
Abstract. A method describing the propagation of radiation
in concentrated dispersed media with optically soft particles is
developed. The results of analysis of the angular structure of
radiation scattered in the forward and backward semispheres
depending on the direction of layer illumination, its optical
thickness, concentration and the size of optically soft
particles, are presented. The radiation transfer theory is
used to describe the propagation of radiation. The radiation
transfer equation is solved by the doubling method with the
help of spline approximation averaged over the azimuth of
scattering indicatrix in a unit volume. The parameters of the
unit volume were determined by using the Mie theory and the
interference approximation taking into account the collective
scattering effects at a high concentration of particles.
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1. Introduction

Scattering of radiation by natural and artiécial media with
a high particle concentration has been drawing the
attention of researchers in recent years [1]. A rigorous
description of scattering in close-packed media requires the
use of the theory of multiple scattering of waves [2 ë 5].
There are a number of effects that cannot be described by
the conventional radiation transfer theory based on
summation of intensities. Because of the complexity and
cumbersomeness of the mathematical apparatus of the
multiple scattering theory, complete solutions can be
obtained in extremely rare situations. As a rule, publica-
tions devoted to analysis of the propagation of radiation in
close-packed media are conéned to an analysis of either the
attenuation of a directed radiation beam [6, 7] or the
angular structure of singly scattered radiation [8]. In most
cases, such investigations are based on the equations of
wave transport [9] and numerical simulation by the Monte
Carlo method [10].

We have proposed a model of radiation transport in a
layer of dispersed medium with a high concentration of
optically soft particles [11, 12]. This model can be used for

biological tissues, composite liquid crystal materials, poly-
mer-dispersed liquid crystal élms, liquated glasses, as well as
porous glasses and structures.

This research is a continuation of the investigations
started in [11, 12]. We shall present the results of analysis of
the angular structure of radiation scattered in the forward
and backward hemispheres, depending on the direction of
illumination of the layer, its optical thickness, concentration
and size of optically soft particles. During analysis, we took
into account the optical interaction of particles associated
with their spatial correlation and multiple scattering.

2. Model of radiation transport in a layer

Natural dispersed media with a high particle concentration
usually have a considerable optical thickness. Multiple
scattering effects should be taken into account during
analysis of the characteristics of transmitted and reêected
radiation.

Let an azimuthally symmetric wide radiation beam with
intensity I0 (Fig. 1) be incident at an angle y0 to the normal
of a layer of a scattering medium conéned from above and
below by planes z � 0 and z � z0. The scattering medium is
a matrix with suspended monodisperse particles with radius
Rp and a relative refractive index np. The refractive index nm
of the matrix is equal to the refractive index of the
surrounding medium and hence there are no reêections
at the boundaries. The radiation is scattered inside the layer,
is partially absorbed and emerges from the layer through
conéning surfaces.

In order to describe the propagation of radiation in the
layer, we use the radiation transfer equation (RTE)
[13 ë 17] which can be presented in the following form for
an azimuth-averaged scattered radiation intensity when the
layer is illuminated by a parallel radiation beam:
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Figure 1. Schematic structure of a light-scattering layer.
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where I (z, m) is the azimuth-averaged intensity of scattered
radiation propagating inwards along the z axis at an axial
angle y � arcos m to the direction of incident light; s and e
are the scattering and attenuation coefécients; m0 � cos y0;
p (m, m 0) is the azimuth-averaged phase function (redistrib-
ution function); p (cos g) is the phase function in a unit
volume, normalised by the condition

� 1
ÿ1 p(cos g) d cos g � 1;

cos g � mm 0 � (1ÿ m 2)1=2(1ÿ m 0 2)1=2 � cosj; g is the scat-
tering angle; m � cos y; m 0 � cos y 0; j is the azimuthal
scattering angle; I �1n and Iÿ2n are the intensities of the
directional radiation propagating into the layer, at the
upper and lower boundaries respectively.

We solve the RTE with the following boundary con-
ditions:

I�z � 0; m > 0� � I�z � 0; m < 0�,
(2)

I�z � z0; m < 0� � I�z � z0; m > 0�.

3. Calculation of the unit volume parameters

We begin the simulation of the parameters of close-packed
media with their calculation in the low-concentration limit.
In order to calculate the parameters of a unit volume in this
limit, we use the Mie theory for spherical particles [18 ë 20].

