
Abstract. A model of a multimode bipolarisation solid-state
laser with intracavity frequency doubling is developed. The
interaction of different longitudinal modes is described within
the framework of rate-equation approximation while the
interaction of each pair of orthogonally polarised modes with
identical longitudinal indices is described taking into account
the phase-sensitive interaction of these modes. Comparison
with the experimental data is performed.

Keywords: relaxation oscillations, spatial population-inversion gra-
tings, angular burning out of population inversion, nonlinear fre-
quency conversion, Hopf bifurcation, instability.

1. Introduction

It has been found in experimental studies of the polar-
isation dynamics of solid-state lasers (including ébre lasers)
that the spectra of intensity êuctuations of each polar-
isation mode of bipolarisation lasers (both multimode [1 ë 4]
and single longitudinal-mode lasers [5, 6]) contain several
resonance peaks. These peaks point to the existence of
several types of relaxation oscillations: high frequency
oscillations caused by in-phase oscillations in all the modes
and one or two types of polarisation oscillations caused by
competitive interaction of orthogonally polarised modes.
These types of relaxation oscillations have been observed in
each polarisation mode which is understood as an ensemble
of all longitudinal modes with the same polarisation. These
speciéc features of low-frequency polarisation dynamics are
well described by the model of longitudinally single-mode
bipolarisation lasers, which takes into account the phase-
sensitive interaction of orthogonally polarised modes [2, 5].
Although the simplest model of a bipolarisation laser
qualitatively agrees with the experimental results, the
question of how other longitudinal modes in the selected
polarisation mode, which are involved in lasing, can be
represented in the low-frequency dynamics, requires an
answer.

It was pointed out in [4] that involvement of a new mode
in lasing can be accompanied by the appearance of a
resonance peak in the spectrum of intensity êuctuations
of a separate polarisation mode. To answer the above
question, we developed a model of a bipolarisation class
B laser in which each polarisation mode consists of an
arbitrary number of longitudinal modes. In this case, it is
quite natural to describe the interaction of modes with
different longitudinal indices within the framework of rate-
equation approximation [7, 8]. At the same time, the
interaction of orthogonally polarised modes with the
same longitudinal spatial structure (with equal longitudinal
indices) will be described using the approach [5], which takes
into account the phase-sensitive interaction of these modes.

The experimental results of Ref. [4] in which the features
of the optical spectrum of a bipolarisation laser were
observed, served as an additional impetus to the develop-
ment of a model of a multimode bipolarisation laser. Along
with the `rarefaction' of the optical spectrum caused by the
inhomogeneous gain distribution along the resonator axis,
the generation of orthogonally polarised modes at different
longitudinal modes was observed in this paper. The
proposed model taking into account partial élling of the
laser cavity with the active medium [7, 8] allows one to
explain this peculiarity of the lasing spectrum of orthogo-
nally polarised modes.

2. Model of a multimode bipolarisation laser

When deriving equations describing the dynamics of a
multimode laser, it is necessary to expand the laser éeld in
the cavity modes. We will take into account the fact that
the éeld of each longitudinal mode consists of two
orthogonally polarised components:

Ej � �Ex
j U

x
j � E

y
j U

y
j � exp�iojt�� c.c., (1)

where E
x;y
j are slowly varying éeld amplitudes with

orthogonal polarisations of the jth longitudinal mode; oj

is the optical frequency of this mode. The eigenmodes have
the form

U �m�j �
���
2
p

e 0m cos kjz, m � x, y, (2)

where kj is the wave number of the jth longitudinal mode.
In the general case, eigenpolarisations are elliptical, there-
fore, expressions for their unit vectors e 0m can be written in
the form:
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e 0x � x 0 cos W� iy 0 sin W, (3)

e 0y � ix 0 sin W� y 0 cos W, (4)

where x 0 and y 0 are Cartesian unit vectors coinciding with
the orientation of principal axes of ellipses of the cavity
eigenpolarisations; and the parameter W determines the
degree e1;2 of ellipticity of polarisation modes:

e1;2 � j tan Wj2. (5)

