
Abstract. Two ways of simulating statistically the prop-
agation of laser radiation in dispersive media by the Monte-
Carlo method are compared. The érst approach can be called
corpuscular because it is based on the calculation of random
photon trajectories, while the second one can be referred to as
the wave approach because it is based on the calculation of
characteristics of random wave éelds. It is shown that,
although these approaches are based on different physical
concepts of radiation scattering by particles, they yield almost
equivalent results for the intensity of a restricted beam in a
dispersive medium. However, there exist some differences.
The corpuscular Monte-Carlo method does not reproduce the
diffraction divergence of the beam, which can be taken into
account by introducing the diffraction factor. The wave
method does not consider backscattering, which corresponds
to the quasi-optical approximation.

Keywords: Monte-Carlo method, dispersive medium, corpuscular
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1. Introduction

The Monte-Carlo method (MCM) is used in the optics of
scattering media, as a rule, for obtaining and statistical
processing of the trajectories of many photons interacting
with optical inhomogeneities (particles) of a medium. Such
an approach, which had been érst developed in neutron
physics in calculations of reactors and then applied to
problems of atmospheric optics (see, for example, [1]), was
later used in the optics of biological tissues (see, for
example, [2]). At the same time, the MCM involves in a
broad sense a set of procedures for constructing ensembles
of random numbers and functions whose statistic moments

are the required quantities [3]. In the optics of random and
dispersive media, the statistic characteristics of a light éeld
can be determined both for ensembles of photon trajectories
and random waves (Fig. 1). Accordingly, the approach
considering radiation as a photon êux can be convention-
ally called the corpuscular MCM, whereas the approach
based on wave concepts can be called the wave MCM [4].

The corpuscular MCM allows one to study the prop-
agation of light both in weakly and strongly scattering
media, where the diffusion component of the light éeld
dominates.

The wave MCM can be applied to analyse the unidirec-
tional propagation of radiation, which can be described by
the Markovian process [5] by using the model of a stratiéed
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Figure 1. Schematic illustration of the corpuscular (a) and wave (b)
MCMs used for solving the problem of scattering of a restricted beam in
a dispersive medium. The scattering function s�y� is shown schematically
in the form of a multilobe indicatrix in the polar coordinate system.



medium. In the optics of random media, the stratiéed model
forms the basis of the local method of small perturbations
[6]. A random light éeld is formed in the wave MCM upon
its diffraction propagation through the sequence of screens
imitating perturbations of the light éeld caused by êuctua-
tions in the refractive index and scattering in the medium.
The wave model assumes that the wave passes successively
through the screens in the absence of backscattering from
particles.

In this paper, we perform a comparative analysis of the
corpuscular and wave Monte-Carlo methods by the example
of a linear problem of scattering of a restricted laser beam in
a dispersive medium. The similarity and difference of these
methods and regions of their applicability are discussed. The
analysis is performed in the scalar approximation.

2. Corpuscular and wave models of light
scattering in a dispersive medium

2.1 Scattering function

Monte-Carlo methods in the optics of dispersive media are
based on the uniéed concept of scattering and absorption of
radiation by an individual particle. The function s(y;j) of
light scattering by a particle (where y is the angle in the
scattering plane and j is the azimuthal angle), which is also
called the scattering indicatrix or phase function, depends
on the size parameter r � 2pR=l, where R is the particle
radius and l is the radiation wavelength. In many cases,
scattering in mutually perpendicular planes is statistically
independent, so that s(y;j) � s(y)s(j). If scattering is
symmetric with respect to the wave vector of the incident
wave, the scattering function depends only on the angle y,
while s(j) � 1=(2p). For r4 1, the scattering function s(y)
is strongly forward-elongated and scattered radiation is
localised within a narrow cone with the cone angle y � l=R
[7]. In this case, the radiation scattered during propagation
along restricted paths does not come out outside the laser
beam and the contribution of multiple scattering in the
propagation direction of the beam becomes signiécant.

The scattering indicatrix is also often characterised by
the mean cosine of the scattering angle or the anisotropy
factor g � hcos yi taking values from zero (completely
isotropic scattering by particles of radius much smaller
than the wavelength) to �1 (only forward scattering by
particles of radius greatly exceeding the wavelength). As the
size parameter r and anisotropy factor g decrease, the
intensity of the component scattered at large angles
increases and scattering becomes isotropic. In particular,
for r4 0:3 and g � 0, the scattering function s(y) can be
described in the Rayleigh approximation in which the
intensities of forward and backward scattered radiation
coincide [8].

