-
imation, has the form

lÿ1s � Gÿ1R k 4
0

�
dOs

eG0�ks ÿ ki�; (2.11)

where eG0�q� � eG�q; t� is the Fourier transform of the static
correlator of êuctuations of the dielectric constant; GR �
2�1� cos2 y�ÿ1 is the Rayleigh factor; and

cos2 y �
�
dOs

eG0�ks ÿ ki� cos2 ys�
dOs

eG0�ks ÿ ki�

is the square of the cosine of the scattering angle between
the wave vectors ki and ks averaged over the single
scattering cross section.

The photon mean free path l and scattering length ls are
related by the expression

lÿ1 � lÿ1s � lÿ1a ; (2.12)

where la is the characteristic absorption length caused by
inelastic scattering. For media under study, la 4 l and the
ratio l=ls is close to unity.

Let us deéne the normalised correlation function of the
dielectric constant as
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p�ki ÿ kb; t� �
eG�ki ÿ kb; t�� eG�ki ÿ kb; 0�dOs

: (2.13)

For t � 0, this function coincides with the phase function
p0(ki ÿ kb) � p(ki ÿ kb; 0) describing the single scattering
cross section.

By iterating the Bethe ë Salpeter equation with the use of
the optical theorem, we obtain the series

G�R2;R1; tjkb; ki� � GRl
ÿ1
s p�ki ÿ kb; t�d�R2 ÿ R1�

�G 2
Rl
ÿ2
s p�kb ÿ k21; t�L�R21�p�k21 ÿ ki; t�

�G 3
Rl
ÿ3
s

�
dR3p�kb ÿ k23; t�L�R23�p�k23 ÿ k31; t�

�L�R31�p�k31 ÿ ki; t� � :::; (2.14)

which is usually illustrated by a series of ladder diagrams
[62].

Let us represent the time correlation function of the éeld
in the form

Ĉ �E��t j kb; ki� � Ĉ �L��t j kb; ki� � Ĉ �V��t j kb; ki�; (2.15)

where Ĉ �L��t j kb; ki� describes the contribution of ladder
diagrams, i.e. some incoherent component of scattered
radiation and Ĉ �V��t j kb; ki� is the interference component
called the CBS intensity.

We obtain the scattering intensity in power units from
(2.15) by assuming that t � 0 and multiplying the expression
by the geometrical factor Srÿ2; then, this expression should
be multiplied by the square of the éeld strength amplitude.

Let us assume that the medium occupies the half-space
z > 0, where z is the Cartesian coordinate normal to the
medium boundary. In this case, the ladder and interference
components of the coherence function have the form [16, 68]

C
�L�
b1b2a1a2

�t j kb; ki� �
�
dR1dR2Gb1b2a1a2�R2;R1; t j kb; ki�

� exp�ÿmbz2 ÿ miz1�; (2.16)

C
�V�
b1b2a1a2

�t j kb; ki�

�
�
dR1dR2

�
Gb1a2a1b2

�
R2;R1; t

���� kb ÿ ki
2

;
ki ÿ kb

2

�

ÿ k 4
0
eG�kb ÿ ki; t�d�R2 ÿ R1�da1b1da2b2

�
exp�ÿ�z2 � z1�

��mb � mi�=2� i�kb � ki�?�R2 ÿ R1�?�; (2.17)

where the subscript ? denote the component perpendicular
to the normal to the medium boundary; mi � (l cos yi)

ÿ1;
mb � (l cos ys)

ÿ1; yi is the angle of incidence; and ys is the
scattering angle. It is easy to see that in the case of
backward scattering (kb � ÿki), the polarised component
Ĉ �V�(t j kb; ki) of the interference contribution exactly
coincides with the polarised component Ĉ �L�(t j kb; ki) of
the main, incoherent contribution before the subtraction of

the single-scattering contribution from it; the depolarised
components do not coincide.

In the absence of the time shift of the observed éelds
(t � 0), the ladder component (2.16) determines the main,
incoherent component of the scattered radiation intensity

Ib1b2a1a2�kb; kb� � C
�L�
b1b2a1a2

�0 j kb; ki�: (2.18)

In the general case, the incoherent component speciées the
éeld TCF. The interference component (2.18) for t � 0
describes the incoherent backscattering component

I
�CBS�
b1b2a1a2

�ys� � C
�V�
b1b2a1a2

�0 j ks; ki� (2.19)

and its angular dependence. To avoid cumbersome
expressions, we will restrict ourselves below to the case
of normal incidence and nearly backward scattering.

