
Abstract. The spatial intensity distribution of radiation
propagating in semi-inénite directional coupler arrays with
different dependences of coupling constants on the ébre
number is studied.

Keywords: directional coupler, semi-inénite ébre array, propaga-
tion constant, coupling constant.

1. Introduction

Linear and nonlinear optical effects in directional couplers
representing ébre arrays attract great interest because they
can be used in ébreoptic communication lines and all-
optical data processing systems. In addition, ébre arrays, in
which each of the ébres is coupled with its nearest
neighbours, are examples of discrete optical systems
whose functional features have not been studied completely
so far. Fibre arrays proved to be very useful in the
development of semiconductor lasers [1 ë 3]. The properties
of light propagation in ébre arrays were studied theoret-
ically in a number of papers [4 ë 9]. It was shown in [10 ë 12]
that the inhomogeneous system of tunnel-coupled ébres is
characterised by the total internal reêection of light. A light
beam in such a system propagates along a wave-like spiral
trajectory. The problem of light propagation in a system of
tunnel-coupled ébres in which propagation constants chan-
ge linearly was considered in [13 ë 16]. Upon excitation of
one ébre in such structures, the oscillations of the beam
width are observed along the axis during light propagation.
Upon variations of the input intensity and phase, the effects
of switching, light localisation in several ébres, and control
of light propagation can be observed in nonlinear ébre
arrays [17 ë 20]. It was shown in [21, 22] that soliton pulses
can propagate in nonlinear ébre arrays.

A further study of the functional possibilities of ébre
arrays is of current interest. In this connection we note that
the properties of light propagation in couplers are different
for inénite, semi-inénite, and énite arrays. Below, we
present the results of our theoretical study of light prop-

agation in semi-inénite linear ébre arrays by the method of
coupled waves. This method is especially attractive because
it reduces the problem to a one-dimensional system of
coupled linear érst-order differential equations. An impor-
tant circumstance is that in the absence of absorption losses,
the coupling between neighbouring ébres is symmetric, i.e.
the coupling constants between the ith and jth ébres are
equal: kji � kij.

A complicated system of ébre arrays prevents the
obtaining of the general solution of the system of equations
describing light propagation for arbitrary relations between
the propagation constants of individual ébres and their
coupling constants. As for model systems, exact analytic
solutions can be obtained in some cases.

The inénite system of identical ébres was the érst system
for which the exact analytic solution of the system of
equations for coupled waves was obtained [4, 23]. The
number of model, exactly solvable systems can be consid-
erably increased in the case of semi-inénite arrays by using
the theory of orthogonal classical polynomials. Such sol-
utions are of interest because complicated arrays can
contain rather large parts in which coupling constants
have a certain dependence on the ébre number in the array.

In this paper, we obtained the exact solutions of
difference ë differential equations describing the spatial dis-
tribution of the éeld amplitude in each ébre of the semi-
inénite array of identical ébres. The arrays under study
differ only in the dependence of coupling constants between
adjacent ébres on the ébre number in the array. Although
the approach used in the paper is simpliéed, nevertheless it
predicted a number of qualitatively new effects having their
own scientiéc and practical signiécance.

The difference ë differential equations considered below
are also used, in particular, for solving the Schr�odinger
equation for multilevel equidistant systems excited by
resonance radiation [24 ë 28] and studying the time evolution
of electronic transitions between quantum dots [29, 30], and
other éelds of physics. Therefore, the solution of such
equations for a broad class of systems is undoubtedly of
interest.

2. Method of the problem solution

Consider a semi-inénite system of identical ébres charac-
terised by the same propagation constant b. We will
describe the stationary propagation of laser radiation in
each of the ébres by the system of difference ë differential
equations [4 ë 8, 23]
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i
dEn

dz
� bEn � knÿ1;nEnÿ1 � kn;n�1En�1 � 0;

(1)

n � 0; 1; 2; :::,

where n is the ébre number; En is the éeld amplitude of a
wave propagating in the nth ébre; knÿ1;n is the coupling
constant between the nÿ 1th and nth ébres; z is the
coordinate along the axis of each of the ébres measured
from the end of the corresponding ébre. We assume that all
the ébres are located in the same plane and the coupling
constants are knÿ1;n � kkn (n � 0; 1; 2), where k0 � 0,
k1 � 1, so that k0;1 � k. Particular systems will differ in
the dependence of the coupling constants kn on the ébre
number n. We will study below the dependence of the
propagation of laser radiation on the shape of the function
kn. By assuming in (1) that En � fn exp (ibz) and introducing
the variable x � kz, we obtain

i
dfn
dx
� kn fnÿ1 � kn�1 fn�1 � 0; n � 0; 1; 2; ::: : (2)