2.2 Corpuscular Monte-Carlo method

The trajectory of a photon in the corpuscular method is a
sequence of random events of its free path between particles
and interaction events with the particles (Fig. 1a). In a
dispersive medium with the known concentration n of
particles, the attenuation coefécient a0 � ms � ma determines
the distribution function F(l ) for the random free path ~l of
the photon between particles and the particle albedo
A � ms=(ms � ma) ë the probability of photon scattering
by a particle, while the function s(y;j) of scattering by a

particle determines the probability density for random
deviation angles ~y and ~j of the photon trajectory after its
interaction with the particle. Here, ms and ma are the
scattering and absorption coefécients of the medium. The
angle of scattering ~y by a spherical particle can take values
in the interval 0ÿ p, so that the corpuscular model permits
the study of backward scattering.

The random trajectory of a photon in a scattering
medium is calculated as follows. By using a random number
generator, the realisation of the random free path ~l and new
coordinates of the interaction point with a particle are
determined from the known distribution function F(l ).
Then, a random event of interaction with the particle is
considered, which can be elastic and quasi-elastic scattering
or absorption. The scattering probability is equal to the
albedo A, and the absorption probability is 1ÿ A. If the
photon was not absorbed, the random scattering angles ~y
and ~j are calculated whose probability density is propor-
tional to the scattering function s(y;j). Then, the photon
free path ~l is determined again, the event of the photon
interaction with particles is considered, and so on until the
photon is either incident on a photodetector or goes away to
remote regions of the medium from which the probability of
its return to the detector is negligibly small.

In the corpuscular MCM, an ensemble of photons
frj; ~Nj(r)g is statistically processed (where j � 1, 2, ...,M is
the realisation number of a photon trajectory, M is the total
number of photons, rj are photon coordinates, and ~Nj(r) are
the distributions of their number depending on the coor-
dinate r in the éxed plane z), which allows one to determine
the parameters of radiation in a dispersive medium. Thus,
the mean number of photons h ~Nj(r; z)i is proportional to the
intensity distribution I(r; z) in the plane z. The propagation
of a restricted beam in a dispersive medium is studied by
specifying the photon distribution N0(r; z � 0) in their start
plane z � 0, which is proportional to the initial intensity
proéle I(r; z � 0) of the beam (Fig. 1a). In [9], the photon
distribution N0(r; z � 0) was assumed proportional to the
beam intensity I(r; z � 0) measured at the laser system
output, which made it possible to reproduce laboratory
experimental conditions by using the MCM. The authors of
[9] obtained good agreement between calculated and exper-
imental object images in a dispersive medium.

The corpuscular model operating with the number of
photons determining the radiation intensity neglects phase
relations for a propagating wave. As a result, this model
does not describe the diffraction divergence of the beam as a
whole but reproduces the diffraction of light from an
individual particle. At the same time, the phase shift for
the scattered component was determined in a number of
papers (see, for example, [10]) where each photon was
related to a hypothetic plane wave propagating between
particles. Such an approach allows one to use the corpus-
cular MCM for simulating the formation of heterodyne and
Doppler signals in coherent measurement systems, for
example, in systems of optical coherent tomography of
dispersive media and its Doppler variant [11, 12]. To obtain
statistically reliable results for scattering media in the
corpuscular MCM, an ensemble is needed containing, as
a rule, M � � N0(r; z � 0)d2r � 106 ÿ 108 photon trajecto-
ries. To accelerate the divergence of the method, photons are
used with the `weight' multiplied by A (A4 1) during each
collision with a particle [13]. The initial `weight' of each
photon is unity, and a photon whose `weight' achieves a
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certain threshold value, for example, 0.0001 is assumed
absorbed. It is assumed that the contribution of photons
with a lower `weight' is insigniécant.

2.3 Wave Monte-Carlo method

The wave model describes multiple scattering of the light
éeld by particles. In this model of a dispersive medium, a
light wave propagates successively through a chain of
screens in which particles are located (Fig. 1b). The wave is
scattered by particles on screens and diffracts freely
between the screens in the absence of particles [14].
Particles are distributed randomly with the uniform density
in the screen plane, their number being proportional to the
concentration n, the screen area S, and the distance Dz
between the screens. In this case, the number of particles
with a radius R in a polydisperse medium is speciéed by the
size distribution function G(R). The amplitude and phase of
a wave scattered by a particle at angles y and j are
determined and can be calculated based on the scattering
function s(y;j). Due to the interference of the unperturbed
component and component scattered by a set of randomly
distributed particles, the wave scattered from the screen
becomes stochastic with random variations in the amplitude
and phase. Thus, the screen reproduces the diffraction of
the wave by a set of randomly distributed particles on the
screen.