3. Simulation of a series in scattering orders.
The scalar éeld

Let us compare the procedure of analytic summation of
ladder diagrams and the Monte-Carlo method. Consider
érst a scalar éeld. In the case of a scalar éeld, the tensor
L̂�R� is replaced by the scalar function L0(R) � Rÿ2

� exp (ÿ R=l ); and the Rayleigh factor ë by unity.
The analytic calculation is complicated because integrals

over Ri cannot be uncoupled because phase functions
depend on the mutual arrangement of scattering particles.
The numerical simulation uncouples this chain by specifying
randomly at each step the direction and mean free path of a
photon packet.

Due to the normalisation of the phase function�
p0�ki ÿ kb�dO � 1 (3.1)

the statistical weight of the photon packet does not change
after each scattering event. The packet weight is preserved
in the theoretical description according to the optical
theorem. Indeed,

�
L0(R)dR � 4pl, and the expansion

parameter of the iteration series (2.14) is

lÿ1s

�
dOn

�
dRi�1L0�Ri�1 ÿ Ri�p0�ki�1 ÿ ki� � l=ls: (3.2)

Note that the form of the propagator L0(R) results in the
representation of the sampling of mean free paths with the
help of the Poisson distribution [69]. In the absence of
absorption, the ratio l=ls is equal to unity, which
demonstrates the preservation of the photon packet weight.
It is the condition l=ls � 1 that makes the method of
successive approximations invalid in analytic calculations
for solving the Bethe ë Salpeter equation.

We used the Henyey ëGreenstein function [75] as the
phase function. Within the framework of the semianalytic
Monte-Carlo method developed in [70], the main, incoher-
ent component of the scattered intensity is represented as a
series in scattering orders:

I�mb; mi� �
X
n<nsc

In�mb; mi�; (3.3)

where
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In�mb; mi� �
1

Nph

XNph

i�1
W �i�

n exp�ÿmbz �i�n � (3.4)

is the contribution of paths containing n scattering events as
the mean of the sampling Nph of incident photons; W �i�

n and
z �i�n are the statistical weight and distance to the medium
boundary, respectively, for the ith photon that has
experienced n scattering events.

The statistical weight W �i�
n is determined by the con-

tribution of the chain of integrals:
�
drjL(rj�1ÿ rj)p(qj). After

the change of the integration variable rj � ÿl ln xj; which is
usually interpreted as the Poisson distribution of random
photon mean free paths, the spatial integral over the inénite
interval transforms to the integral over the interval [0, 1]:

�1
0

r 2j drjL�rj� �
� 1

0

dxj:

This integral was calculated as the statistical mean over the
sampling of values xi speciéed by a random number
generator. The phase function in the intrinsic coordinate
system depends only on the scattering angle: p(qj) �
p(cos yj). Then, after the substitution� uj

ÿ1
p�cos yj�d�cos yj� ! uj

integrals over polar angles are calculated as the sampling
mean over random values uj distributed uniformly in the
interval [0, 1].

The simulation accuracy in this method can be easily
controlled by comparing the obtained results with analytic
results, which can be obtained for the lower orders. Thus,
the contributions of single and double isotropic scatterings
Isingle � 1=2 and Idouble � ln

���
2
p � 0:346, which are known

theoretically, are reproduced almost exactly; for the total
radiation intensity, we have I � 4:2 for nsc � 104, in good
accordance with the Milne result IMilne � 4:227 [64]. Here-
after, by restricting ourselves to the case of normal incidence
and nearly backward scattering, we omit the arguments mb
and mi for brevity. For strong anisotropic scattering
(cos y � 0:9), we have I � 4:5� 0:3 for nsc � 105, which
corresponds to the theoretical value I � 4:88 obtained in the
limit cos y! 1 [64].

A comparison of the theoretical approach based on the
Bethe ë Salpeter equation and the Monte-Carlo method
makes it possible to generalise the latter to simulate the
coherent effects of multiple scattering. Usually, time corre-
lations are studied by considering only the main, incoherent
contribution. The TCF of the éeld is deéned as

g1�t� �
C �L��t j ÿ ki; ki�
C �L��0 j ÿ ki; ki�

:

By neglecting non-Gaussian, long-range components (see
[76]), the intensity TCF is represented as the square of the
éeld TCF: g2(t) � 1� g 2

1 (t).
The calculation of the TCF differs from the intensity

calculation by the fact that the direction of a photon packet
upon scattering is determined not by the phase function but
its generalisation p(kj ÿ kjÿ1; t) depending on the time shift t.
In most known applications [23, 24], the diffusion mech-
anism of the time evolution of dynamic inhomogeneities is

studied, when the TCF of the intensity êuctuations can be
represented as the product of the statistical correlator and
the exponential:

p�q; t� � p0�q� exp�ÿDsq
2t�; (3.5)

where Ds is the self-diffusion coefécient. Thus, the TCF
calculated by the Monte-Carlo method has the form

g1�t� �
1

Nph

X
n

X
i

W �i�
n exp

�
ÿ 2

Xn
j�1

t

t

��1ÿ cos yj� ÿ z�i�n =l
�
; (3.6)

where t � (Dsk
2)ÿ1 is the characteristic time of the

Brownian diffusion of scatterers by the distance l; and yj
is the scattering angle in the jth scattering event.