The boundary condition for system (2) in the case when
only one jth ébre is pumped to the end can be written in the
form

fn�x � 0� � dnj; (3)

where dnj is the Kronecker delta. The normalised radiation
intensity pn in the nth ébre is described by the expression

pn�x� � j fn�x�j2: (4)

The solution of the system of equations (2) for arbitrary
kn cannot be obtained. However, we can obtain the solution
of the problem for a broad class of functions kn. We will
seek the solution of equation (2) under condition (3) in the
form

fn�x� �
� b

a

s�y�Pj�y�
dj

Pn�y�
dn

exp�irxy�dy; (5)

where Pn(x) is the classical orthogonal polynomial with the
standardisation P0(x) � 1 and the norm dn deéned in the
interval [a, b] with the weight s(x), i.e.� b

a

s�x�Pn�x�Pm�x�dx � d 2
n dnm. (6)

By substituting (5) into (2), we arrive at the recurrence
relation

kn�1
Pn�1�x�
dn�1

� kn
Pnÿ1�x�
dnÿ1

� rx
Pn�x�
dn

; (7)

to which orthonormalised polynomial Pn(x)=dn satisfy. By
selecting different polynomials Pn(x), and thereby specify-
ing their weight s(x) and the interval [a, b], we obtain the
constant r and the functional dependence of the coupling
constant kn from the known expressions [31 ë 34]

r � k1
k0

d0
d1
; kn �

knÿ1
kn

dn
dnÿ1

r; (8)

where kn is the coefécient at the term xn of the polynomial.
Thus, we determine a particular system to which solution
(5) corresponds. By integrating (5), we obtain the explicit
solution fn(x) for the selected ébre system. Expression (5)
for x � 0 satisées boundary condition (3) due to the
orthonormality of classical polynomials with the weight
s(y):�b

a

s�y�Pj�y�
dj

Pn�y�
dn

dy � dn;j: (9)

Consider now particular models of semi-inénite arrays
which will be referred to by the name of a classical
polynomial giving the solution of the problem.

3. Chebyshev array of the I kind

Chebyshev polynomials of the I kind Tn(x), n � 0; 1; 2, ...,
are orthogonal in the interval ÿ14 x4 1 with the weight
s(x) � 1=

��������������
1ÿ x 2
p

and satisfy the recurrence relation
[31 ë 36]

Tn�1�x� � Tnÿ1�x� ÿ
2x

1� dn;0
Tn�x� � 0; n � 0; 1; 2; ::: : (10)

Here, T0(x) � 1. The norms of these polynomials are
d0 �

���
p
p

; dn �
��������
p=2

p
; n � 1; 2; 3; :::, and the coefécient

kn at xn is k0 = 1, kn = 2 nÿ1, n � 1; 2; 3::: : . Therefore,

r � k1
k0

d0
d1
�

���
2
p

;

kn �
knÿ1
kn

dn
dnÿ1

r � 1; n=1,
1=

���
2
p

; n=2, 3, ... .

�
(11)

By calculating integral (5) for the determined values of r
and kn and assuming that the ébre with the number
n � j � 0 is end-pumped (the boundary condition f njx�0 �
dn;0), we énd the solution of the system of equations (2) in
the form

fn�x� �
J0�

���
2
p

x�; n � 0;

in
���
2
p

Jn�
���
2
p

x�; n � 1; 2; 3; ::: ;

(
(12)

where Jn(x) is the Bessel function of the nth order [32 ë 37].
The normalised radiation intensity in each of the ébres is

pn�x� �
J 2
0 �

���
2
p

x�; n � 0;

2J 2
n �

���
2
p

x�; n � 1; 2; 3; ::: :

(
(13)

