
Abstract. The vector Monte-Carlo method is developed and
applied to polarisation optical coherence tomography. The
basic principles of simulation of the propagation of polarised
electromagnetic radiation with a small coherence length are
considered under conditions of multiple scattering. The results
of numerical simulations for Rayleigh scattering well agree
with the Milne solution generalised to the case of an
electromagnetic éeld and with theoretical calculations in
the diffusion approximation.

Keywords: polarisation optical low-coherence tomography, Monte-
Carlo method, polarisation vector, multiple scattering.

1. Introduction

The visualisation of the internal structure of various objects
by nondestructive methods is of primary importance for
biological and medical studies. At present optical coherence
tomography (OCT) is the most successful and promising
method for imaging the internal structure of biological
tissues [1 ë 5]. The OCT visualisation of the internal
structure of biological media proves to be efécient érst
of all due to the coherent suppression of contribution from
multiply scattered photons to a detected optical signal. As a
result, the measured interference OCT signal is mainly
formed by radiation reêected from interfaces inside a
medium and also by photons that have experienced low-
order backscattering (less than éve ë six scatterings). At the
same time, multiple scattering (more than 10 scatterings)
still considerably restricts OCT applications upon scanning
at large depths [6].

The role of multiple and low-order scatterings in the
formation of the OCT signal has been studied in many
papers [7 ë 12]. The results of these studies were used to

optimise practical OCT systems and interpret quantitatively
the experimental data.

Currently the polarisation methods of optical diagnos-
tics, in particular, polarisation OCT (POCT) énd expanding
use in the study of biological tissues [3, 13]. Unlike standard
OCT, the latter method provides the additional increase in
the image contrast of visualised tissues. This probably
explains considerable attention given to the development
of POCT for applications in non-invasive biomedical
diagnostics [14].

The polarisation of probe radiation and its change
depend on the type of scattering, which in turn is determined
by the size and shape of scattering particles [15 ë 17]. Along
with scattering, birefringence is also observed during the
propagation of polarised light. The polarisation birefringent
properties of some biological tissues, for example, collagen
(the base of connective tissues) change upon physiological
variations and can be used for diagnostics. Thus, POCT was
used [18] to study the birefringent properties of biological
tissues and their relation with the structure of collagen
ébres.

The scattering of electromagnetic radiation in a medium
causes a partial depolarisation of radiation and a change in
its wavefront [19 ë 21]. Because strong anisotropic scattering
in the visible and near-IR spectral regions (l � 400ÿ
1100 nm, the scattering coefécient ms � 10ÿ 50 mmÿ1,
the anisotropy factor g � 0:7ÿ 0:9) typical of biological
tissues hinders the use of analytic methods for description of
the propagation of electromagnetic radiation [2], direct
problems are often solved by the Monte-Carlo method
(MCM) [7, 11, 12, 22 ë 24].

It is assumed that the incident electromagnetic radiation
in the diffusion approximation is completely depolarised due
to multiple scattering. This means that radiation transfer
and associated coherent effects can be described within the
framework of a scalar éeld. Thus, the standard simulation
technique of propagation of radiation in random multiply
scattering media [11, 12, 22 ë 24] is based on the concept of
intensity transfer. In this case, phase relations between a
pair of éelds, whose product gives the intensity, remain
beyond the framework of simulations and their consider-
ation requires a special approach.

We showed that the stochastic MCM can be also used to
simulate coherent effects of multiple scattering of light in
strongly inhomogeneous media. In [25 ë 28], the time
correlation function of intensity and coherent backscatter-
ing was simulated by comparing directly the standard MCM
and the iteration solution of the Bethe ë Salpeter equation
represented as a series in scattering orders. In [29], we con-
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sidered a method for simulating coherent effects requiring
the consideration of phase shifts such as the time correlation
function and interference component of coherent back-
scattering. In this paper, we develop this approach for
simulating the propagation of polarised electromagnetic
radiation with a small coherence length as applied to POCT.

2. Monte-Carlo simulation of polarisation OCT

Optical coherence tomography is based on the principle of
low-coherent optical interferometry with the detection of a
signal obtained due to the interference of the éelds coming
from the object and reference arms of a Michelson inter-
ferometer [4, 30]. Interference is observed when the
difference of optical paths in the object and reference
arms does not exceed the coherence length. The amplitude
of the detected signal is proportional to the jump of the
refractive index at the interface between separate layers or
structural elements of tissues located at the depth which
corresponds to the optical path in the reference arm. Thus,
as in coherence radars [31, 32], it is possible to probe a
medium over depth at one aspect angle by determining the
position of the jump in the refractive index.