We will assume that K longitudinal modes can be involved
in lasing. Then the laser éeld can be represented in the
form:

E �
XK
j�1

Ej . (6)

We will describe the orientation of active dipoles within
the assumptions made earlier in [5, 7, 8] taking the following
into account. In crystals, active ions occupy certain posi-
tions inside the elementary cell of the crystal lattice. In the
Nd :YAG crystal, there exist three such equally probable
positions (in the centre of each of three mutually orthogonal
faces of a cubic elementary cell [9]). In addition, in each of
these positions neodymium ions can be oriented with equal
probability along two orthogonal symmetry axes coinciding
with the face diagonals. In this connection, we can expect
that dipole moments of active ions will be oriented near
several (in the general case, up to six) selected directions in
space, preserving on the whole isotropic properties of the
crystal. Therefore, we assume for simplicity that all active
dipoles are linearly polarised and are randomly distributed
in the plane perpendicular to the laser axis. Then,

d 0
a;e �

da;e
jda;ej

� x 0 cosC� y 0 sinC, (7)

where da and de are the dipole moments of absorption and
emission transitions, respectively; the angle C varies from 0
to p. The linearly polarised pumping introduces additional
corrections to the homogeneous angular (orientation)
distribution of active dipoles of the absorption transition
f 0
or(C) � 1=p [3, 10, 11], which leads to the angular
dependence of the pump parameter A (the ratio of
unsaturated population inversion to its threshold value) [5]:

A � A0For�C�, (8)

where

For �
a� b cos 2�CÿCpump�
1� b cos 2�CÿCpump�

1

F 0
or

,

F 0
or �

1

p

� p

0

a� b cos 2�CÿCpump�
1� b cos 2�CÿCpump�

dC � 1ÿ 1ÿ a�����������
1� b
p ;

(9)

Cpump is the angle between the x axis and the pump electric
éeld vector (upon longitudinal pumping). Parameters a and
b determine the gain anisotropy, the parameter a intro-
duced phenomenologically in (9) corresponding to the
condition a5 b. These parameters are proportional to the
pump power. For low pump powers, the parameter b is

small and the gain anisotropy is maximal. An increase in
this parameter leads to a decrease in the effect of induced
anisotropy, and within the limit of high pump powers (as
was mentioned in [11]) the active medium becomes
isotropic.

In addition to the angular inhomogeneity of active
centre distribution For(C), under real conditions spatial
inhomogeneity of their distribution along the resonator axis
Fsp(z) also takes place, which we will take into account by
deriving equations in the form [7, 8]:

Fsp�z� � aL exp�ÿaz�=�1ÿ exp�ÿal ��; 04 z4 l,
0; l< z4L,

�
(10)

where a is the pump-absorption coefécient; L is the
resonator length; and l is the crystal length. Expression
(10) takes into account the exponential pump decay (a 6� 0)
along the crystal élling partially the laser cavity, which
corresponds to real experimental conditions.

Therefore, the interaction of bipolarisation laser éeld (6)
with the linearly polarised dipoles, which have the azimuthal
distribution For(C) (9) and the longitudinal spatial distri-
bution Fsp(z) (10) is described by a system of equations
[5, 7, 8]

dEx
k

dt
� G

2

�
�idf ÿ 1�Ex

k �
gk
Lp

� p

0

� L

0

Fsp�z�D�z;C��d 0
eU

x�
k �

��Ex
k �d 0�

e U x
k � � E

y
k �d 0�

e U y
k �
�
dzdC

�
,

dE
y
k

dt
� G

2

�
�ÿidfÿ1�Ey

k �
gk
Lp

� p

0

� L

0

Fsp�z�D�z;C� (11)