If the jth ébre is pumped ( fnjx�0 � dn;j), the solution for
the function fn(x) can be also easily found, and we obtain
the expressions

p0�x� � J 2
0 �

���
2
p

x�; j � 0; n � 0;

pn�x� � 2J 2
n �

���
2
p

x�; j � 0; n � 1; 2; 3; :::;

p0�x� � 2J 2
j �

���
2
p

x�; j 6� 0; n � 0; (14)

pn�x� � J 2
n�j�

���
2
p

x� � J 2
nÿj�

���
2
p

x� � 2�ÿ1� j�
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� Jn�j�
���
2
p

x�Jnÿj�
���
2
p

x�; j 6� 0; n5 1

for the radiation intensity in an arbitrary ébre.
Figure 1 shows the spatial distributions of radiation

intensity in the ébre array as functions of the normalised
coordinate x � kz (hereafter, the radiation intensity in a
ébre pumped to the end for x � 0 is unity). One can see that
the radiation intensity in the pumped ébre (n � 0) is an
oscillating and monotonically decreasing function of the
distance x (Fig. 1a). The radiation intensity in the pumped
ébre (n � 0) in nonzero at a large distance from the ébre
end. One can see from Fig. 1a that for x � 2:8 and 11.7, the
radiation intensity is p0 � 0:15 and 0.05, respectively. For
x4 1, the éeld intensity tends to zero proportionally to xÿ1.
The transfer of radiation to other ébres with n > 0 is also
observed. In this case, the higher is the ébre number n, i.e.
the farther the ébre is located from the end-pumped ébre,
the farther the érst maximum of the éeld intensity in the nth
ébre appears from the ébre end. The radiation intensity
maxima for x4 1 decrease proportionally to xÿ1.

The radiation transfer between ébres due to interaction
between them can be interpreted as the diffusion of
radiation into the inner regions of the array in the direction
perpendicular to the ébre axis. That is why the spatial
distribution of the light intensity in the ébre array has
generally a wave-like shape, with the amplitude decreasing
with distance, the crests of several érst waves being located
deeper and deeper along the x axis in the array with
increasing the ébre number n. The shape of this structure
is determined both by the effect of light propagation along
the ébre axis and the diffusion of light in the transverse
direction. Because the zero (n � 0) ébre is coupled only with
the érst one, whereas all other ébres interact with two
nearest neighbours, the wave as if reêected from the array
interface (zero ébre) due to diffusion and, by propagating
along the x axis, diffuses in the transverse direction. Near
the end of the array, an unperturbed region appears which
expands with increasing n.

Figures 1b, c show the spatial distributions of radiation
intensity in the array upon end pumping the éfth and tenth
ébres, respectively. One can see that the joint action of light
propagation and diffusion produces a complicated interfer-
ence structure of the spatial distribution with the ampliéed
higher-order maxima. For example, upon end pumping the
éfth ébre, a rapid transfer of radiation to the zero ébre
occurs and its intensity at the maximum is nonzero even at
the distance x ' 25ÿ 30. In addition, upon pumping the
éfth ébre, the érst two maxima in the 20th ébre are lower
than the next three maxima.

Upon end pumping the tenth ébre, the érst emission
maximum in the zero ébre is observed at x � 8. Then, the
intensity of maxima in the zero ébre monotonically
decreases with increasing x, but noticeably differs from
zero even at the distance x � 30, these maxima being more
distinct than those observed upon pumping the éfth and
zero ébres. One can also see that at the array interface in the
vicinity of the zero ébre for x > 0, a rather complicated
spatial structure of the intensity maxima and minima is
formed, which is produced by a wave reêected from the
array interface due to diffusion. In addition, radiation in the
pumped (tenth) ébre érst rapidly decreases with distance,
completely vanishes at x ' 9, and then again appears, and
the intensity of maxima in this ébre at large x (� 20 and
above) proves to be considerable. Note also that upon
pumping into the tenth ébre, the amplitude of the sixth
maximum in the 20th ébre is considerably greater than the
amplitudes of nearest maxima. In this case, an unperturbed
region is also observed on both sides of the end of the
pumped ébre, which expands with distance from the ébre.