Free diffraction between screens is considered in the
Fresnel approximation [8]. The calculation of the wave
propagation through a chain of scattering screens gives the
complex amplitude of the random light éeld ~Ej(r; z) in a
éxed plane z. The ensemble of such éelds f ~Ej(r; z)g (where
j � 1, 2, ... ,M) found for statistically independent screen
chains allows one to determine the statistical characteristics
of the light éeld upon multiple scattering in a dispersive
medium.

An individual éeld realisation ~Ej(r; z) obtained for a
chain of scattering screens has a simple physical analogy.
The éeld ~Ej(r; z) is formed after multiple scattering from a
chain of many screens and is calculated by averaging
statistically the contribution of scattering by many ran-
domly distributed particles. The physical realisation of the
éeld ~Ej(r; z) is similar to the detection of the amplitude and
phase of the light éeld in the detection plane at a low
exposure. In this case, the dispersive medium can be
considered stationary during the detection time. For a
dynamic dispersive medium with known microphysical
parameters, the concentration n, and the size distribution
function G(R) of particles, the determination of the ensem-
ble of particles f ~Ej(r; z)g on statistically independent screen
chains is equivalent to the detection at a long exposure
during which a random distribution of particles in the
medium frequently changes. The ensemble of éelds corre-
sponds to a énite sampling, for example, during prolonged
measurements of the light éeld in the atmospheric aerosol,
aqueous hydrosols or in measurements in many stationary
media with identical microphysical parameters.

The stratiéed model of wave scattering in a dispersive
medium is the development of models of phase screens
describing the propagation of radiation in a continuous
random medium [15 ë 17]. The wave MCM developed in [14]
was used in the optics of atmospheric aerosols for numerical
studies of the inêuence of coherent scattering in an aerosol
on the formation of élaments in a high-power laser pulse
propagating in atmospheric clouds and drizzle [18, 19].

3. Propagation of a light beam in a dispersive
medium

3.1 Approximation of the scattering function

We compared the corpuscular and wave MCMs by the
example of a linear problem of propagation of a light beam
in a monodisperse aqueous aerosol.

A collimated axially symmetric beam at a wavelength of
0.8 mm with the Gaussian intensity proéle

I�r; z � 0� � I0 exp

�
ÿ r 2

a 2
0

�
(1)

was considered, where I0 is the axial intensity of the beam
and a0 is the beam radius at the eÿ1 level.

The absorption coefécient of an aqueous aerosol at
0.8 mm is negligibly small [20], and a change in the beam
intensity in the aerosol is determined by scattering by
particles and diffraction. The scattering function is obtained
by the method of anomalous diffraction, which takes into
account only the phase shift upon propagation of the wave
through a particle without refraction on its boundaries
[21, 22]. This method, proposed for `soft' particles with
the relative refractive index np=n0 (where n0 is the refractive
index of the environment) close to unity, can be also applied
for aqueous particles with np=n0 � 1:33 [23].

Figure 2 shows scattering functions s(y) for a spherical
particle of radius R � 15 and 2 mm calculated by the method
of anomalous diffraction and using the Mie theory [8, 21].
One can see that although the method of anomalous
diffraction is approximate, the scattering functions s(y)
obtained by this method are close to those calculated by
using the exact Mie theory. For particles of a greater radius
(15 mm), the angular width of the central lobe of the
scattering diagram is smaller, while the relative intensity
of radiation scattered at the angle s(y) is greater than these
quantities for particles of a smaller radius (2 mm). In this
case, radiation is scattered by particles mainly to the front
hemisphere, while the intensity of radiation scattered into
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Figure 2. Normalised scattering functions s�y� for radiation at a
wavelength of 0.8 mm for spherical aqueous particles of radius R � 2
( 1, 2 ) and 15 mm ( 3, 4 ) calculated by the method of anomalous
diffraction ( 1, 3 ) and using the Mie theory ( 2, 4 ). The arrows indicate
maximal angles used in calculations of the intensity distribution in the
wave MCM.
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the side lobes of the scattering diagram is much lower than
that scattered to the central lobe for y � 0. The radiation
power scattered into the central and érst side lobes of the
function s(y) for a particle of radius R � 15 mm, i.e. at
scattering angles y4 3:58 amounts to 46% of the total
scattered radiation. For a particle of radius R � 2 mm, the
relative radiation power scattered into the central lobe for
y4 178 is 67%.