The typical OCT scheme (Fig. 1) includes a Michelson
interferometer, a low-coherent source, a scanning optical
system (a moving mirror in the simplest case), and a
detector. Radiation from the source is split into two beams,
one of which being directed to the object arm and the other
ë to the reference arm. After the propagation of radiation in
the medium, the photodetector detects the interference
signal obtained upon optical mixing of the reference and
object waves. Thus, in the absence of a random medium,
when radiation in the object arm is reêected from the
mirror, a signal in the photodetector can be written in the
form [3, 4]

ID�z� � hIri � hIsi � 2�hIrihIsi�1=2Re�g�t��. (1)

Here, hIri and hIsi are the radiation intensities in the
reference and object arms of the interferometer, respec-
tively; the coordinate z describes the displacement of the
scanning mirror in the reference arm; t � 2z=c is the
displacement time of the interfering éelds caused by the

additional path difference 2z; and c is the speed of light in
vacuum. The time coherence function g(t) � g(2z=c) con-
tains the dependence on the carrier frequency and the
emission spectrum of the source [33]. For a radiation source
with the Gaussian spectrum,

g�t� � exp

�
ÿ
�

pDvt

2�ln 2�1=2
�2 �

exp�ÿ2ip�vt�, (2)

where Dv is the FWHM of the emission spectrum of the
source and �n is the carrier frequency of radiation. The
coherence length is deéned as [4, 30, 33]

lc �
2c ln 2

p
1

Dv
. (3)

The form of the interference term in Eqn (1) depends on the
model of a random medium placed in the object arm of the
interferometer. Thus, in the case of a simple model of a
sample consisting of weakly reêecting layers, Eqn (1) takes
the form [34]

ID�t� � hIri � hIsi � 2�hIrihIsi�1=2Re
��R�Ls��1=2 
 g�ts�

	
, (4)

where R(Ls) is the fraction of radiation intensity reêected
from a layer localised in the sample at the depth Ls;
ts � 2(Ls ÿ Lr)=c is the time delay of a beam reêected from
this layer with respect to the reference layer located at a
distance of Lr from a mirror in the reference arm; and the
symbol 
 denotes the convolution over positions of the
layers.

In this paper, we performed Monte-Carlo simulations
[24] of the OCT signal by calculating the optical paths of
photons propagating in a scattering medium. The contri-
bution of multiple scattering was found as a sum of partial
contributions corresponding to each detected photon taking
into account the time coherence function (2),

IOCT�t� �
XNph

i�1
Wi cos

�
2p
l

DLi

�

� exp

�
ÿ 4 lg 2

�
DLi

lc

�2 �
, (5)

where Wi is the statistical weight of the detected photon;
DLi is the optical path difference for this photon and a
photon in the reference arm; l is the wavelength of a
radiation source in the medium; and Nph is the sampling
power. Note that this expression describes the time delay of
scattered radiation with respect to the reference signal; after
time averaging, it gives rise to an additional stochastic
background in the form of speckles.

In the vector Monte-Carlo model, it is necessary to
follow additionally variations in the electromagnetic éeld,
which are characterised in our model by the polarisation
vector P. One of the main advantages of the vector
approach compared to the methods based on the calculation
of the Stokes ë Jones vectors and Mueller ë Jones matrices
[15, 35 ë 38] is the simplicity of calculations of the compo-
nents of the polarisation vector at the output from a
medium, whose quadratic forms specify the co-polarised
and cross-polarised components of the scattered éeld
intensity. Thus, the calculation of the polarisation vector
by using the Mueller ë Jones matrices after each scattering
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Figure 1. Scheme of the typical OCT system: ( 1 ) light source with a
small coherence length; ( 2 ) photodetector; ( 3 ) beamsplitter; ( 4 ) mirror
moving at a constant velocity; ( 5 ) mirror moving with a small amplitude
around the rotation axis and performing lateral scan in the sample plane;
( 6 ) sample; ( 7 ) reference arm; ( 8 ) object arm.
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requires cumbersome operations for passing from the global
to local coordinate system and vice versa, whereas simu-
lations in the vector model is reduced in fact to the
recalculation of the three components of the polarisation
vector in the global coordinate system. The simulation of
propagation of the polarisation vector in a scattering
medium by the vector MCM was proposed for the érst
time in [27]. Here, we present only the énal expression for
the calculation of the polarisation vector determined as the
result of the action of a chain of operators [29, 39]�

Îÿ �Rj�1 ÿ Rj� � �Rj�1 ÿ Rj�
jRj�1 ÿ Rjj2

�
(6)

on the incident éeld. Here, Î is the unit operator; the vectors
Rj�1 and Rj determine the coordinates of successive j� 1th
and jth scattering centres. Tensor operator (6) provides the
transverse nature of the electromagnetic éeld. This operator
describes the polarisation of a wave in the far-éeld
approximation (Fraunhofer approximation), which is
used in multiple scattering problems when only the long-
range component of the éeld Green function is taken into
account.

In the electromagnetic éeld, except the initial statistical
weight, the initial polarisation of the photon éeld is also
speciéed, which is determined in the general case by three
Cartesian coordinates. Let the incident éeld be polarised
along the x axis, then the unit polarisation vector in
Cartesian coordinates is parametrised in the form Pin �
(1, 0, 0). The coordinates of the polarisation vector change
after each scattering event. Therefore, except the usual
stochastic determination of the photon direction after a
successive scattering event, it is necessary to calculate a new
polarisation vector from the previous vector. If a photon
packet experiences N scattering events, the polarisation
vector at the observation point RD � Rn�1 has the form

P �
YN
j�1

�
Îÿ �Rj�1 ÿ Rj� � �Rj�1 ÿ Rj�

jRj�1 ÿ Rjj2
�
Pin. (7)

After summation over all the detected photon packets Nph,
the intensity components of a cw monochromatic wave are
written in the form [27]

Ixa �
XNph

i�1
WiP

2
iaG

Ni

R , (8)

where Pia is the modulus of the polarisation vector; a �
fx, y, zg is the polarisation of observed radiation; Ni is the
number of scatterings of the ith photon packet; GR �
2(1� cos2 y)ÿ1 is the Rayleigh factor depending on the
scattering indicatrix; and cos2 y is the squared scattering
angle cosine averaged over the indicatrix. In particular,
GR � 3=2 in the case of scattering by Rayleigh particles of
size much smaller than the wavelength and GR ! 1 in the
case of scattering by large particles.

By generalising expression (8) to simulate the contribu-
tions of multiple scattering to the OCT signal taking into
account the polarisation of the electromagnetic éeld, we
obtain instead of (5)

IOCTa�t� �
XNph

i�1
WiP

2
iaG

Ni

R cos

�
2p
l

DLi

�
�

� exp

�
ÿ 4 lg 2

�
DLi

lc

�2 �
. (9)

The main contribution to the detected scattered radiation is
introduced by photons of low scattering orders at the scan
depth where multiple scattering does not dominate yet [6].
We modernised accordingly the scheme of Monte-Carlo
simulations to calculate individual contributions of different
scattering orders. According to this scheme, the probability
of a photon propagating along the trajectory leading
directly to a detector from each scattering point (Fig. 2)
is calculated before the entry of a photon packet to the
detection region determined by the physical dimensions of
the detector and its numerical aperture. This detection
probability dwj of the photon packet located at the point Pj

is described by the expression

dwj �
��

O
 p�r�TFr�rn� exp�ÿ�ms � ma�jrj�dr, (10)

where r is the radius vector directed from the point Pj to an
element of the detector surface; p(r) is the phase function of
scattering from the point Pj in the direction r; TFr is the
Fresnel transmission coefécient; jrj is the length of the
vector r; and ma is the absorption coefécient. The phase
function p(r) in the integrand describes the probability of
scattering at angles within O; the exponential
exp�ÿ(ms � ma)jrj� is numerically equal to the probability
for a photon to pass the path of length jrj without
scattering but with possible absorption along the path; and
TFr takes into account refraction at the mediumëdetector
interface. A part of the statistical weight of a photon equal
to W(Pj)dwj is detected by the detector; W(Pj) is the photon
weight after scattering at the point Pjÿ1. The photon packet
continues to propagate according to the standard Monte-
Carlo simulation with the statistical weight W(Pj)(1ÿ dwj).
Alternative variants of the semi-analytic approach in
Monte-Carlo simulations are discussed in [40] (see also
references therein).