4. Chebyshev array of the II kind

Chebyshev polynomials of the II kind Un(x), n � 0; 1; 2; :::;
are orthogonal in the interval ÿ14 x4 1 with the weight
s(x) �

��������������
1ÿ x 2
p

and satisfy the recurrence relation Un�1(x)
�Unÿ1(x)ÿ 2xUn(x) � 0. The norm of these polynomials is
dn �

��������
p=2

p
, the coefécient kn at x

n is 2n [31 ë 36]. According
to (8), we obtain r � 2 and kn � 1. Thus, this array is
characterised by the coupling constant which is the same
for all ébres, i.e. independent of n. According to (5), we can
obtain the solution for fn and then for the light intensity in
the nth ébre. By assuming that for x � 0 only the ébre with
n � 0 is pumped, i.e. the boundary conditions are

n
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Figure 1. Spatial distributions of the radiation intensity p in ébres in the
semi-inénite Chebyshev array of the I kind upon pumping the zero (a),
éfth (b), and tenth (c) ébres.
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fnjx�0 � dn;0, the solution of the system of equations (2) has,
according to (5), the form

fn�x� � in
n� 1

x
Jn�1�2x�: (15)

This means that the éeld amplitude in the nth ébre is an
oscillating monotonically decreasing function of distance.
For x!1, the éeld amplitude fn(x) tends to zero. The éeld
intensity pn(x) at an arbitrary point is described by the
expression

pn�x� �
�n� 1�2

x2
J 2
n�1�2x�: (16)

By assuming that pumping is performed to the end of the
jth ébre ( fnjx�0 � dn; j), we obtain

pn�x� � J 2
n�j�2�2x� � J 2

nÿj�2x�

� 2�ÿ1� jJn�j�2�2x�Jnÿj�2x�: (17)

From this, we énd for n � j 6� 0

pn�x� � J 2
0 �2x� � J 2

2�n�1��2x�

� 2�ÿ1� jJ0�2x�J2�n�1��2x�: (18)

Figure 2 presents the spatial distributions of the light
intensity in the Chebyshev array of the II kind upon end
pumping the zero, éfth, and tenth ébres, respectively.
Unlike the previous case, here radiation pumped to the
zero ébre is transferred very rapidly to neighbouring ébres,
so that the second maximum in the zero ébre for x ' 2
contains only 3% of the pumped intensity (Fig. 2a). This is
explained by the fact that for x4 1, the radiation intensity
decreases with increasing x much faster [pn(x) � xÿ3] than
in the Chebyshev array of the I kind, where pn(x) � xÿ1.
One can see from Fig. 2a that the stationary spatial
distribution of the light intensity exhibits several wave crests
with amplitudes rapidly decreasing with increasing coor-
dinate x. Radiation is rapidly transferred from the pumped
zero ébre to ébres with greater values of n, as if reêecting
from the array wall (i.e. from the zero ébre). The spatial
éeld structure is even more complicated upon pumping to
the end of the éfth (Fig. 2b) and tenth (Fig. 2c) ébres, which
is explained by the propagation and diffusion of radiation.
Upon pumping the éfth ébre, a small trough is observed for
large n after the érst two crests of the waves in the spatial
intensity distribution. The extension of this trough increases
upon pumping the tenth ébre, and a distinct crest is formed
behind it, which is followed by a short trough and several
crests with monotonically decreasing amplitudes. Note also
that upon pumping the éfth ébre, the éeld distribution in
the zero ébre drastically differs from that observed upon
pumping the zero ébre itself. In this case, the joint action of
radiation propagation and diffusion to the left with
reêection from the system wall gives rise to a complicated
interference structure of the spatial éeld distribution with
maxima and minima located at large distances from the
front end.

5. Hermitean array

Hermitean polynomials Hn(x) are orthogonal in the interval
(ÿ1;�1) with the weight s(x) � exp (ÿ x 2). The norm
and leading coefécient of polynomials are dn �������������������

p
p

2nn!
p

; kn � 2n, respectively [31 ë 36]. We énd from (8)
that r � ���

2
p

, and kn �
���
n
p

, and, according to (5), construct
the solution under the condition that the system is pumped
to the zero ébre ( fnjx�0 � dn;0):

fn�x� �
1������������������
p
p

2nn!
p �1

ÿ1
exp�ÿy 2�Hn�y� exp�i

���
2
p

xy�dy:(19)

The integral can be easily calculated to obtain

fn�x� �
inxn����
n!
p exp

�
ÿ x 2

2

�
: (20)

