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Application of the vector Monte-Carlo method
in polarisation optical coherence tomography

D.Yu. Churmakov, V.L. Kuzmin, 1.V. Meglinski

Abstract. The vector Monte-Carlo method is developed and
applied to polarisation optical coherence tomography. The
basic principles of simulation of the propagation of polarised
electromagnetic radiation with a small coherence length are
considered under conditions of multiple scattering. The results
of numerical simulations for Rayleigh scattering well agree
with the Milne solution generalised to the case of an
electromagnetic field and with theoretical calculations in
the diffusion approximation.
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1. Introduction

The visualisation of the internal structure of various objects
by nondestructive methods is of primary importance for
biological and medical studies. At present optical coherence
tomography (OCT) is the most successful and promising
method for imaging the internal structure of biological
tissues [1—5]. The OCT visualisation of the internal
structure of biological media proves to be efficient first
of all due to the coherent suppression of contribution from
multiply scattered photons to a detected optical signal. As a
result, the measured interference OCT signal is mainly
formed by radiation reflected from interfaces inside a
medium and also by photons that have experienced low-
order backscattering (less than five—six scatterings). At the
same time, multiple scattering (more than 10 scatterings)
still considerably restricts OCT applications upon scanning
at large depths [6].

The role of multiple and low-order scatterings in the
formation of the OCT signal has been studied in many
papers [7—12]. The results of these studies were used to
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optimise practical OCT systems and interpret quantitatively
the experimental data.

Currently the polarisation methods of optical diagnos-
tics, in particular, polarisation OCT (POCT) find expanding
use in the study of biological tissues [3, 13]. Unlike standard
OCT, the latter method provides the additional increase in
the image contrast of visualised tissues. This probably
explains considerable attention given to the development
of POCT for applications in non-invasive biomedical
diagnostics [14].

The polarisation of probe radiation and its change
depend on the type of scattering, which in turn is determined
by the size and shape of scattering particles [15—17]. Along
with scattering, birefringence is also observed during the
propagation of polarised light. The polarisation birefringent
properties of some biological tissues, for example, collagen
(the base of connective tissues) change upon physiological
variations and can be used for diagnostics. Thus, POCT was
used [18] to study the birefringent properties of biological
tissues and their relation with the structure of collagen
fibres.

The scattering of electromagnetic radiation in a medium
causes a partial depolarisation of radiation and a change in
its wavefront [19—21]. Because strong anisotropic scattering
in the visible and near-IR spectral regions (41 =400—
1100 nm, the scattering coefficient g, ~ 10— 50 mm™',
the anisotropy factor g ~ 0.7 —0.9) typical of biological
tissues hinders the use of analytic methods for description of
the propagation of electromagnetic radiation [2], direct
problems are often solved by the Monte-Carlo method
MCM) [7, 11, 12, 22-24].

It is assumed that the incident electromagnetic radiation
in the diffusion approximation is completely depolarised due
to multiple scattering. This means that radiation transfer
and associated coherent effects can be described within the
framework of a scalar field. Thus, the standard simulation
technique of propagation of radiation in random multiply
scattering media [11, 12, 22—24] is based on the concept of
intensity transfer. In this case, phase relations between a
pair of fields, whose product gives the intensity, remain
beyond the framework of simulations and their consider-
ation requires a special approach.

We showed that the stochastic MCM can be also used to
simulate coherent effects of multiple scattering of light in
strongly inhomogeneous media. In [25-28], the time
correlation function of intensity and coherent backscatter-
ing was simulated by comparing directly the standard MCM
and the iteration solution of the Bethe—Salpeter equation
represented as a series in scattering orders. In [29], we con-
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sidered a method for simulating coherent effects requiring
the consideration of phase shifts such as the time correlation
function and interference component of coherent back-
scattering. In this paper, we develop this approach for
simulating the propagation of polarised electromagnetic
radiation with a small coherence length as applied to POCT.

2. Monte-Carlo simulation of polarisation OCT

Optical coherence tomography is based on the principle of
low-coherent optical interferometry with the detection of a
signal obtained due to the interference of the fields coming
from the object and reference arms of a Michelson inter-
ferometer [4, 30]. Interference is observed when the
difference of optical paths in the object and reference
arms does not exceed the coherence length. The amplitude
of the detected signal is proportional to the jump of the
refractive index at the interface between separate layers or
structural elements of tissues located at the depth which
corresponds to the optical path in the reference arm. Thus,
as in coherence radars [31, 32], it is possible to probe a
medium over depth at one aspect angle by determining the
position of the jump in the refractive index.