For isotropic scattering, the exact Milne solution is
known, which makes it possible to control the simulation
results. The ratio of the total intensity of backscattered
radiation to that of single scattering obtained in the case of
the exact solution is I=Isingle � 8:455 (see [64]). The simu-
lation method described above reproduces this value with
accuracy of no less than to four decimal places for the
sampling volume of the order of 105. To reduce the
simulation time, the contribution from photons for which
the distance from the entrance to exit point exceeds the
mean free path l by a few tens of times was calculated
theoretically in the diffusion approximation, while the
contribution of photons coming out at a distance smaller
than the distance indicated above was found by using
simulations described in the paper.

Figure 1 presents the éeld TCFs simulated for isotropic
(cos y � 0) and strongly anisotropic (cos y � 0:9) scatter-
ings. One can see that the initial slope in the dependence on�������
t=t

p
can be considered quite universal and independent of

g1

1.0

0.3

0.1
0 0.1 0.2 0.3 0.4

�������
t=t

p
Figure 1. Dependences of the éeld TCF g1 on

�������
t=t

p
. Scalar éeld: (~)

isotropic scattering (cos y � 0), (^) anisotropic scattering (cos y � 0:9);
electromagnetic éeld, polarised component: (~) Rayleigh scattering
(cos y � 0), (^) anisotropic scattering (cos y � 0:9); depolarised compo-
nent normalised to the intensity of the incoherent component of the
polarised component: (&) Rayleigh scattering (cos y � 0:9), (*) anisot-
ropic scattering (cos y � 0:9); solid curve is the approximation
exp�ÿ2 ���������

6t=t
p �. The stochastic sampling power is Nin � 105; the maxi-

mum number of considered scattering events is n � 50000.
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the anisotropy parameter cos y: This is consistent with the
theoretical prediction [64, 65] and known numerical results
[55, 61, 62]. Note that for (cos y � 0:9), the obtained curve
virtually reproduces the experimental curve (see Fig. 2 in
[24]).

An important feature of the simulation results is that
they almost do not change after the replacementPn

j cos yj ! ncos y in (3.6). For short times (t5 t), the
main contribution to scattered radiation and éeld correla-
tions is determined by longer paths containing a great
number of scattering events n, and therefore such a replace-
ment is the replacement of the mean of the exponential
describing the phase shift due to the time shift by the
exponential of the mean. Thus, the exponential phase factor
is the exponential function of the scattering order. Such a
dependence considerably reduces the simulation time
because it allows one to calculate simply the n-order
contribution to the radiation intensity and then to multiply
it by the phase factor

g1�t� �
Xnsc
n�1

In exp�ÿ2n
t

t
�1ÿ cos y��: (3.7)

For long times t=t � 1, the mean of the exponential is not
equal to the exponential of the mean; however, the
multiplicative dependence on the scattering order is
preserved.

The obtained TCF dependence is well described by the
expression

g1�t� / exp�ÿg ���������
6t=t

p � (3.8)

proposed in [24].
The TCF decrease rate in dimensionless units t=t, which

weakly depends on the properties of a medium, strongly
depends on the experimental geometry. On passing from
plane waves to a point source or detector, the decrease rate
of correlations becomes smaller. This is explained by the fact
that the relative contribution of longer optical paths in the
case of plane waves increases, resulting in a faster decrease
of the TCF.

Note that the intensity of the interference component of
backward scattering (2.17) differs from that of the incoher-
ent component by the factor

S �i�n � exp��kb � ki�?�R �i�n ÿ R �i�1 �?�:

Taking into account the translation invariance with respect
to coordinates R?, this factor can be replaced by cos�q?
�(R1 ÿ R2)?� � cos�k(xn ÿ x1)ys�; where the x axis deter-
mines the direction of angular scanning. By calculating the
TCF intensity, the weight of each ith photon with the wave
vector kb incident on the medium boundary at a distance of
�R�i�S ÿ R�i�D �?j from the entrance poit R�i�S (R�i�D is the
detection point) should be multiplied by the factor
cos�q?�R�i�S ÿ R�i�D �?� and summed over all photons. As a
result, we obtain for the TCF peak