3. Simulation results

To demonstrate the possibilities of the proposed polar-
isation model, we performed numerical simulation for a

n
y

x

O

D

Pjÿ1

Pj

Figure 2. Scheme of Monte-Carlo simulations taking into account the
probability of a photon packet scattering towards a detector from each
scattering point of its natural trajectory; Pjÿ1 and Pj are points of the
trajectory of the photon packet scattered inside a medium; D: detector
with limited geometrical dimensions and numerical aperture; O: solid
angle at which the detector is seen from a point of the photon packet
trajectory; n: normal to the detector surface lying in the simplest case in
the xy plane.
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semi-inénite medium and a point source. Backscattered
radiation is detected with a detector which is inénite in the
xy plane and has a small numerical aperture (� 18).
Figures 3a ë c shows the simulation results for the co-
polarised and cross-polarised intensity components of
backscattered radiation depending on the number of
scattering events obtained for three values of the anisotropy
factor g � cos y � f0, 0:5, 0:9g [see (8)]. As expected, after a
certain number of scattering events, which depends on g,
the co-polarised (Ixx) and cross-polarised (Ixy) components
become almost indiscernible, i.e., radiation is depolarised.
In the case of Rayleigh scattering, when g � 0, the
components Ixx and Ixy are substantially different only
up to approximately 10 scattering events, while for g � 0:9
ë up to 50 scattering events (see Fig. 3).

The depolarisation rate deéned as

DP � Ixx ÿ Ixy

Ixx � Ixy
(11)

is shown in Fig. 3c for different values of g. For
comparison, the depolarisation rate

DP � 3�0:7�Nÿ1
2� �0:7�Nÿ1 (12)

of Rayleigh particles found in the diffusion approximation
[39] is also presented. Note that, unlike other polarisation
models [15, 35 ë 37, 39, 41, 42], in which it is warranted in
advance that a sum of the co-polarised and cross-polarised
components is equal to the scalar intensity, i.e. Ixx�
Ixy � Iscl, the fulélment of equality (12) in our model is
provided by the correct consideration of the scattering
anisotropy of the electromagnetic radiation, namely, the
Rayleigh factor GR.

Monte-Carlo simulations of the POCT signal envelope
IOCTx(z) [see (9)] for linearly polarised radiation incident on
layers of different thickness d are presented in Fig. 4. Each
layer is a homogeneous scattering medium. Reêection from
the remote boundary of a layer was simulated as reêection
from a mirror with the reêection coefécient R � 1 idealising
the reêecting surface inside biological tissues. The optical
parameters of the medium were calculated for microspheres
of diameter 750 nm with the refraction index 1.59 immersed
in an aqueous solution. The radiation wavelength was
810 nm and the coherence length lc of the source in vacuum
was 34 mm. The concentration of microspheres was selected
to obtain the scattering coefécient ms equal to 6.2 mmÿ1.
The rest of the optical parameters of the medium were
ma � 0 and n � 1:33. The anisotropy factor g � 0:85 was
calculated by using the Mie theory for spheres [21]. The

a
0 10 20 30 40 N

c d

0 10 20 30 40 N0 25 50 75 100 125 N

0.01

0.1

1
I I

0.03

0.1

1

0.3

0.1

1

I

0.01

0.1

1

DP

b
0 10 20 30 40 N

Figure 3. Intensities of multiply scattered linearly polarised radiation normalised to the scalar éeld intensity as functions of the number of scattering
events for the anisotropy factor g � 0 (a), 0.5 (b), and 0.9 (c): co-polarised component Ixx (&), cross-polarised component Ixy (*), scalar éeld intensity
(solid curve), sum Ixx � Ixy (dashed curve). Depolarisation rate as a function of the number of scattering events for g � 0 (&), 0.5 (*), and 0.9 (&); the
dashed curve is the depolarisation rate for Rayleigh particles [39] (d). Detection was performed with a small aperture (� 18), so that Ixz � 0. Optical
parameters of the medium: ms � 30 mmÿ1, ma � 0, the refractive index n � 1.
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thicknesses d of the scattering layer were selected to obtain
optical densities OD � 2dms equal to 2, 8, and 12, which
gives d � 161, 650, and 1000 mm, respectively. Scattering
was simulated by using the Mie phase function. Photons
emitted by a point source are normally incident on the air ë
layer interface. The diameter of a detector with the
numerical aperture corresponding to the angle 14.58 is
420 mm. The optical parameters, size and geometry of
the source correspond to the parameters of the experimental
setup being developed. The values of parameters are also
consistent with those used in other papers [7, 8]. The
simulation time was varied from 20 min to a few hours
depending on the optical parameters of the medium and the
source ë detector conéguration. Simulations were performed
for 2:5� 106 photon packets by using a 1.8-GHz AMD
Sempron 3100+ PC. Note that we developed the simulation
algorithm specially intended for PCs commonly used in
laboratories.