Then, the light intensity in the nth ébre is described by the
expression

p
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Figure 2. Spatial distributions of the radiation intensity p in ébres in the
semi-inénite Chebyshev array of the II kind upon end pumping the zero
(a), éfth (b), and tenth (c) ébres.
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pn�x� �
x 2n

n!
exp�ÿx2�: (21)

For the given n, the intensity maximum is located at the
point x � ���

n
p

and the maximum intensity in the nth ébre of
the array is

pn max �
nn exp�ÿn�

n!
:

When the system is pumped through the ith ébre, the
solution has the form

fn�x� � i nÿj
������
j !

n!

r
xnÿj exp

�
ÿ x 2

2

�
Lnÿj
j �x 2�; n5 j; (22)

fn�x� � i jÿn
������
n!

j !

s
x jÿn exp

�
ÿ x 2

2

�
Ljÿn
n �x 2�; n4 j; (23)

where Lm
n (x) is the Laguerre polynomial [31 ë 36]. By using

(4), (22), and (23), we can easily obtain the expression for
the radiation intensity pn(x). Figure 3a presents the spatial
distribution of the radiation intensity pn(x) according to
(21) upon pumping the zero ébre. One can see that
radiation is rapidly transferred to ébres with greater
numbers n with increasing x. The radiation propagation
and diffusion processes produce the spatial intensity
distribution in the form of a solitary wave-like proéle.
The maximum of this proéle from the ébre end increases
with increasing the ébre number n in the array.

Figures 3b, c presents éeld distributions upon pumping
the éfth and tenth ébres. One can see that, upon pumping
the ébre with the number j > 0, the éeld structure in ébres
with numbers n from zero to j is rather complicated. The
éeld distribution in the ébre with n � 0 is one pronounced
maximum at the point x � ��

j
p

and p0max � j j exp�ÿj�=j!.
The amplitude of this maximum decreases with increasing j
as p0max � jÿ1=2. As the ébre number n increases, the
number of maxima in the éeld distribution gradually
increases. This is caused by a complicated interference of
the waves propagating from the jth ébre towards the zero
ébre and the waves reêected from it. However, for n > j, the
number of maxima of the spatial éeld distribution is j� 1,
and, as follows from Figs 3b, c, is independent of n (upon
pumping the éfth and tenth ébres, 6 and 11 maxima of the
éeld intensity are formed, respectively, which are shifted to
greater n).

6. Legendre array

Legendre polynomials Pn(x), n � 0; 1; 2; :::, are orthogonal
in the interval ÿ14 x4 1 with the weight s(x) � 1 and
satisfy the recurrence relation (n� 1)Pn�1(x)� nPnÿ1(x)ÿ
(2n� 1)xPn(x) � 0. The norm of these polynomials is
dn �

����������������������
2=�2n� 1�p

and the leading coefécient is kn =
2nG�n� 1

2�=�
���
p
p

n!�. Then, r � ���
3
p

and kn �
���
3
p

n=
���������������
4n2 ÿ 1
p

.
As n increases, the coupling coefécient kn tends asymptoti-
cally to

���
3
p

=2. By assuming that only the zero ébre is
pumped ( fnjx�0 � dn;0), we obtain the light intensity in an
arbitrary ébre

pn�x� �
�2n� 1�p
2
���
3
p

x
J 2
n�1=2�

���
3
p

x�: (24)

Figure 4 shows the spatial intensity distribution, which is
quite similar to proéles presented in Fig. 2a. The radiation
intensity in the zero ébre rapidly decreases (proportionally
to xÿ2) with increasing x, so that only the érst two maxima
are pronounced. As x increases, radiation is rapidly trans-
ferred to ébres with large n.

7. Gegenbauer array

Ultraspherical Gegenbauer polynomials C l
n (x) (l > ÿ1=2;

n � 0; 1; 2; :::) are orthogonal in the interval ÿ14 x4 1
with the weight s(x) � (1ÿ x2) lÿ1=2. The norm of these
polynomials is

n
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Figure 3. Spatial distributions of the radiation intensity p in ébres in the
semi-inénite Hermitean array upon end pumping the zero (a), éfth (b),
and tenth (c) ébres.
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Figure 4. Spatial distribution of the radiation intensity p in ébres in the
semi-inénite Legendre array upon end pumping the zero ébre.
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dn �
� ���

p
p �2l�nG�l� 0:5�
�n� l�n!G�l�

�1=2
,

the coefécient kn � 2 n�l�n=n!, where (l)n is the Poch-
hammer symbol [27] and G is the gamma function. Then,
according to (8), r � �����������������

2�l� 1�p
and

kn �
�
n�n� 2lÿ 1��l� 1�
2�n� lÿ 1��n� l�

�1=2
:

The coupling constant kn asymptotically tends to the value
[(l� 1)=2�1=2 with increasing n. For the boundary con-
ditions fnjx�0 � dn0, the solution of Eqn (2) has the form

fn�x� � in2 lG�l�
�
l�n� l�

n!
�2l�n

�1=2 Jn�l� �����������������
2�l� 1�p

x�
� �����������������

2�l� 1�p
x�l ; (25)

and we obtain the light intensity in the nth ébre

pn�x� �
22l�G�l��2l�n� l��2l�n

n!

� 1

� �����������������
2�l� 1�p

x�2l J
2
n�l�

�����������������
2�l� 1�

p
x�: (26)

The one-parametric family of solutions (25) and (26)
with the parameter l for l � 0, 1/2, 1, ë1/2 and 1
transforms to the known solutions. For l � 0, the Gegen-
bauer polynomial transforms to the Chebyshev polynomial
of the I kind Tn(x) � (n=2� dn;0)� C 0

n (x); n � 0 1, 2, ...;
correspondingly, the coupling constant is kn � 1 for n � 1
and kn � 1=

���
2
p

for n � 2, 3,..., and solution (25) transforms
to (12). For l � 1=2, the Gegenbauer polynomials trans-
form to the Legendre polynomials Pn(x) � C1=2

n (x), while
solution (26) is reduced to expression (24). For l � 1,
ultraspherical polynomials transform to the Chebyshev
polynomials of the II kind C 1

n (x) � Un(x). In this case,
kn � 1 and solutions (25) and (26) transform to solutions
(15) and (16), respectively.

Consider the limit l!1. It follows from the deénition
of kn for the Gegenbauer array that liml!1 kn �

���
n
p

. By
using the asymptotics of the Bessel function Jn�l(

�����������������
2(l� 1)

p
�x) for large values of the order and argument [31]

Jn�l�
�����������������
2�l� 1�

p
x�l!1 !

� ���������������������l� 1�=2p
x� n�l exp�ÿx 2=2�

ln�1G�l�

and substituting the latter expression into (25), we obtain
(20).

For l � ÿ1=2, we obtain the known solution describing
the propagation of light in a directional coupler consisting
of two identical ébres [23]. In this case, kn � �n(nÿ
2)=(2nÿ 3)(2nÿ 1)�1=2, for which it follows that k1 � 1,
and k2 � 0 in this system. Upon pumping the zero ébre
(n � 0), light is transferred to the érst ébre (n � 1), but
coupling between the érst and second ébres is absent
because k2 � 0. Although the coupling constants kn for
n > 2 are nonzero, nevertheless because of successive
excitation transfer from one ébre to the adjacent ébre,
all ébres with n5 2 will not be excited and, therefore, the
features of light propagation in such a system are identical
to those for light propagation in a two-channel coupler.
Indeed, by substituting l � ÿ1=2 into solution (25) and
using relations (ÿ1)n � dn;0ÿdn;1; �(ÿ1=2)(nÿ 1=2)(ÿ1)n�1=2

� (dn;0 � dn;1)=2; and explicit expressions for the Bessel
function of the half-integer order, we obtain fn(x) �
in�dn;0 cos (x)� dn;1 sin (x)�, i.e. f0 � cos�x�, f1 � i sin (x), in
agreement with known results [23].

8. Conclusions

We have obtained exact analytic solutions for an inénite
system of difference ë differential equations describing the
stationary spatial distribution of the éeld amplitude and
intensities in each of the ébres of a semi-inénite planar
array of identical ébres with a certain dependence of
coupling constants between nearest neighbouring ébres on
their number in the array. The general property of all the
arrays studied is that after end pumping one of the array
ébres, radiation is rapidly transferred to ébres with greater
numbers n. The features of the spatial distribution of the
radiation éeld are explained by the radiation propagation
and diffusion across the array due to coupling between
adjacent ébres in the array.
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