I �CBS��ys� �
1

Nph

X
n

X
i

W �i�
n cos�q?�R �i�S ÿ R�i�D �?� ÿ Isingle:

The height, or ampliécation, of the backscattering peak
is

h�CBS� � 2Iÿ Isingle
I

;

where I is the incoherent component intensity. The
calculation for isotropic scattering gives h �CBS� � 1:87, in
good agreement with the value h

�CBS�
theor � 1:88 obtained from

the generalised Milne solution [64]. For cos y � 0:9, we have
h�CBS� � 1:99, which also well agrees with the expected
theoretical value h �CBS� � 2 for cos y! 1.

Figure 2 presents the CBS component normalised to the
incoherent backscattering component as a function of the
universal angular coefécient kl �ys. The obtained angular
dependences prove to be universal within a rather broad
angular region expressed in the kl �ys units.

In the diffusion approximation, the angular dependence
of CBS has the form [68]

I �CBS� � 1

�1� kl �ys�2
�
1� 1ÿ exp�ÿ2zkl �ys�

kl �ys

�
: (3.9)

One can see from Fig. 2 that deviations of the CBS
curves from the curve obtained in the diffusion approx-
imation increase with increasing scattering angle; however,
expression (3.9) is valid only in the region of small angles.

In problems of multiple scattering, scattered radiation is
mainly determined by the incoherent component. Coherent
components have the smallness order l=l compared to the
incoherent component. When the characteristic parameters
kl �y for CBS and t=t for the TCF for effects under study are
still greater than the smallness parameter l=l, these effects
can be considered separately by neglecting other coherent or
diffraction components and using simulation methods based
on the generalisation of simulation of the incoherent
component.

4. Coherent effects in an electromagnetic éeld

Because polarised light is completely depolarised due to
multiple scattering, the study can be performed within the

I �CBS�

0.8

0.6

0.4

0.5

0.7

0.9

0.3
0 0.1 0.2 0.3 0.4 kl �ys

Figure 2. Dependences of the normalised CBS component on the
universal angular variable kl �ys. Scalar éeld: (~) isotropic scattering
(cos y � 0), (^) anisotropic scattering (cos y � 0:9); electromagnetic
éeld, polarised component t: (~) Rayleigh scattering (cos y � 0), (^)
anisotropic scattering (cos y � 0:9); solid curve is the diffusion appro-
ximation [see (3.9)].
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framework of a scalar éeld. However, due to lower-order
contributions in backward scattering, the scattered light
remains partially polarised. Experiments [14, 24, 77, 78]
have demonstrated a considerable role of polarisation in
backscattering.

The problem of multiple scattering by point Rayleigh
particles was solved by generalising the Milne solution to the
case of an electromagnetic éeld in papers [63, 65, 67, 79 ë 81].
In [67, 79], the vector transfer equation was solved for
strictly backward scattering taking into account the inter-
ference component, and in [63, 80] the angular dependences
of the CBS peak were calculated taking polarisation into
account. In [81], the solution for the TCF was obtained, and
in [65] this solution was generalised to scatterers of a énite
size.

In the case of an electromagnetic wave, it is also
necessary to control variations in the éeld direction,
characterised by the polarisation vector, along a random
path of a photon packet. According to (2.9), this requires
the calculation of the result of the action of a chain of
operators [68]

Yn
j�1
�Îÿ �Rj ÿ Rjÿ1� 
 �Rj ÿ Rjÿ1�jRj ÿ Rjÿ1jÿ2� (4.1)

on the incident éeld. Except the weight, the initial
polarisation is speciéed, which is determined in the general
case by three Cartesian components. Let the initial polar-
isation vector of each photon packet for linearly polarised
incident radiation be determined by a set of three numbers,
Pin � (1; 0; 0), i.e. the incident éeld is polarised along the x
axis.

Because the éeld polarisation changes upon scattering, it
is necessary, apart from the usual procedure of stochastic
determination of the photon direction after a collision event
taking the phase function into account, to calculate a new
vector Pj�1 from the previous polarisation vector Pj in each
scattering event. Let us assume that a photon packet
propagating from the point RS to RD experiences n
scattering events; then, the photon packet will arrive at
the observation point RD with the polarisation vector

Pout �
Y
j

�
Îÿ �Rj�1 ÿ Rj� 
 �Rj�1 ÿ Rj�

jRj�1 ÿ Rjj2
�
Pin: (4.2)

Let Wi be the statistical weight of a `scalar' ith photon
arrived at the point R i

D. Then, after summation over all
detected photons Nph for the polarised and depolarised
components of the scattered radiation intensity (the sub-
script out is omitted for brevity), we obtain

Ipol � IXX �
XNph

i�1
WiP

2
i xG

ni
R ;

(4.3)

Idepol � IYX �
XNph

i�1
WiP

2
i yG

ni
R .