All the envelopes were normalised to the peak intensity
of the POCT signal from the remote boundary. In the case
of a small optical density (OD � 2), a signal of double
reêection from the remote boundary was observed (see
Fig. 4a). The presence of a nonzero signal between the near
and remote boundaries of the medium for all layer thick-
nesses under study is caused by the consideration of phase
relations between detected photon packets [see (9)]. Note
that the averaging of éve ë six simulation results eféciently
suppresses speckles [43]. A signal from the scattering
medium, i.e. the signal between the maxima of the
POCT signal increases with increasing the thickness of
the scattering medium layer (see Fig. 4) because, as the
optical thickness increases, the higher scattering orders
begin to contribute to the detected signal (Fig. 5).

To elucidate the inêuence of multiple scattering on the
POCT signal, the reference point of the optical depth of
scanning (z � 0) was transferred to the point at a distance of
the optical path of ballistic photons L0 � 2nd. Figure 6
shows that the fraction of high scattering orders increases
with increasing layer thickness; this causes the broadening of
a signal reêected from the surface, resulting in a decrease in
the axial resolution of a tomograph. Similar results were
obtained in papers [7, 8, 44] where alternative simulation
methods were used.

Figure 7a presents simulations of scalar OCT and POCT
signals for a layer with the optical density OD � 12. Note
that the scalar OCT signal IOCT and the co-polarised
component IOCTx of the POCT signal do not strongly differ
from each other over the entire range of the optical scan
depth, except the region z5 1330 mm where the scalar OCT
signal exceeds the POCT signal. In this region, the coherent
component of the detected signal makes a substantial
contribution, i.e. photons that have experienced at least
one reêection from the remote boundary and (or) several
scattering events. The use of POCT allows one to increase
the sampling of a coherent signal from the total multiply
scattered detected radiation (Fig. 7a). It should be emphas-
ised that the model of a medium used in our simulations
neglects birefringence. For the values of optical parameters
that we used (ms � 6:2 mmÿ1, g � 0:85), the average number
of photon scatterings does not exceed ten even for the
maximum thickness of a layer d � 1000 mm. Under these
conditions, radiation is not completely depolarised yet, as
shown in Figs 3c, d, which explains a small difference
between the POCT and OCT signals for low scattering
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Figure 4. Normalised envelopes of the POCT signal calculated by the
MCM for linearly polarised incident radiation as functions of the optical
scan depth z for different thicknesses d and optical densities OD of a
layer. The optical parameters of the medium: ms � 6:2 mmÿ1, ma � 0,
g � 0:85, n � 1:33.
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Figure 5. Intensity of the detected backscattered radiation as a function
of the number of scattering events for different thicknesses and optical
densities of a layer. The optical parameters of the medium are as Fig. 4.
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orders. The co-polarised and cross-polarised components of
the POCT signal for a layer with the optical density
OD � 12 are presented in Fig. 7b. The absolute value of

IOCTy is smaller than the corresponding value of IOCTx due
to a small depolarisation rate, as mentioned above. Note
that the maximum of IOCTy is located approximately 30 mm
deeper than the real position of the reêecting surface, while
the maximum of IOCTx is displaced only by 10 mm. Because
the coherence length of the source is lc � 34 mm in vacuum
and 25.6 mm in aqueous solution, both these displacements
can be neglected.

4. Conclusions

We have considered for the érst time the vector method for
simulating the propagation of polarised electromagnetic
radiation with a small coherence length for applications in
POCT. The Monte-Carlo method uses the stochastic model
of coherent effects of multiple light scattering based on a
direct comparison with the iteration approach to the
solution of the Bethe ë Salpeter equation [27].

The model proposed in the paper well describes the axial
broadening of the POCT signal reêected from a surface with
increasing the optical density of the medium. The model also
describes the displacement of the signal maximum from its
real position, although it is negligible in the case of low-
order scattering. These results well agree with simulations
and experiments performed in papers [7, 8, 44]. We plan to
develop our model by considering in detail the deviation
from a linear decrease of the OCT signal with increasing the
scan depth [44, 45] and also by analysing layered media with
regions actively changing the polarisation of propagating
radiation (birefringence of the medium). This model can be
used to determine the experimental parameters of POCT/
OCT setups and their resolution in the studies of multiply
scattering biological tissues.