To calculate the attenuation coefécient and the phase
function of a medium with a high particle concentration, we
must solve the problem of diffraction of light from a many-
body system. A rigorous solution of this problem has not
been found so far, and hence various approximation
methods are used to calculate the attenuation coefécient
and the phase function. For weakly scattering particles, the
interference approximation is the most convenient [7 ë
10, 21 ë 24]. According to this approach, the expressions
for differential scattering coefécient sh(g), scattering coefé-
cient sh, and the attenuation coefécient eh for a medium
consisting of identical spherical particles have the form

sh�g� � ws0l pl�g�S3�g;w�, (3)

sh � ws0l u, (4)

eh � w�e0l ÿ s0l � s0l u�, (5)

where

u �
� p

0

pl�g�S3�g;w� sin gdg; (6)

w � Nv=V is the volume concentration of the particles, N is
the number of particles with volume v, contained in volume
V of the medium; sh(g) is the differential scattering
coefécient of a medium with a volume concentration w
of particles; sh and eh are the scattering and attenuation
coefécients of a medium with a volume concentration w of
particles; s0l � Ss=v; e0l � a0l � s0l � Se=v; a0l � Sa=v; Sa,
Ss and Se are the absorption, scattering and attenuation
cross sections of an individual particle; and pl(g) is the
phase function of an individual particle normalised by the
condition

� p
0 pl(g) sin gdg�1.

The parameter u characterises the degree of optical
interaction of particles. For independent scattering, its value
is equal to unity. The stronger the correlation of particles in
space, the larger the difference in the value of u from unity.
Figure 2 shows how the value of u changes with the radius
and concentration of uniform spherical particles for np �
1.05. With increasing concentration of particles, the value of
u decreases monotonically. The dependence on the radius,
however, is not monotonic. Figure 3 shows the dependence
of u on the refractive index and particle radius for w � 0:5.
One can see that the peak value of u increases with
decreasing the refractive index.

The structural factor S3(g,w) takes into account the
effect of light interference processes occurring in a system of
correlated scatterers. For a system of rigid spheres, the
structural factor is calculated in the Percus ëYevick approx-
imation [7 ë 10, 21, 22]:

S3�y;w� �
�
1ÿ 24w

� 1

0

c3�x;w�
sin yx

yx
x 2dx

�ÿ1
, (7)

where x � r=2Rp; r is the distance between two particles;

y � 8pRp

l
sin

g
2
; (8)

c3�x;w� � ÿaÿ bxÿ cx 3; (9)

a � �1� 2w�2
�1ÿ w�4 ; (10)
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Figure 2. Dependence of u on w and Rp=l for particles with np � 1:05.
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Figure 3. Dependence of u on np and Rp=l for w � 0:5.
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b � ÿ6w �1� 0:5w�2
�1ÿ w� 4 ; (11)

c � 0:5w
�1� 2w�2
�1ÿ w�4 . (12)

Figure 4 illustrates the variation of the phase function
upon a change in the concentration and size of the particles.
The intensity of forward-scattered radiation decreases with
increasing w and for quite high concentrations, the indica-
trix acquires a characteristic maximum for a nonzero
scattering angle. Upon an increase in the value of w, the
maximum is displaced towards large angles, while an
increase in the particle size displaces it towards small angles.
Note that for certain values of the particle radius and
concentration, the asymmetry g � � 1ÿ1 p(m)mdm of the indi-
catrix may be equal to zero, or even attain negative values
(Figs 5 and 6).

It follows from expressions (4) and (5) that in the
interference approximation, the absorption coefécient ah
is proportional to concentration (ah � eh ÿ sh � wa0l). The
optical thickness t0 of the layer, the single scattering albedo
L, and phase function p (g) of the unit volume are deéned by
the formulas

t0 � t0l�1ÿ Ll�1ÿ u��, (13)

L � Ll u

1ÿ Ll�1ÿ u� , (14)

p�g� � pl�g�S3�g�
u

, (15)

where t0l and Ll are the optical thickness of the layer and
the single scattering albedo in the independent scattering
approximation.

In order to solve the radiation transfer equation, we énd
the redistribution function

p�m; m 0� � 1

2p

� 2p

0

p
�
mm 0 �

��������������
1ÿ m 2

q ����������������
1ÿ m 0 2

q
cosj

�
dj. (16)

This function is usually calculated by using series expansion
in Legendre polynomials [14, 16]. For the phase functions
having regions with clearly manifested peaks, however,
several hundred terms in the expansion have to be taken
into account, and the problem of calculation of the
expansion coefécients pl becomes complicated. If the
number of expansion terms used in the calculations is
not sufécient, the function p(m, m 0) calculated from these
coefécients acquires `ripples' emerging as a result of
incorrectness of the problem of summation of Fourier
series with inaccurately deéned coefécients. In this case, the
redistribution function may acquire negative values.