These expressions describe the incoherent contribution
Iba � C

�L�
bbaa(0jkb; ki) of ladder diagrams.

In the case of the electromagnetic éeld, the polarisation
vector continues to êuctuate strongly even for very large

volumes of the statistical sampling, � 106 and more. In [68],
the dependence of the depolarisation rate on the number n
of scattering events was analysed in the diffusion approx-
imation. For Rayleigh scattering, the degree of residual
polarisation after n scattering events has the form [68]

P�n� � Ipol�n� ÿ Idepol�n�
Ipol�n� � Idepol�n�

� 3�0:7�nÿ1
2� �0:7�nÿ1 :

The number of scattering events is proportional to the
found path: n! s=ls.

Figure 3 presents the degree of polarisation P calculated
as a function of the number n of scattering events. Because
n! s=ls and the path length is proportional to the êight
time, the dependences shown in Fig. 3 also demonstrate the
law of spreading of an ultrashort light pulse in a strongly
inhomogeneous medium. One can see that depolarisation
indeed exponentially decreases with increasing optical path;
however, the decrease rate differs from that predicted in the
diffusion approximation. As anisotropy increases, the char-
acteristic depolarisation length increases because at large
values of cos y the number of collisions that a photon should
experience to change noticeably its direction and, hence,
polarisation will be (1ÿ cos y )ÿ1 times greater than in the
isotropic case. For the number of scattering events n � 20
for Rayleigh scattering and n � 100 for the anisotropic
medium, the scatter in P becomes considerable. This is
explained by the fact that products of the odd number of
components of the polarisation vector along components
perpendicular to the normal to the surface are theoretically
equal to zero, however, the stochastic result strongly
êuctuates.

In this case, because the polarised and depolarised
components become almost equal for n > n0, to reduce
the calculation time, it is reasonable to set them equal to half
the contribution of the scalar éeld intensity

Ipol(n) � Idepol(n) �
1

2
Iscal(n):

Formally, this means that we make the substitution
P 2
a G

ni
R ! 1

2 for n > n0 in (4.3). For paths with the number

100

P

10ÿ1

10ÿ2
0 10 20 30 40 n

Figure 3. Dependences of the depolarisation degree P of the incident
light on the number n of scattering events for Rayleigh scattering
(cos y � 0) (&) and anisotropic scattering (cos y � 0:5) (*) and
cos y � 0:9 (~).
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of scattering events smaller than n0 � 10 for Rayleigh
scattering and n0 � 100 for the anisotropic medium, the
calculation was performed by the method described above.

The veriécation of the results of this approach compared
to the known exact theoretical results for the case of point
scatterers showed the following. In the case of normal
incidence of light and Rayleigh scattering at an angle of
1808, the exact solution [65, 81] obtained by generalising the
Milne solution for the electromagnetic éeld gives the ratio of
the polarised and depolarised components of the incoherent
component Ipol=Idepol � 1:92, whereas the numerical calcu-
lation gives Ipol=Idepol � 1:94: The known ratio of the
polarised and depolarised components of scattered radiation
allows one to énd the residual polarisation of the incoherent
backscattering component. The generalisation of the Milne
solution gives [63, 65, 81] (Ipol ÿIdepol)=(Ipol � Idepol) � 0:31,
while the simulation result is 0.326. A close value (0.33) was
numerically obtained in [61].

Let us deéne the peak intensity of the polarised CBS
component as

h�CBS�pol � 2Ipol ÿ Isingle
Ipol

:

The theoretical value is h�CBS�pol � 1:75 [63, 65, 81]. The
simulation performed in [52] gives the value h �CBS�pol � 1:4;
which strongly differs from the theoretical value. In [56], the
value h �CBS�pol � 1:69 was obtained, whereas we obtained by
our method the value h �CBS�pol � 1:746 which much better
agrees with the theoretical result.

The electromagnetic éeld was simulated numerically by
using the expressions

g �1�pol�t� �
XNph

i�1
WiP

2
i xG

ni
R exp

�
ÿ 2

t

t
ni

�
1ÿ 1

ni

Xni
j

cos yj

��
;

(4.4)

g �1�depol�t� �
XNph

i�1
WiP

2
i yG

ni
R exp

�
ÿ 2

t

t
ni

�
1ÿ 1

ni

Xni
j

cos yj

��
;

where Pi a is the polarisation vector of the ith photon with
polarisation a appearing due to the action of a sequence of
ni tensor operators of type (4.1); and yj is the scattering
angle in the jth scattering event.