Acknowledgements. This work was supported by the British
Biotechnical and Biological Research Council (BBSRC,
Project No. BBS/B/04242), the Royal Society (Grant No.
15298), and NATO (Grant No. PST.CLG.979652).

References
1. Huang D., Swanson E.A., Lin C.P., Schuman J.S., Stinson W.G.,

Chang W., Hee M.R., Flotte T., Gregory K., Puliafito C.A.,
Fujimoto J.G. Science, 254, 1178 (1991).

2. Tuchin I.I. Lazery i volokonnaya optika v biomeditsinskikh
issledovaniyakh (Lasers and Fibre Optics in Biomedical Studies)
(Saratov: Saratov University, 1998).

3. Fercher A.F., Drexler W., Hitzenberger C.K., Lasser T. Rep.
Prog. Phys., 66, 239 (2003).

4. Bouma B.E., Tearney G.J. (Eds) Handbook of Optical Coherence
Tomography (New York: Marcel Dekker, 2002).

5. Tuchin V.V. Handbook of Coherent Domain Optical Methods:
Biomedical Diagostics, Environment and Material Science
(Dordrecht: Kluwer Acad. Publ., 2004).

6. Yadlowsky M.J., Schmitt J.M., Bonner R.F. Appl. Opt., 43, 5699
(1995).

7. Karamata B., Laubscher M., Leutenegger M., Bourquin S.,
Lasser T., Lambelet P. J. Opt. Soc. Am. A, 22 (7), 1369 (2005).

8. Karamata B., Laubscher M., Leutenegger M., Bourquin S.,
Lasser T., Lambelet P. J. Opt. Soc. Am. A, 22 (7), 1380 (2005).

9. Bizheva K.K., Siegel A.M., Boas D.A. Phys. Rev. E, 58 (6), 7664
(1998).

10. Smithies D.J., Lindmo T., Chen Z., Nelson J.S., Milner T.E. Phys.
Med. Biol., 43 (10), 3025 (1998).

11. Wang R.K. Phys. Med. Biol., 22 (47), 2281 (2002).
12. Kirillin M.Yu., Meglinski I.V., Priezzhev A.V. Kvantovaya

Elektron., 36, 247 (2006) [Quantum Electron., 36, 247 (2006)].

1

ÿ50 0 50 100 150 200 z
�
mm

10ÿ3

10ÿ2

10ÿ1

100

IOCTx

2

2

3

3

1

1 ë d � 161 mm (OD � 2)

2 ë d � 650 mm (OD � 8)

3 ë d � 1000 mm (OD � 12)

Figure 6. Normalised envelopes of the POCT signal calculated by the
MCM for linearly polarised incident radiation as functions of the optical
scan depth z for the same thicknesses and optical densities and optical
parameters of the medium as in Figs 4 and 5.

0 400 800 1200 z
�
mm

b

0 400 800 1200 z
�
mm

a

10ÿ2

10ÿ1

IOCT

100

10ÿ2

10ÿ3

10ÿ1

IOCT

100

Figure 7. Normalised scalar OCT and POCT signals calculated by the
MCM for linearly polarised incident radiation as functions of the optical
scan depth z for a layer with the optical density OD � 12: the scalar OCT
signal IOCT (solid curve) [see (5)] and POCT signal IOCTx (&) (a), the
POCT signal IOCTx (solid curve) and POCT signal IOCTy (*) (b). The
optical parameters of the medium: ms � 6:2 mmÿ1, ma � 0, g � 0:85,
n � 1:33, d � 1000 mm.