In order to avoid these diféculties, we calculate p(m, m 0)
by using the spline approximation method [25, 26]. The use
of splines helps in reducing the ripples due to their extremal
properties (see [27], p. 147).

We use in the interval [ë1, 1] a mesh of nodes qi (i= 1,
2, . . . ,N) and approximate the indicatrix by a linear com-
bination of base splines of nth order and defect D � 1 [27]:
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Figure 4. Dependence of the phase function of a unit volume on the concentration w (a) and radius Rp of particles (b).
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p�x� �
XN�nÿ1
a�1

Ba�x�Sa, (17)

where x � cos g; Ba(x) are the base splines, and Sa is the
spline vector.

Concentrating the nodes in the region of fast variation of
the indicatrix, we can obtain a good approximation without
increasing the number of nodes inordinately. Substituting
relation (17) into (16), we obtain the following expression
for the redistribution function:

p�m; m 0� �
XN�nÿ1
a�1

Ba�m; m 0�Sa, (18)

where

Ba�m; m 0� �
1

2p

� 2p

0

Ba

�
mm 0 �

��������������
1ÿ m 2

q

�
����������������
1ÿ m 0 2

q
cosj

�
dj. (19)

While calculating Ba(m, m
0), we have made the following

change of variables:

x � mm 0 �
��������������
1ÿ m 2

q ����������������
1ÿ m 0 2

q
cosj.

In this case,

Ba�m; m 0� �
1

p

�M�m;m 0�

N�m;m 0�

Ba�x�
f�M�m; m 0� ÿ x��xÿN�m; m 0��g1=2

dx,

(20)

where

M�m; m 0� � mm 0 �
��������������
1ÿ m 2

p ����������������
1ÿ m 0 2

p
;

N�m; m 0� � mm 0 ÿ
��������������
1ÿ m 2

p ����������������
1ÿ m 0 2

p
.

To evaluate the integral in Eqn (20), we used the Gauss
quadratures [28] by introducing the Gaussian mesh

xk � mv�
��������������
1ÿ m 2

q ����������������
1ÿ m 0 2

q
cos

kÿ 0:5

Nx

p, (21)

k � 1; 2; . . . ;Nx

in the interval �M,N �, and replacing the integration by
summation:

Ba�m; m 0� �
1

Nx

XNx

k�1
Ba�xk�m; m 0��. (22)

The accuracy of this approximation technique was
veriéed by considering the example of a medium with
Heyney ëGreenstein phase function for which the redis-
tribution function is expressed through an elliptical integral
of second kind. The error in the calculation of the function
Ba(m, m

0) depends on the number of nodes Nx in the mesh xk
and is manifested in the errors of approximation of the
phase function. The approximation error is the highest for
m � m 0, and decreases rapidly with increasing the distance
from this point. The error increases with decreasing m 0. For
an average cosine of the scattering angle g < 0:96, the
maximum relative error does not exceed 2% [25]. The

highest stability to the variation of the medium parameters
is attained when splines of the érst order are used, i.e., if the
indicatrix is approximated by a broken line.

4. Angular structure of scattered radiation

A homogeneous layer of a scattering and absorbing
medium with nonreêective boundaries is characterised by
the luminance factors of backward [r(m, m 0)] and forward
[s(m, m 0)] diffusely scattered radiation, which are deéned by
the relations

I ÿ�z � 0; m� �
� 1

0

2r�m; m 0�m 0I0�m 0�dm 0, (23)

I ��z � z0; m� � exp

�
ÿ t0

m

�
I0�m�

�
� 1

0

2s�m; m 0�m 0I0�m 0�dm 0. (24)

Here, I0(m) is the intensity of radiation incident on the
layer, I �(z, m) � I(z, m > 0) and I ÿ(z, m) � I(z, m < 0) are
the intensities of backward and forward radiation emerging
from the layer.

The use of luminance factors in theoretical analysis and
computational practice stems from their symmetry proper-
ties: s(m, m 0) � s(m 0, m), r(m, m 0) � r(m 0, m).