Figure 1 shows the results of simulation of the polarised
and depolarised TCF components for Rayleigh scattering
and strongly anisotropic, elongated forward indicatrix. In
the case of Rayleigh scattering, the theory [63, 65] predicts
the slopes of the polarised and depolarised components
equal to gpol � 1:44 and gdepol � 2:75, respectively. Calcu-
lations performed in the diffusion approximation [78] give
the values gpol � 1:6 and gdepol � 2:7, which are close to
experimental values gpol � 1:6� 0:1 and gdepol � 2:8� 0:2.
Our results (gpol � 1:5� 0:1 and gdepol � 2:6� 0:2) well
agree with these data. Note that the dependence of the
sum of polarised and depolarised components, i.e. the TCF
of nonpolarised light on

�������
t=t

p
is close to the curve obtained

by simulating the TCF.
We also calculated the angular dependence of the

polarised CBS component. The results for Rayleigh and
strongly anisotropic scatterings are presented in Fig. 2. One
can see that these dependences considerably differ from the
curve obtained in the diffusion approximation for a scalar

éeld. In the case of a weak anisotropy, the CBS peak
decreases slower than predicted by expression (3.9), whereas
in the case of a strong anisotropy (cos y � 0:9), the CBSs for
scalar and electromagnetic éelds virtually coincide.

In the case of a scalar éeld, the obtained dependences are
universal in units kl �ys; as should be within the framework
of the diffusion approximation. However, this universality is
violated for an electromagnetic éeld. In this case, the curves
describing the CBS as a function of kl �ys are considerably
different for media with different anisotropy parameters.
Thus, in the case of the scalar éeld, the angular dependences
of the CBS are close to each other, whereas for the
electromagnetic éeld they are coming apart with increasing
anisotropy.

5. Simulation of the interference component
of backscattered low-coherent radiation

In the case of a monochromatic wave with an inénite
coherence length, the interference component of back-
scattered radiation is exactly equal to the incoherent
component minus the contribution of single scattering
[10, 11, 68]. The contribution of the interference component
for low-coherent radiation proves to be considerably
smaller than the incoherent contribution (being only a
few percent), however, it is the interference component that
provides the resolution over the penetration depth in a
turbid medium.

We represent the éeld of a short light pulse, which did
not experience yet scattering by random inhomogeneities, in
the form of the spectral expansion in plane waves

E0�r; t� �
�1
ÿ1

do f �oÿ o0� exp�ÿiot� ikr�: (5.1)

Here, o is the frequency; k is the wave vector satisfying the
dispersion relation k 2c 20 ÿ n 2(o)o2 � 0; n(o) is the refrac-
tive index of the medium by neglecting random inho-
mogeneities or scattering particles; and c0 is the speed of
light in vacuum. We assume that the spectral distribution
f (o) is described by a Gaussian of width O centred at
frequency o0:

f �oÿ o0� �
1

O
exp

�
ÿ �oÿ o0�2

2O 2

�
: (5.2)

The refractive index of the medium weakly changes
within the frequency band o0 � O; by assuming that k �
n(o0)o=c0; where n(o0) is the refractive index at frequency
o0, and integrating by frequencies in (5.1), we obtain the
expression for the éeld in the form of a spatiotemporal pulse

E0�r; t� � exp�ÿio0t� ikr� exp
�
ÿ O 2�tÿ r=c�2

2

�
; (5.3)

where c � c0=n(o0) is the speed of light in the medium. The
éeld is depolarised due to multiple scattering, which makes
it possible to use a scalar éeld in such problems, by
replacing the wave Maxwell equation by the Helmholtz
equation.

Note that the condition of equality of the incoherent and
interference components of backscattered radiation is
fulélled only for a monochromatic wave unbounded in
the transverse direction, i.e. a wave with an inénite spatial
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coherence length. Otherwise, if the distance between the
entrance and exit points of a plane wave exceeds the
coherence length, the contribution of a cyclic chain of
scatterings is suppressed by a random phase difference
between two different regions of spatial coherence.

As a result, the interference component I �C�(r; t) for
radiation with énite time and spatial coherence lengths has
the form

I �C��r; t� �
X1
n�1

�
dr1:::drn exp�ÿ�z1 � zn�=l �

�
Ynÿ1
j�1

L�rj�1 ÿ rj�p�qj� exp�i�ki � ks�?�r1 ÿ rn�?