��d 0
eU

y�
k �
�
Ex
k �d 0�

e U x
k � � E

y
k �d 0�

e U y
k �
�
dzdC

�
,

qD
qt
�A0For�C� ÿD

�
1�

XK
j�1

gjjEx
j �d 0�

e U x
j � � Ey

j �d 0�
e U y

j �j2
�
,

where

gj � f1� ��rÿ j�Dÿ D0�2gÿ1, j � 1, ..., K; (12)

r is the number of the mode closest to the gain line centre;
D is the population inversion; G � 2k=gk; t � tgk;
2df � (o x

kÿ o y
k )=gk is the phase anisotropy of the cavity;

o x;y
k are the eigenfrequencies of orthogonally polarised

modes of the cavity; gk and k are the relaxation rates of the
population inversion and the éeld in the cavity, respectively;
D � (o x

k�1 ÿ o x
k �=g? � (o y

k�1 ÿ o y
k )=g? is the intermode

interval normalised to the half-width of the homogeneous
gain line g?; D0 � (o0 ÿ or)=g?; o0 is the gain line centre;
and or � (o x

r � o y
r )=2 is the frequency of the longitudinal

mode closest to the gain line centre. In the system of
equations (11), the interaction of different longitudinal
modes remains within the framework of rate-equation
approximation, while the interaction of orthogonally
polarised modes with the same spatial structure is phase
sensitive to the éelds of these modes.

The interaction of elliptically polarised radiation with
the ensemble of randomly oriented dipoles of the laser
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transition leads to the azimuthal inhomogeneous distribu-
tion of population inversion (the effect of angular burning
out of inversion):

D � D 0 � 2D c cos 2C� 2D s sin 2C� ::: . (13)

In calculations of each angular harmonic D �i� (i � 0, c, s) of
this distribution we retain only the spatially homogeneous
component and érst spatial harmonics (we neglect the
highest spatial harmonics):

D �i� � D
�i�
0 � 2

XK
j�1

D
�i�
j cos

2pqjz
L
� ::: , (14)

where qj is the number of half-waves of the jth mode ét on
the resonator length. As a result we obtain a system of
7K� 3 equations (in real variables):

dEx
k

dt
� G

2

��
idf � gk

�
D 0

0 �D c
0 cos 2W

�
XK
j�1

F sp
jkÿj j

ÿ
D 0

j �D c
j cos 2W

��ÿ e
XK
j�1

gjjEy
j j2 ÿ 1

�
Ex
k

� gk

�
D s

0 � iD c
0 sin 2W�

XK
j�1

F sp
jkÿj j

ÿ
D s

j � iD c
j sin 2W

��
Ey
k

�
,

dE
y
k

dt
� G

2

��
ÿ idf � gk

�
D 0

0 ÿD c
0 cos 2W

�
XK
j�1

F sp
jkÿj j

ÿ
D 0

j ÿD c
j cos 2W

��ÿ e
XK
j�1

gjjEx
j j2 ÿ 1

�
E

y
k

� gk

�
D s

0 ÿ iD c
0 sin 2W�

XK
j�1

F sp
jkÿj j

ÿ
D s

j ÿ iD c
j sin 2W

��
Ex
k

�
,

dD 0
0

dt
� A0 ÿD 0

0 ÿ
XK
j�1
�D 0

0 �D 0
j �gj

ÿjEx
j j2 � jEy

j j2
�

(15)