The typical OCT scheme (Fig. 1) includes a Michelson
interferometer, a low-coherent source, a scanning optical
system (a moving mirror in the simplest case), and a
detector. Radiation from the source is split into two beams,
one of which being directed to the object arm and the other
— to the reference arm. After the propagation of radiation in
the medium, the photodetector detects the interference
signal obtained upon optical mixing of the reference and
object waves. Thus, in the absence of a random medium,
when radiation in the object arm is reflected from the
mirror, a signal in the photodetector can be written in the
form [3, 4]

In(z) = (1) + (1) + 2((I) (1)) *Rey(x)]. (D

Here, (I.,) and ([) are the radiation intensities in the
reference and object arms of the interferometer, respec-
tively; the coordinate z describes the displacement of the
scanning mirror in the reference arm; t=2z/c is the
displacement time of the interfering fields caused by the

Figure 1. Scheme of the typical OCT system: (/) light source with a
small coherence length; (2) photodetector; (3) beamsplitter; (4) mirror
moving at a constant velocity; (5 ) mirror moving with a small amplitude
around the rotation axis and performing lateral scan in the sample plane;
(6) sample; (7) reference arm; (8) object arm.

additional path difference 2z; and ¢ is the speed of light in
vacuum. The time coherence function y(t) = y(2z/¢) con-
tains the dependence on the carrier frequency and the
emission spectrum of the source [33]. For a radiation source
with the Gaussian spectrum,

[f <m>2} exp(—2init) (2)
P 2(In2)"/? P '

where Av is the FWHM of the emission spectrum of the
source and v is the carrier frequency of radiation. The
coherence length is defined as [4, 30, 33]

7(7) = ex

2¢In2 1
L= T Av ®)
The form of the interference term in Eqn (1) depends on the
model of a random medium placed in the object arm of the
interferometer. Thus, in the case of a simple model of a
sample consisting of weakly reflecting layers, Eqn (1) takes
the form [34]

In(t) = (L) + (1) + 2((I) (1) P Re{[R(L)]'* @ 7(z,) }. (4)

where R(L,) is the fraction of radiation intensity reflected
from a layer localised in the sample at the depth L
1s = 2(Ls — L,)/c is the time delay of a beam reflected from
this layer with respect to the reference layer located at a
distance of L, from a mirror in the reference arm; and the
symbol ® denotes the convolution over positions of the
layers.

In this paper, we performed Monte-Carlo simulations
[24] of the OCT signal by calculating the optical paths of
photons propagating in a scattering medium. The contri-
bution of multiple scattering was found as a sum of partial
contributions corresponding to each detected photon taking
into account the time coherence function (2),

o 2n
Iocr(n) = Z W, cos (7 ALi)
i=1 -

2
X exp {—4lg2<AlLi> ], Q)

where W, is the statistical weight of the detected photon;
AL; is the optical path difference for this photon and a
photon in the reference arm; A is the wavelength of a
radiation source in the medium; and Ny, is the sampling
power. Note that this expression describes the time delay of
scattered radiation with respect to the reference signal; after
time averaging, it gives rise to an additional stochastic
background in the form of speckles.

In the vector Monte-Carlo model, it is necessary to
follow additionally variations in the electromagnetic field,
which are characterised in our model by the polarisation
vector P. One of the main advantages of the vector
approach compared to the methods based on the calculation
of the Stokes—Jones vectors and Mueller —Jones matrices
[15, 35-38] is the simplicity of calculations of the compo-
nents of the polarisation vector at the output from a
medium, whose quadratic forms specify the co-polarised
and cross-polarised components of the scattered field
intensity. Thus, the calculation of the polarisation vector
by using the Mueller—Jones matrices after each scattering
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requires cumbersome operations for passing from the global
to local coordinate system and vice versa, whereas simu-
lations in the vector model is reduced in fact to the
recalculation of the three components of the polarisation
vector in the global coordinate system. The simulation of
propagation of the polarisation vector in a scattering
medium by the vector MCM was proposed for the first
time in [27]. Here, we present only the final expression for
the calculation of the polarisation vector determined as the
result of the action of a chain of operators [29, 39]

o (R — R) X (R — R))

I— 3 (6)

|R;.1 — Ry

on the incident field. Here, I is the unit operator; the vectors
R; ., and R; determine the coordinates of successive j+ 1th
and jth scattering centres. Tensor operator (6) provides the
transverse nature of the electromagnetic field. This operator
describes the polarisation of a wave in the far-field
approximation (Fraunhofer approximation), which is
used in multiple scattering problems when only the long-
range component of the field Green function is taken into
account.