ÿ �ctÿ z1 ÿ zn ÿ Rn�2Lÿ2T � f ��r1 ÿ rn�?�: (5.4)

Figure 4 shows the angular dependences of the gain
E �CBS� � 1� I �C�=I �L� of low-coherent backscattering calcu-
lated for different spatial coherence lengths Lc in the case of
cw radiation (LT !1). The parameters of the medium
corresponded to those of the latex suspension [49, 50]: the
mean free path l � 54 mm, transport length l � �
l=�1ÿ cos y� � 207 mm (cos y is the scattering angle cosine
averaged over the absorption cross section), and the wave-
length l � 0:5 mm. For these parameters the gain for an
unbounded monochromatic wave is E �CBS� � 2. However,
the half-width W of the CBS peak was only 0.1 mrad and
could not be detected even at very good angular resolution
� 0:1 mrad. In the case of low-coherence radiation, the peak
width considerably increases: we obtainedW � 1:7 mrad for
Lc � 140 mm and W � 3 mrad for Lc � 70 mm. As the
spatial coherence length increased, the peak width
decreased: for Lc � l � and 2l �, we obtained W � 0:7 and
0.5 mrad, respectively. When the spatial coherence length Lc

was an order of magnitude greater than the transport length,
the usual angular dependence of CBS was recovered in the
form of a triangle peak with the half-width W � 0:12 mrad
coinciding with the width W � (4kl �)ÿ1 obtained in the
diffusion approximation.

Thus, for the values of parameters typical for biological
systems at which the CBS peak of unbounded monochro-
matic radiation is virtually undetectable, the use of low-
coherent radiation with the spatial coherence length smaller
than the transport length makes it possible to increase the
width of the CBS peak by one ë two orders of magnitude. A
large angular ampliécation range of backscattering, which is
typical for low-coherent radiation, allows the use of the CBS
effect for various applications and, érst of all, in biomedical
diagnostics [49, 50].

Note that in the case of low coherence, the gain is much
lower than in the case of unbounded radiation and is � 7%
of the incoherent component for Lc � 1

3
l � � 70 mm and

� 15% for Lc � 140 mm. Experimental data obtained for
the model polystyrene suspension give the backscattering
gain � 5% for Lc � 140 mm, which should be considered as
good agreement, taking into account a limited angular
resolution in the experiment.

We calculated the dependences of the coherent and
incoherent components of a scattered ultrashort pulse on
its delay time, which proved to be substantially different for
these components. Figure 5 presents the calculated depend-
ences of the backscattering gain E �CBS� on the delay time t of
an ultrashort pulse for Lc � 140 mm and LT � 30 mm,
which corresponds to the pulse duration � 100 fs (param-
eters of the medium are as in Fig. 4). The calculations were
performed taking into account contributions from different
orders of scattering (up to n � 1000). One can see that for
the given values of the scattering and transport lengths l and
l �, low-coherent backward scattering is produced by con-
tributions of the érst 8 ë 10 scattering orders. Note also that
to describe the interference component, it is not sufécient to
take into account two-fold and three-fold scattering [82].

According to expressions for the incoherent and coher-
ent components of scattered radiation, the pulse delay time
is proportional to the optical path. In turn, the propagated
path is proportional to the number n � ct=l of scattering
events. The presence of maxima of the time dependences in
Fig. 5 indicates that, unlike CBS for cw radiation, which is

E �CBS�

1.00

1.04

1.08

1.12

ÿ4 ÿ2 0 2 ys
�
mrad

Lc � 70 mm
Lc � 140 mm
Lc � 1

Figure 4. Dependences of the CBS peak E �CBS� on the scattering angle ys
for cw incident radiation, O � 0, for different spatial coherence lengths
Lc. Optical parameters of the medium: l � 54 mm, cos y � 0:74; the
wavelength is 0.5 mm.

1.6

1.4

1.2

1.0
0 2 4 6 8 ct=l

E �CBS�

Figure 5. Dependences of the gain E �CBS� of low-coherent backscattering
on the delay time of an ultrashort pulse in dimensionless units for n � 2
(^), 5 (*), 10 (~) and 1000 (6): scalar éeld and n � 1000 (&)
electromagnetic éeld; LT � 30 mm, Lc � 140 mm, optical parameters are
as in Fig. 4.
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caused by the diffusion contribution of higher orders, low-
coherent backward scattering is mainly determined by low-
order scattering. It is this fact that determines the increase in
the width of the backscattering cone. The localisation of the
region of formation of the interference backscattering
component of low-coherent radiation allows one to detect
contributions to scattered radiation resolved over the
penetration depth in turbid media and, in particular, to
perform diagnostics in surface layers of biological tissues
[45 ë 47, 83].