In order to determine the luminance factors r(m, m 0) and
s(m, m 0), we used a calculation approach based on the layer
doubling technique [14, 16, 29 ë 31]. In this method, the
computations are started by choosing a layer of a quite
small optical thickness tm so that t0 � tm2

K, where K is an
integer. For a layer with an optical thickness tm, the
luminance factors are determined approximately. The
methods of specifying approximate values of r(m, m 0) and
s(m, m 0) (initialisation) for isotropic media are deéned in
[30]. In the present paper, we have used single scattering
initialisation. The luminance factors for a layer of doubled
thickness were used with the help of familiar relations for
layer doubling obtained from the balance equations at the
layer boundaries [8, 10, 23, 24]. The initial optical thickness
was assumed to be equal to tm � 10ÿ6, which ensured a
fairly high precision of the results of calculations.

Proceeding from expressions (23) and (24), we can write
the expressions for the reêection (R ) and transmission (T )
coefécients as functions of the cosine m0 of the angle of
incidence of radiation at the layer:

R�m0� � 2

� 1

0

r�m; m0�mdm, (25)

T�m0� � exp

�
ÿ t0
m0

�
� 2

� 1

0

s�m; m0�m dm. (26)

If irregular node meshes are used for discretisation of
layer summation equations, it becomes difécult to determine
the calculation errors for phase functions having segments
with sharply manifested peaks, but also for media with
highly elongated phase functions. We estimated the error
from the difference from unity of the sum of the coefécients
of reêection [R(m0)] and transmission [T(m0)] of radiation
incident at a layer with non-absorbing particles. We used a
150-point Gaussian quadrature on the interval �0, 1�. Cal-
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culations show that this difference is small. For example, for
a medium with particles having a refractive index np � 1:01
and an average radius �Rp � 3:41 mm, which was considered
in [5], the departure from unity does not exceed 0.001.

Let us consider a few results of numerical analysis. The
practice of analysis of light-scattering properties of dis-
persed layers in a close-packed state shows that the most
interesting variations of light-scattering properties are
observed for small particles with Rp=l � 0:05ÿ 0:5. In
this case, the scattering coefécient varies over a wide range,
especially if the concentration effects are taken into account.
Hence, the surface concentration of particles must be varied
over a wide range while considering the laws of multiple
scattering of radiation.

Figure 7 shows the phase functions of spherical particles
with Rp � 0:3 mm and np � 1:1 for l � 0:5 mm for
w � 0:001 [curve ( 1 ), practically independent scattering]
and w � 0:5 [curve ( 2 )]. Figures 8 and 9 show the angular
dependences of the luminance factors for layers with differ-
ent overlapping coefécients (the overlapping coefécient is
equal to the ratio of the area of projection of particle cross
section to the area S of the surface on which they are
located: Z � Np(Rp)

2=S ) for normal incidence of radiation.
Upon an increase in Z, and hence the optical thickness of the
layer (the optical thickness t0 is proportional to the over-
lapping coefécient Z), multiple scattering leads to smoothing
of singularities of the phase function (the peak on the
angular structure observed for small overlapping coefécients
disappears), and the angular structure of scattered radiation
does not change for quite large values of t0, which indicates
a transition to the thickness regime.

One can see from Fig. 9 that upon an increase in Z, the
angular dependence of forward-scattered radiation displays
a peak whose amplitude increases to its maximum value,
after which it disappears for large values of Z upon a
transition to the thickness regime. Such a behaviour is a
consequence of the characteristic peak in the phase function
of a close-packed medium. Note that similar peculiarities
may be displayed by the phase function of individual drops
in a liquid crystal with bipolar and radial structures [32].
Part of the radiation incident on the layer is scattered at an
angle y � gm (gm is the angle at which the peak of the phase
function is formed), while another part is scattered again at
an angle gm and propagates in the direction of the incident
light. Apparently, the formation of a peak in the forward
scattered radiation takes place in the case when the

contribution from double scattering to the total intensity
of scattered radiation is quite large. The intensity peak in the
region of small angles of scattering is observed experimen-
tally upon an increase in the particle concentration [5].

Angular dependences of the luminance factors s(m, m 0)
are shown in Fig. 10 for various angles of incidence. Upon
an increase in the incidence angle (decrease in m 0), the
characteristic peak in the angular dependence of scattered
radiation becomes blurred. Two peaks can be formed, the
separation between them increasing with decreasing m 0. An
analogous peak, but strictly in the backward direction, can
be formed if the phase function of the unit volume has a
peak at an angle of 908. Figure 11 shows the phase function
of a unit volume for such a medium. In the example
considered by us, the medium contains particles with
Rp � 0:199 mm and np � 1:05 (l � 0:5 mm), the volume
concentration of the particles being w � 0:5. For compar-
ison, Fig. 11 also shows the phase function of the unit
volume in the low concentration limit (w � 0:001). The
angular dependences of the luminance factors of such layers
with increasing thickness are shown in Fig. 12. A compar-
ison of Figs 12a and b shows that layers with a
concentration w � 0:5 are characterised by the formation
of a peak in the strictly backward direction. No such peak is
observed for low concentrations. Figure 13 shows the
angular dependences of the luminance factor r(m, m 0) of
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p