In the electromagnetic field, except the initial statistical
weight, the initial polarisation of the photon field is also
specified, which is determined in the general case by three
Cartesian coordinates. Let the incident field be polarised
along the x axis, then the unit polarisation vector in
Cartesian coordinates is parametrised in the form P;, =
(1,0,0). The coordinates of the polarisation vector change
after each scattering event. Therefore, except the usual
stochastic determination of the photon direction after a
successive scattering event, it is necessary to calculate a new
polarisation vector from the previous vector. If a photon
packet experiences N scattering events, the polarisation
vector at the observation point Rp = R, | has the form

N

(R —R)x (R. —R,

P— H |:[_ ( j+1 _/) X ( ];1 ,/) P. (7)
=1 IR 1 — Ry

After summation over all the detected photon packets Ny,
the intensity components of a cw monochromatic wave are
written in the form [27]

Npn
Ly =Y WP,Iy, ®)
i=1

where P;, is the modulus of the polarisation vector; o =
{x,y,z} is the polarisation of observed radiation; N; is the
number of scatterings of the ith photon packet; I'r =
2(1 4+ cos20)! is the Rayleigh factor depending on the
scattering indicatrix; and cos?0 is the squared scattering
angle cosine averaged over the indicatrix. In particular,
I'r = 3/2 in the case of scattering by Rayleigh particles of
size much smaller than the wavelength and I'r — 1 in the
case of scattering by large particles.

By generalising expression (8) to simulate the contribu-
tions of multiple scattering to the OCT signal taking into
account the polarisation of the electromagnetic field, we
obtain instead of (5)

N,

- : 2n
Ioct,(t) = ; W,PLTy cos <7 AL,«) X

2
X exp {—4lg2<AlLi) } 9

The main contribution to the detected scattered radiation is
introduced by photons of low scattering orders at the scan
depth where multiple scattering does not dominate yet [6].
We modernised accordingly the scheme of Monte-Carlo
simulations to calculate individual contributions of different
scattering orders. According to this scheme, the probability
of a photon propagating along the trajectory leading
directly to a detector from each scattering point (Fig. 2)
is calculated before the entry of a photon packet to the
detection region determined by the physical dimensions of
the detector and its numerical aperture. This detection
probability dw; of the photon packet located at the point P;
is described by the expression

Su; — ﬁgpmmm expl— (11, + 1) lr]dr, (10)

where r is the radius vector directed from the point P; to an
element of the detector surface; p(r) is the phase function of
scattering from the point P; in the direction r; T, is the
Fresnel transmission coefficient; |r| is the length of the
vector r; and u, is the absorption coefficient. The phase
function p(r) in the integrand describes the probability of
scattering at angles within Q; the exponential
exp[—(us + 1,)|r|] is numerically equal to the probability
for a photon to pass the path of length |r| without
scattering but with possible absorption along the path; and
Tg, takes into account refraction at the medium—detector
interface. A part of the statistical weight of a photon equal
to W(P,)dw; is detected by the detector; W(P)) is the photon
weight after scattering at the point P;_;. The photon packet
continues to propagate according to the standard Monte-
Carlo simulation with the statistical weight W(P;)(1 — dwy).
Alternative variants of the semi-analytic approach in
Monte-Carlo simulations are discussed in [40] (see also
references therein).

Figure 2. Scheme of Monte-Carlo simulations taking into account the
probability of a photon packet scattering towards a detector from each
scattering point of its natural trajectory; P,_; and P; are points of the
trajectory of the photon packet scattered inside a medium; D: detector
with limited geometrical dimensions and numerical aperture; Q: solid
angle at which the detector is seen from a point of the photon packet
trajectory; n: normal to the detector surface lying in the simplest case in
the xy plane.