Figure 6 presents the angular dependences of the inter-
ference gain of low-coherent radiation for different delays of
a scattered ultrashort pulse. One can see that the interfer-
ence component achieves its maximum when the delay time
corresponds to the optical path equal to the transport
length: t � l �=c. For the chosen anisotropy parameter
cos y, this corresponds approximately to the photon path
with four scattering events. In this case, the gain E �CBS� is
close to two, i.e. it is almost the same as that for cw coherent
radiation. For t > 5l �=c, no interference ampliécation of
backscattered radiation is observed. Similar angular depend-
ences for scattered 100-ps pulses were obtained in the CBS
study of biological tissues [48]. Somewhat longer delay times
(� 4 ps) are probably explained by larger values of the
transport length determined by étting by the theoretical
expression describing CBS in the diffusion approximation
[68]. Note the diffusion approximation is obviously invalid
for the calculation of low-coherent backward scattering.

6. Conclusions

Both cyclic diagrams describing the interference component
of backward scattering [18, 68] and diagrams describing
éeld correlations [13] in the theory of coherent and
correlation effects of multiple scattering can be transformed
to ladder diagrams. This allows these effects to be
considered by using the corresponding Bethe ë Salpeter
equation. The formal difference from the initial ladder
diagrams describing the transfer of the main, incoherent
component of scattered radiation consist in the introduc-
tion of additional factors to the ladder diagram vertices.
These factors determine the phase shift of the éelds entering
the deénition of the propagator of the Bethe ë Salpeter

equation. By comparing the representation of this equation
in the form of a series of ladder diagrams and simulations
of random paths, we have shown that the consideration of
phase relations in the stochastic simulation is also reduced
to the addition of corresponding factors to each scattering
event experienced by a photon propagating along a random
path.

The Monte-Carlo method allows one to compare
directly numerical results with theoretical predictions at
each simulation step. The semianalytic method developed in
our paper allows one to combine numerical simulations with
the analytic approach used at large distances where theo-
retical results are obviously correct. The possibility of such a
comparison considerably reduces the simulation time (by
more than two orders of magnitude) by using analytic
results instead of numerical ones at large distances between
the entrance and exit points of radiation.

Our analysis has shown that scattering is really multiple
only when the radiation intensity is calculated in a non-
absorbing semi-inénite medium. In all other cases, the
weight factors of the type exp (ÿDsq

2t) � exp�ÿ2(t=t)
� (l=l �)� are used after each scattering event to simulate
numerically time êuctuations with the diffusion decay of
êuctuations or of the type kl sin ys for CBS resulting in a
rapid decay of a wave packet. Both the theory and
numerical simulations become invalid because the contri-
bution of non-ladder diagrams proves to be comparable
with that of ladder diagrams. We have shown that the main
assumption of the stochastic method in the simulation of
radiation transfer in a strongly inhomogeneous medium that
the distribution of the photon mean free path is described by
the Poisson law is equivalent to the ladder approximation.
However, even for small values of parameters Dsq

2t �
2(t=t)(l=l �) or kl sin ys in the case of a strong anisotropy
of the phase function (1ÿ cos ys 5 1), the decrease rate of
coherent effects proves to be much higher because it is
determined by parameters t=t and kl � sin ys.

Multiple scattering, including coherent effects, is usually
described in terms of a scalar éeld. As follows from our
paper, the consideration of the electromagnetic nature of
light results in a substantially different description of
backscattering compared to the scalar-éeld description
because in this case a great part of scattered radiation is
formed by contributions from lower-order scatterings. Thus,
the decrease rate of the TCF of the polarised component is
considerably smaller, while that of the depolarised compo-
nent is much larger than the decrease rate in the case of
nonpolarised light. Note that the latter virtually coincides
with the decrease rate in the scalar case. The polarised
component of backscattered light is almost twice as large as
the depolarised component.

The simulation method developed in the paper allows
one to estimate the number of scattering events of light
propagated through a layer in a strongly inhomogeneous
turbid medium from the value of residual polarisation.
Compared to the measurements of attenuation of non-
polarised light, this gives additional information which
can be used for determining the transport length. A
comparative analysis considerably simpliées the simulation
of radiation transfer and coherent effects in random
strongly scattering media such as liquid crystals, biological
tissues, etc. and also considerably expands applications of
these methods.

t � l �=c
t � 2l �=c
t � 3l �=c
t � 5l �=c

E �CBS�

ÿ4 ÿ2 0 2 ys
�
mrad

1.0

0.8

1.2

1.4

1.6

1.8

Figure 6. Angular dependences of the low-coherent backscattered com-
ponent for an ultrashort pulse for different delay times.
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