ÿ1:0 ÿ0:5 0 0.5 cos g
0

2

3

4

Figure 7. Phase functions of a unit volume of the medium formed by
particles with Rp � 0:3 mm, np � 1:1 (l � 0:5 mm) for w � 0:001 [curve
( 1 )] and 0.5 [curve ( 2 )].
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Figure 8. Luminance factors of a layer formed by particles with Rp �
0.3 mm, np � 1:1 (l � 0:5 mm) and w � 0:001, for Z � 0:49 [curve ( 1 )],
0.98 [curve ( 2 )], 3.91 [curve ( 3 )], 15.63 [curve ( 4 )], 62.5 [curve ( 5 )], and
500 [curve ( 6 )]; u � 0:16161, t0l � 131:26.
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Figure 9. Luminance factors of a layer formed by particles with Rp �
0.3 mm, np � 1:1 (l � 0:5 mm) and w � 0:5, for Z � 3:91 [curve ( 1 )], 7.81
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back-scattered radiation for different values of m 0 for the
same media. For low particle concentrations, the depend-
ences are smooth and nearly linear for m > 0:5. For high
concentrations, the presence of interference peaks leads to
sharp dips in the angular dependence of the back-scattered
radiation. If the peak in the phase function is not directed
strictly at an angle of 908 (Fig. 14), the peak in the
luminance factor is deviated from the strictly backward
direction (Fig. 15).

5. Conclusions

We have developed a method for describing the propaga-
tion of radiation in layers of a close-packed medium formed
by optically soft particles. It includes the Mie theory (for
describing the parameters of single scattering), interference
approximation (for describing the collective scattering

effects), and the radiation transfer theory (for describing
the light éeld in the multiple scattering mode).

A numerical calculation method based on the layer-
doubling technique and spline approximation of the phase
function approximation is proposed for solving the radia-
tion transfer equation in a high-concentration layer.
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( 5 )]; u � 0:0985, t0 � 23:94, w � 0:001 (a) and 0.5 (b).
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Figure 13. Angular dependences of the luminance factors r (m, m 0) of a
layer formed by particles with Rp � 0:199 mm, np � 1:05 (l � 0:5 mm)
and Z � 10000 for m 0 � 1 [curve ( 1 )], 0.838 [curve ( 2 )], 0.659 [curve
( 3 )], 0.557 [curve ( 4 )], and 0.211 [curve ( 5 )]; u � 0:0985, t0l � 239:4,
Z � 10000, w � 0:001 (a) and 0.5 (b).
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The variation of the angular structure of scattered
radiation is analysed for an azimuth-symmetric illumination
of the layer in a wide range of optical thicknesses. We have
determined the salient features of the angular structure of
the intensity of radiation scattered in the forward and
backward semispheres in dispersed layers the phase function
of whose unit volume has a typical interference peak at
nonzero scattering angles. For normal illumination, this
peak leads to the formation of a peak in the angular
structure of radiation scattered by the layer in the strictly
forward direction upon an increase in the optical thickness
of the layer. This peak is smoothed out upon a transition to
the thickness mode. The peak is blurred for a slanted
illumination. Two peaks whose separation increases with
the incidence angle can also be formed. For media in which
the phase function for a unit volume has a peak at an angle
of 908, the peak formed in the strictly forward direction
upon a normal incidence of radiation on the layer is
accompanied by a peak in the strictly backward direction
also. This peak is preserved upon an increase in the optical
thickness of the layer.
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Figure 14. Phase functions of a unit volume of the medium formed by
particles with np � 1:05 (l � 0:5 mm) and w � 0:6 for Rp � 0:19 [curve
( 1 )], 0.2072 [curve ( 2 )], and 0.2172 mm [curve ( 3 )].
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Figure 15. Angular dependences of the luminance factors r (y, y 0 � 0) of
a layer formed by particles with np � 1:05 (l � 0:5 mm), w � 0:6 and
Z � 10000 for Rp � 0:19 [curve ( 1 )], 0.2072 [curve ( 2 )], and 0.2172 mm
[curve ( 3 )].
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