ÿ
XK
j�1

gj

�ÿ
D c

0 �D c
j

��ÿjEx
j j2 ÿ jEy

j j2
�
cos 2W� i

ÿ
Ex�
j E

y
j

ÿEx
j E

y�
j

�
sin 2W

�ÿ ÿD s
0 �D s

j

�ÿ
Ex�
j E

y
j � Ex

j E
y�
j

��
,

dD 0
k

dt
� ÿD 0

k ÿ
XK
j�1

�
1

2
D 0

0 �D 0
j

�
gj
ÿjEx

j j2 � jEy
j j2
�

ÿ
XK
j�1

gj

��
1

2
D c

0 �D c
j

��ÿjEx
j j2 ÿ jEy

j j2
�

cos 2W� i
ÿ
Ex�
j E

y
j

ÿEx
j E

y�
j

�
sin 2W

�ÿ � 1

2
D s

0 �D s
j

�ÿ
Ex�
j E

y
j � Ex

j E
y�
j

��
,

dD c
0

dt
� A c ÿD c

0 ÿ
XK
j�1
�D c

0 �D c
j �gj

ÿjEx
j j2 � jEy

j j2
�

ÿ 1

2

XK
j�1

ÿ
D 0

0 �D 0
j

�
gj

�ÿjEx
j j2 ÿ jEy

j j2
�
cos 2W� i

ÿ
Ex�
j E

y
j

ÿEx
j E

y�
j

�
sin 2W

�
,

dD c
k

dt
� ÿD c

k ÿ
XK
j�1

�
1

2
D c

0 �D c
j

�
gj
ÿjEx

j j2 � jEy
j j2
�

ÿ 1

2

XK
j�1

�
1

2
D 0

0 �D 0
j

�
gj

�ÿjEx
j j2 ÿ jEy

j j2
�
cos 2W� i

ÿ
Ex�
j E y

j

ÿEx
j E

y�
j

�
sin 2W

�
,

(15)

dD s
0

dt
� A s ÿD s

0 ÿ
XK
j�1
�D s

0 �D s
j �gj

ÿjEx
j j2 � jEy

j j2
�

ÿ 1

2

XK
j�1

ÿ
D 0

0 �D 0
j

�
gj
ÿ
Ex�
j E

y
j � Ex

j E
y�
j

�
,

dD s
k

dt
� ÿD s

k ÿ
XK
j�1

�
1

2
D s

0 �D s
j

�
gj
ÿjEx

j j2 � jEy
j j2
�

ÿ 1

2

XK
j�1

�
1

2
D 0

0 �D 0
j

�
gj
ÿ
Ex�
j E

y
j � Ex

j E
y�
j

�
.

The angular and spatial harmonics have the form:

D 0
0 �t� �

1

pL

� L

0

� p

0

D�z;C; t�dzdC,

D 0
k �t� �

1

pL

� L

0

� p

0

D�z;C; t� cos
2pqkz
L

dzdC,

D c
0 �t� �

1

pL

� L

0

� p

0

D�z;C; t� cos 2C dzdC,

D c
k�t� �

1

pL

� L

0

� p

0

D�z;C; t� cos
2pqkz
L

cos 2CdzdC,

D s
0�t� �

1

pL

� L

0

� p

0

D�z;C; t� sin 2C dzdC,

D s
k�t� �

1

pL

� L

0

� p

0

D�z;C; t� cos 2pqkz
L

sin 2C dzdC.

The expansion coefécients F sp
jkÿj j and angular harmonics

A c, A s of the pump parameter are determined by the
expressions

F sp
s �

1

1� q 2s 2

�
exp�al � ÿ cos�2psl=L�

exp�al � ÿ 1
� q 2s 2al

exp�al � ÿ 1

� sin�2psl=L�
2psl=L

�
, (16)

where s � jkÿ j j � 1, 2, ..., Kÿ 1; q � 2p=(al );
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A c � A0

p

� p

0

For�CÿCpump� cos 2C dC

� A0�1ÿ a� 2� bÿ 2
�����������
1� b
p

b�1� �����������
1� b
p ÿ a� cos 2Cpump,

(17)

A s � A0

p

� p

0

For�CÿCpump� sin 2CdC

� A0�1ÿ a� 2� bÿ 2
�����������
1� b
p

b�1� �����������
1� b
p ÿ a� sin 2Cpump.

To compare the results of numerical simulation with the
results of the experiment on observation of the instability of
stationary lasing upon intracavity frequency doubling under
phase-matching conditions of the 2nd type [4], we
introduced nonlinear losses responsible for nonlinear
frequency conversion [12, 13] in the érst two equations
for the system éelds (15). The parameter e is responsible for
the eféciency of this process.