3. Simulation results

To demonstrate the possibilities of the proposed polar-
isation model, we performed numerical simulation for a



1012

D.Yu. Churmakov, V.L. Kuzmin, I.V. Meglinski

semi-infinite medium and a point source. Backscattered
radiation is detected with a detector which is infinite in the
xy plane and has a small numerical aperture (~ 1°).
Figures 3a—c shows the simulation results for the co-
polarised and cross-polarised intensity components of
backscattered radiation depending on the number of
scattering events obtained for three values of the anisotropy
factor g = cos = {0,0.5,0.9} [see (8)]. As expected, after a
certain number of scattering events, which depends on g,
the co-polarised (/) and cross-polarised (/,) components
become almost indiscernible, i.e., radiation is depolarised.
In the case of Rayleigh scattering, when g~ 0, the
components /., and [, are substantially different only
up to approximately 10 scattering events, while for g = 0.9
— up to 50 scattering events (see Fig. 3).
The depolarisation rate defined as

I.—1,
DP — XX Xy (11)
Ixx + Ixy
is shown in Fig. 3c for different values of g. For
comparison, the depolarisation rate

of Rayleigh particles found in the diffusion approximation
[39] is also presented. Note that, unlike other polarisation
models [15, 35—-37, 39, 41, 42], in which it is warranted in
advance that a sum of the co-polarised and cross-polarised
components is equal to the scalar intensity, i.e. I+
I, = I, the fulfilment of equality (12) in our model is
provided by the correct consideration of the scattering
anisotropy of the electromagnetic radiation, namely, the
Rayleigh factor I'y.

Monte-Carlo simulations of the POCT signal envelope
Iocty(2) [see (9)] for linearly polarised radiation incident on
layers of different thickness d are presented in Fig. 4. Each
layer is a homogeneous scattering medium. Reflection from
the remote boundary of a layer was simulated as reflection
from a mirror with the reflection coefficient R = 1 idealising
the reflecting surface inside biological tissues. The optical
parameters of the medium were calculated for microspheres
of diameter 750 nm with the refraction index 1.59 immersed
in an aqueous solution. The radiation wavelength was
810 nm and the coherence length /. of the source in vacuum
was 34 um. The concentration of microspheres was selected
to obtain the scattering coefficient u, equal to 6.2 mm~ .
The rest of the optical parameters of the medium were

DP — 3(0-7)N71 (12) Ha= 0 and n = 1.33. The anisotropy factor g =0.85 was
2+ ( )N*1 calculated by using the Mie theory for spheres [21]. The
ro
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Figure 3. Intensities of multiply scattered linearly polarised radiation normalised to the scalar field intensity as functions of the number of scattering
events for the anisotropy factor g = 0 (a), 0.5 (b), and 0.9 (c): co-polarised component /., (m), cross-polarised component /., (0), scalar field intensity
(solid curve), sum I, + I, (dashed curve). Depolarisation rate as a function of the number of scattering events for g = 0 (m), 0.5 (0), and 0.9 (0); the
dashed curve is the depolarisation rate for Rayleigh particles [39] (d). Detection was performed with a small aperture (~ 1°), so that 7. = 0. Optical

parameters of the medium: u; = 30 mm™!

, 1ty = 0, the refractive index n = 1.
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thicknesses d of the scattering layer were selected to obtain
optical densities OD = 2du, equal to 2, 8, and 12, which
gives d =161, 650, and 1000 pm, respectively. Scattering
was simulated by using the Mie phase function. Photons
emitted by a point source are normally incident on the air—
layer interface. The diameter of a detector with the
numerical aperture corresponding to the angle 14.5° is
420 um. The optical parameters, size and geometry of
the source correspond to the parameters of the experimental
setup being developed. The values of parameters are also
consistent with those used in other papers [7, 8]. The
simulation time was varied from 20 min to a few hours
depending on the optical parameters of the medium and the
source —detector configuration. Simulations were performed
for 2.5 x 10° photon packets by using a 1.8-GHz AMD
Sempron 3100+ PC. Note that we developed the simulation
algorithm specially intended for PCs commonly used in
laboratories.

All the envelopes were normalised to the peak intensity
of the POCT signal from the remote boundary. In the case
of a small optical density (OD = 2), a signal of double
reflection from the remote boundary was observed (see
Fig. 4a). The presence of a nonzero signal between the near
and remote boundaries of the medium for all layer thick-
nesses under study is caused by the consideration of phase
relations between detected photon packets [see (9)]. Note
that the averaging of five—six simulation results efficiently
suppresses speckles [43]. A signal from the scattering
medium, i.e. the signal between the maxima of the
POCT signal increases with increasing the thickness of
the scattering medium layer (see Fig. 4) because, as the
optical thickness increases, the higher scattering orders
begin to contribute to the detected signal (Fig. 5).