1014 D.Yu. Churmakov, V.L. Kuzmin, I.V. Meglinski

http://dx.doi.org/10.1126/science.1957169
omis
Huang D., Swanson E.A., Lin C.P., Schuman J.S., Stinson W.G.,

omis
Chang W., Hee M.R., Flotte T., Gregory K., Puliafito C.A.,

omis
Fujimoto J.G. Science, 254, 1178 (1991).

http://dx.doi.org/10.1088/0034-4885/66/2/204
omis
Fercher A.F., Drexler W., Hitzenberger C.K., Lasser T. Rep.

omis
Prog. Phys., 66, 239 (2003).

http://dx.doi.org/10.1364/JOSAA.22.001369
omis
Karamata B., Laubscher M., Leutenegger M., Bourquin S.,

omis
Lasser T., Lambelet P. J. Opt. Soc. Am. A, 22 (7), 1369 (2005).

http://dx.doi.org/10.1364/JOSAA.22.001380
omis
Karamata B., Laubscher M., Leutenegger M., Bourquin S.,

omis
Lasser T., Lambelet P. , (7), 1380 (2005).

http://dx.doi.org/10.1103/PhysRevE.58.7664
omis
Bizheva K.K., Siegel A.M., Boas D.A. Phys. Rev. E, 58 (6), 7664

omis
(1998).

http://dx.doi.org/10.1088/0031-9155/43/10/024
omis
Smithies D.J., Lindmo T., Chen Z., Nelson J.S., Milner T.E. Phys.

omis
Med. Biol., 43 (10), 3025 (1998).

http://dx.doi.org/10.1088/0031-9155/47/13/307
omis
Wang R.K. Phys. Med. Biol., 22 (47), 2281 (2002).

http://dx.doi.org/10.1070/QE2006v036n03ABEH013130
omis
Kirillin M.Yu., Meglinski I.V., Priezzhev A.V. Kvantovaya

omis
Elektron., 36, 247 (2006) [ Quantum Electron., 36, 247 (2006)].



13. de Boer J., Milner T.E., van Gemert M.J.C., Nelson J.S. Opt.
Lett., 22, 934 (1997).

14. Special Section On Tissue Polarimetry. J. Biomed. Opt., 7, 279
(2002).

15. Hielscher A.H., Mourant J.R., Bigio I.J. Appl. Opt., 36, 125
(1997).

16. MacKintosh F.C., Zhu J.X., Pine D.J., Weitz D.A. Phys. Rev. B,
40 (13), 9342 (1989).

17. Bicout D., Brosseau C., Martinez A.S., Schmitt J.M. Phys. Rev.
E, 49, 1767 (1994).

18. Ugryumova N., Attenburrow D.P., Winlove C.P., Matcher S.J.
J. Phys. D: Appl. Phys., 38, 2612 (2005).

19. Ishimaru A. Wave Propagation and Scattering in Random Media
(New York: Academic Press, 1978) Vols 1,2.

20. Brosseau C. Fundamentals of Polarized Light: a Statistical Optics
Approach (New York: John Wiley & Sons, 1998).

21. Bohren C.F., Huffman D.R. Absorption and Scattering of Light
by Small Particles (New York: Wiley, 1983).

22. Yamada Y., Hasegawa H., Tamura M., Nomura Y. Appl. Opt., 30
(31), 4515 (1991).

23. Wang L., Jacques S.L., Zheng L. Computer Methods and
Programs in Biomedicine, 47 (2), 131 (1995).

24. Churmakov D.Y., Meglinski I.V., Greenhalgh D.A. Phys. Med.
Biol., 47 (23), 4271 (2002).

25. Kuzmin V.L., Meglinski I.V. Pis'ma Zh. Eksp. Teor. Fiz., 79, 139
(2004).

26. Kuzmin V.L., Meglinski I.V. Opt. Spektrosk., 97, 108 (2004).
27. Kuzmin V.L., Meglinski I.V., Churmakov D.Yu. Zh. Eksp. Teor.

Fiz., 128, 30 (2005).
28. Meglinski I.V., Kuzmin V.L., Churmakov D.Y., Greenhalgh D.A.

Proc. Roy. Soc. A, 461 (2053), 43 (2005).
29. Kuzmin V.L., Meglinski I.V., Churmakov D.Yu. Opt. Spektrosk.,

98, 653 (2005).
30. Hariharan P. Optical Interferometry (San Diego: Academic Press,

2003).
31. Dresel T., Hausler G., Ventzke H. Appl. Opt., 31, 919 (1992).
32. Carlsson T.E., Nilsson B. J. Opt., 29, 146 (1998).
33. Goodman J.W. Statistical Optics (New York: Wiley-Interscience,

1985).
34. Schmitt J.M. IEEE J. Sel. Top. Quantum. Electron., 5, 1205

(1999).
35. Bartel S., Hielscher A. Appl. Opt., 39 (10), 1580 (2000).
36. Rakovic M.J., Kattawar G.W., Mehrubeoglu M., Cameron B.D.,

Wang L.V., Rastegar S., Cote G.L. Appl. Opt., 38, 3399 (1999).
37. Ramella-Roman J.C., Prahl S.A., Jacques S.L. Opt. Express, 13,

4420 (2005).
38. Gangnus S.V., Matcher S.J., Meglinski I.V. Laser Phys., 14 (6),

886 (2004).
39. Akkermans E., Wolf P.E., Maynard R., Maret G. J. Phys.