3. Results of numerical simulation and their
comparison with the experimental results

The developed model can describe all the variety of
peculiarities of the low-frequency dynamics of solid-state
lasers pumped by linear polarised laser radiation. Figure 1
shows the dependence of the intensities of laser modes,
frequencies and decrements of relaxation oscillations on the
pump parameter A. For deéniteness we assumed in
calculations that K � 14, i.e. lasing is possible for 14

longitudinal modes in each polarisation mode. All the
region of bipolarisation lasing can be divided into three
regions corresponding to three regimes (Fig. 1c): monopo-
larisation (I), quasi-monopolarisation (II) and
bipolarisation (III) regimes. This division is determined
by the behaviour of all the relaxation oscillations, which
reêect the low-frequency dynamics of a multimode laser.
Each relaxation oscillation {O; d} has the frequency O and
the damping decrement d. One can distinguish three groups
in the spectrum of relaxation oscillations:

(i) In-phase relaxation oscillations {O1; d1}.
(ii) Groups of low-frequency relaxation oscillations

{O x
sp; d

x
sp} and {O y

sp; d
y
sp} caused by spatial burning out of

the population inversion and characterising the out-of-phase
dynamics of all longitudinal modes. The number of these
oscillations is determined by the number of x- and y-
polarised longitudinal modes.

(ii) Groups of relaxation oscillations {O2; d2}, {O3; d33}
and {O xy

p ; d xy
p } caused by polarisation burning out of the

population inversion and responsible for the out-of-phase
dynamics between orthogonally polarised modes, i.e. polar-
isation relaxation oscillations. The number of these
oscillations is determined by the number of pairs of
orthogonally polarised modes with the equal longitudinal
indices. These relaxation oscillations appear in region II,
where the weak polarisation mode is not detected yet
because of its low intensity.

The effect of induced gain anisotropy by linearly
polarised pump radiation is shown in Fig. 2. The behaviour
of polarisation modes is similar to their behaviour in the
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case of single-mode lasing [5, 6]; the intensities of orthog-
onally polarised modes change out of phase with changing
the orientation angleCpump of the pump polarisation. In this
case, the relaxation frequencies remain virtually constant. In
the absence of intracavity nonlinear frequency conversion
(e � 0), all the decrements also remain almost constant. The
conversion process (e 6� 0) leads to the dependence of
decrements d1, d2, d3 on Cpump (Fig. 2b), while the other
decrements remain virtually independent of the pump
polarisation orientation.

A special place in the group of polarisation relaxation
oscillations is taken by oscillations {O2; d2} and {O3; d3}.
They are responsible for out-of-phase oscillations of total
intensities of orthogonally polarised modes and are present
in the êuctuation spectra of total intensities of polarisation
modes in the form of resonance peaks at frequencies O2 and
O3 (Fig. 3). It is these oscillations that are observed in the
case of single longitudinal-mode lasing together with in-
phase relaxation oscillations {O1; d1}.

The introduction of nonlinear intracavity losses (e 6� 0)
caused by nonlinear frequency doubling leads to the Hopf
bifurcation at the frequency of one of the relaxation
oscillations ({O2; d2} or {O3; d3}) depending on the ratio
of polarisation mode intensities. At a large difference in the
intensities of polarisation modes, the Hopf bifurcation at

frequency O3 is observed (Fig. 4a); the smoothing of the
intensities leads to the Hopf bifurcation at frequency O2 (see
Fig. 3 and Fig. 4c). One can see from Figs 4b and d that
Hopf bifurcations at these relaxation oscillations have a
different character. In the instability region in these égures
(to the right of vertical dashed lines) maximum and
minimum values of the polarisation mode intensities are
shown. At the frequency O3, the Hopf bifurcation at the
point e �1�HB has a subcritical character: self-oscillations with
the énite amplitude appear above this point (Fig. 4b). One
can see from Fig. 4b that the transition of the bifurcation
point in the backward direction (curves with points D and H)
does not affect the nonstationary regime and only at the
point eB this regime disappears and the steady-state solution
appears.

Therefore, in the region eB < e < e �1�HB the bistable lasing
regime with the characteristic dependence of the result of the
numerical simulation on initial values is realised. In another
situation shown in Fig. 4d, the Hopf bifurcation of the
supercritical type is realised at the point e �2�HB at relaxation
frequency O2: the oscillation amplitude in the instability
region increases from zero as it moves away from the
bifurcation boundary.