To elucidate the influence of multiple scattering on the
POCT signal, the reference point of the optical depth of
scanning (z = 0) was transferred to the point at a distance of
the optical path of ballistic photons L, = 2nd. Figure 6
shows that the fraction of high scattering orders increases
with increasing layer thickness; this causes the broadening of
a signal reflected from the surface, resulting in a decrease in
the axial resolution of a tomograph. Similar results were
obtained in papers [7, 8, 44] where alternative simulation
methods were used.

Figure 7a presents simulations of scalar OCT and POCT
signals for a layer with the optical density OD = 12. Note
that the scalar OCT signal Igctr and the co-polarised
component Ioct, of the POCT signal do not strongly differ
from each other over the entire range of the optical scan
depth, except the region z > 1330 um where the scalar OCT
signal exceeds the POCT signal. In this region, the coherent
component of the detected signal makes a substantial
contribution, i.e. photons that have experienced at least
one reflection from the remote boundary and (or) several
scattering events. The use of POCT allows one to increase
the sampling of a coherent signal from the total multiply
scattered detected radiation (Fig. 7a). It should be emphas-
ised that the model of a medium used in our simulations
neglects birefringence. For the values of optical parameters
that we used (u, = 6.2 mm~ !, ¢ = 0.85), the average number
of photon scatterings does not exceed ten even for the
maximum thickness of a layer d = 1000 pm. Under these
conditions, radiation is not completely depolarised yet, as
shown in Figs 3c, d, which explains a small difference
between the POCT and OCT signals for low scattering
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Figure 4. Normalised envelopes of the POCT signal calculated by the
MCM for linearly polarised incident radiation as functions of the optical
scan depth z for different thicknesses ¢ and optical densities OD of a
layer. The optical parameters of the medium: p, = 6.2 mm™', u, =0,
g=0.85n=1233.
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Figure 5. Intensity of the detected backscattered radiation as a function
of the number of scattering events for different thicknesses and optical
densities of a layer. The optical parameters of the medium are as Fig. 4.
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Figure 6. Normalised envelopes of the POCT signal calculated by the
MCM for linearly polarised incident radiation as functions of the optical
scan depth z for the same thicknesses and optical densities and optical
parameters of the medium as in Figs 4 and 5.

orders. The co-polarised and cross-polarised components of
the POCT signal for a layer with the optical density
OD = 12 are presented in Fig. 7b. The absolute value of
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Figure 7. Normalised scalar OCT and POCT signals calculated by the
MCM for linearly polarised incident radiation as functions of the optical
scan depth z for a layer with the optical density OD = 12: the scalar OCT
signal Igct (solid curve) [see (5)] and POCT signal Iocr, (m) (a), the
POCT signal Ipcry (solid curve) and POCT signal Iocr, (@) (b). The
optical parameters of the medium: pu, = 6.2 mm~', u, =0, g=0.85,
n=1.33,d= 1000 pm.

Iocty is smaller than the corresponding value of Ipcry, due
to a small depolarisation rate, as mentioned above. Note
that the maximum of Iocr, is located approximately 30 pm
deeper than the real position of the reflecting surface, while
the maximum of Iycr, is displaced only by 10 um. Because
the coherence length of the source is [, = 34 pum in vacuum
and 25.6 pm in aqueous solution, both these displacements
can be neglected.

4. Conclusions

We have considered for the first time the vector method for
simulating the propagation of polarised electromagnetic
radiation with a small coherence length for applications in
POCT. The Monte-Carlo method uses the stochastic model
of coherent effects of multiple light scattering based on a
direct comparison with the iteration approach to the
solution of the Bethe-—Salpeter equation [27].

The model proposed in the paper well describes the axial
broadening of the POCT signal reflected from a surface with
increasing the optical density of the medium. The model also
describes the displacement of the signal maximum from its
real position, although it is negligible in the case of low-
order scattering. These results well agree with simulations
and experiments performed in papers [7, 8, 44]. We plan to
develop our model by considering in detail the deviation
from a linear decrease of the OCT signal with increasing the
scan depth [44, 45] and also by analysing layered media with
regions actively changing the polarisation of propagating
radiation (birefringence of the medium). This model can be
used to determine the experimental parameters of POCT/
OCT setups and their resolution in the studies of multiply
scattering biological tissues.
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