France, 49, 77 (1988).
40. Tinet E., Avrillier S., Tualle J.M. J. Opt. Soc. Am. A, 13, 1903

(1996).
41. Iwai T., Furukawa H., Asakura T. Opt. Rev., 2, 413 (1995).
42. Zimnyakov D.A., Sinichkin Y.P. J. Opt. A: Pure Appl. Opt., 2,

200 (2000).
43. Schmitt J.M. Phys. Med. Biol., 42, 1427 (1997).
44. Lu Q., Gan X., Gu M., Luo Q. Appl. Opt., 43, 1628 (2004).
45. Tycho A., Jorgensen T.M., Yura H.T., Andersen P.E. Appl. Opt.,

41 (31), 6676 (2002).

Application of the vector Monte-Carlo method 1015

http://dx.doi.org/10.1117/1.1483315
omis
Special Section On Tissue Polarimetry. J. Biomed. Opt., 7, 279(2002).

http://dx.doi.org/10.1007/s002459900057
omis
Hielscher A.H., Mourant J.R., Bigio I.J. Appl. Opt., 36, 125(1997)

http://dx.doi.org/10.1103/PhysRevB.40.9342
omis
MacKintosh F.C., Zhu J.X., Pine D.J., Weitz D.A. Phys. Rev. B,40 (13), 9342 (1989).

http://dx.doi.org/10.1103/PhysRevE.49.1767
omis
Bicout D., Brosseau C., Martinez A.S., Schmitt J.M. Phys. Rev.E, 49, 1767 (1994).

http://dx.doi.org/10.1088/0022-3727/38/15/012
omis
Ugryumova N., Attenburrow D.P., Winlove C.P., Matcher S.J.J. Phys. D: Appl. Phys., 38, 2612 (2005).

http://dx.doi.org/10.1016/0169-2607(95)01640-F
omis
Wang L., Jacques S.L., Zheng L. Computer Methods andPrograms in Biomedicine, 47 (2), 131 (1995).

http://dx.doi.org/10.1088/0031-9155/47/23/312
omis
Churmakov D.Y., Meglinski I.V., Greenhalgh D.A. Phys. Med.Biol., 47 (23), 4271 (2002).

http://dx.doi.org/10.1134/1.1781289
omis
Kuzmin V.L., Meglinski I.V. Opt. Spektrosk., 97, 108 (2004).

http://dx.doi.org/10.1098/rspa.2004.1369
omis
Meglinski I.V., Kuzmin V.L., Churmakov D.Y., Greenhalgh D.A.Proc. Roy. Soc. A, 461 (2053), 43 (2005).

http://dx.doi.org/10.1134/1.1914900
omis
Kuzmin V.L., Meglinski I.V., Churmakov D.Yu. Opt. Spektrosk.,98, 653 (2005).

http://dx.doi.org/10.1088/0150-536X/29/3/008
omis
Carlsson T.E., Nilsson B. J. Opt., 29, 146 (1998).

http://dx.doi.org/10.1109/2944.796348
omis
Schmitt J.M. IEEE J. Sel. Top. Quantum. Electron., 5, 1205(1999).

http://dx.doi.org/10.1364/OPEX.13.004420
omis
Ramella-Roman J.C., Prahl S.A., Jacques S.L. Opt. Express, 13,4420 (2005).

http://dx.doi.org/10.1007/s10043-995-0413-3
omis
Iwai T., Furukawa H., Asakura T. Opt. Rev., 2, 413 (1995).

http://dx.doi.org/10.1088/1464-4258/2/3/306
omis
Zimnyakov D.A., Sinichkin Y.P. J. Opt. A: Pure Appl. Opt., 2,200 (2000).

http://dx.doi.org/10.1088/0031-9155/42/7/015
omis
Schmitt J.M. Phys. Med. Biol., 42, 1427 (1997).

http://dx.doi.org/10.1364/AO.43.001628
omis
Lu Q., Gan X., Gu M., Luo Q. Appl. Opt., 43, 1628 (2004).