Figure 3 demonstrates the supercritical character of
Hopf bifurcations in the spectra of intensity êuctuations
of an individual polarisation mode. At low eféciency of the
nonlinear frequency conversion, the intensity of laser
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radiation is stable and three resonance peaks at frequencies
O1, O2, and O3 of relaxation oscillations are observed in the
spectra of intensity êuctuations (Fig. 3a). Fluctuations at
the frequency of one of the polarisation relaxation oscil-
lations (O2) increase with increasing the eféciency of the
nonlinear conversion e. As a result, the resonance peak at
the frequency of the polarisation relaxation oscillation
becomes narrower and higher in amplitude, and above
the bifurcation point this is accompanied by the appearance
of many harmonics at the frequency of polarisation
relaxation oscillation in the noise spectrum (Fig. 3d).
This character of the instability development was also
observed in the experiment (Fig. 5) [4].

The developed model also allows one to explain the
peculiarities in the optical spectrum of a bipolarisation laser
observed in the experiment [4] (Fig. 6): along with the
`rarefaction' of the lasing spectrum, the generation of
orthogonally polarised components at different longitudinal
modes is also possible. The laser emits in the 1064-nm region
at three longitudinal modes (v1, v2, v3) with the same
polarisation (Fig. 6a) and at one longitudinal mode (v4)
with orthogonal polarisation (Fig. 6b). The wavelengths of
all the four oscillating modes are different; their frequency
splittings are: v2 ÿ v1 � 22Dv0, v3 ÿ v1 � 36Dv0, and
v4 ÿ v1 � 2Dv0, where Dv0 � c=(2L) is the interval between
adjacent longitudinal modes of the cavity. Other longitu-
dinal modes are suppressed due to etalon effects on different
surfaces of the cavity and due to the partial élling of the
cavity with the active medium [7, 14]. The radiation at the
doubled frequency (Fig. 6c) exhibits three spectral compo-
nents with frequencies v1 � v4, v2� v4, and v3� v4 obtained
during frequency summing of orthogonally polarised modes.

Figure 7 shows the result of numerical simulation of
multimode generation of orthogonally polarised modes at
different longitudinal modes, which qualitatively agree with
the experimental results (Fig. 6). It is necessary to emphasise
that we observe here regime II: in each of three longitudinal
modes, an almost monopolarisation lasing regime is realised
because the ratio of the intensities of orthogonally polarised
modes with equal longitudinal indices is of the order of

10ÿ3. In this equilibrium state the system has six relaxation
oscillations. Three of these oscillations are shown in Fig. 3.

4. Conclusions

The developed model can explain all the variety of
characteristic properties of the low-frequency dynamics of
solid-state lasers pumped by linearly polarised laser
radiation. The spectrum of relaxation oscillations contains
three groups of oscillations. The special place in the group
of low-frequency relaxation oscillations is occupied by
polarisation relaxation oscillations {O2; d2} and {O3; d3}.
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They are responsible for out-of-phase oscillations of the
total intensities of orthogonally polarised modes and are
observed in the form of resonance peaks in the êuctuation
spectrum of total intensities of polarisation modes at
frequencies O2 and O3. It has been shown that introduction
of nonlinear losses upon intracavity frequency doubling
leads to the Hopf bifurcation at the frequency of one of
relaxation oscillations ë O2 or O3. The groups of low-
frequency relaxation oscillations fO x

sp; d
x
spg, fO y

sp; d
y
spg, and

fO xy
p ; d xy

p g can be observed only in the spectrum of intensity
êuctuations of separate longitudinal modes and are not
observed in the êuctuation spectrum of total intensities.
The theoretical investigation of the dynamics of multimode
lasing of bipolarisation solid-state diode-pumped lasers
with the inhomogeneous distribution of the unsaturated
gain along the resonator is in qualitative agreement with the
experimental studies of these lasers [1 ë 4].
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