The corpuscular and wave MCMs simulate the prop-
agation of a light beam in a dispersive medium in the
anomalous diffraction approximation taking into account
only the contribution of radiation scattered at angles
y4 3:58 for particles of radius 15 mm and angles y4 178
for particles of radius R � 2 mm. Radiation scattered at
greater angles was interpreted as attenuation and its power
was equated to losses of the beam power upon scattering by
particles. In the corpuscular method, this corresponded to
the albedo A � 0:46 and 0.67 for particles of radius 15 and
2 mm, respectively.

3.2 Statistical ensembles in Monte-Carlo methods

In the corpuscular MCM, the trajectories of `weighted'
photons were calculated, the total number of photons in a
beam being 107. To reproduce the intensity proéle (1) of the
incident beam, the distance from its centre to a random
entrance point of each photon to a medium was determined
by the corresponding Gaussian distribution. The azimuthal
distribution of photons with respect to the beam centre was
assumed uniform. The average number of photons per
circular region of area 2prhr (where hr is the ring width)
decreased according to (1) and was 102, in particular, for
r � 3a0 at the beam periphery. For such a number of
photons, the relative deviation of the results of statistical
averaging in the MCM from the mathematical expectation
for the beam intensity did not exceed 2%.

In the wave MCM, the stratiéed model of a dispersive
medium with a chain of aerosol screens separated by a
distance of 20 cm was used. For the concentration
n � 50 cmÿ3, more than 3000 particles were contained
within a circle of radius r � 3a0 on an aerosol screen,
which mainly determined the scattering of a beam. More
than 50 aerosol screens with statistically independent
distributions of particles were located on paths under study.
This provided the statistical averaging of realisations of the
light éeld during propagation of the beam to the detection
plane. The beam intensity proéle was determined for an
ensemble of M � 50 realisations, each of them being
obtained for statistically independent chains of aerosol
screens.

3.3 Beam proéle in monodisperse aerosol

We considered the propagation of a beam of radius
a0 � 3 mm in monodisperse aerosol with particles of
radii 15 and 2 mm and concentrations n � 50 and
2010 cmÿ3, respectively. These values of concentrations
were selected to provide the same attenuation coefécients
for particles with these radii. For these parameters of the
medium, the scattering coefécient ms was 0.0724 mÿ1, which
corresponds to the photon mean free path l � 13:8 mm.
The photon transport path l � is 94 and 70 m for a medium
containing particles of radius 15 and 2 mm, respectively.
The length l � determines the distance at which the
propagation direction of a photon is completely rando-
mised (the photon `forgets' its initial direction) and can be

calculated from the expression l � � � ms(1ÿ g)� ma�ÿ1. The
intensity proéles I(r) obtained by the MCM for a beam in
an aerosol with particles of radius 15 mm at distances
z � 10 and 30 m are presented in Fig. 3. The root-mean-
square deviation for this ensemble is �1% for the wave
MCM and varies from 0.5% in the axial region to 2% at
the beam periphery for the corpuscular MCM. One can see
that for z � 10 m the intensity proéles I(r) obtained by both
these methods virtually coincide. However, the intensity I(r)
at a distance of 30 m calculated by the corpuscular method
exceeds that calculated by the wave method. This is
explained by the fact that the corpuscular method does
not reproduce the diffraction divergence of a restricted
beam. The intensity I(r; z) of a collimated Gaussian beam
changes upon diffraction as [24]

I�r; z� � I0

1� �z=Ld�2
exp

�
ÿ r 2

a 2
0

�
1� �z=Ld�2

��. (2)

The diffraction length Ld � 2pa 2
0 =l for such a beam of

radius a0 � 3 mm is 70.68 m. The diffraction decrease in the
beam intensity at a distance of z � 10 m does not exceed
2%. At a distance of z � 30 m, this decrease is 15%, which
coincides with the relative deviation of results obtained by
the corpuscular and wave methods.

The systematic error of the corpuscular MCM in the
analysis of the beam scattering under diffraction conditions
is clearly illustrated in Fig. 4 where the intensity proéles are
presented for beams of radius a0 � 3 and 1.5 mm. In
corpuscular MCM calculations, the beam radius remains
constant during the beam propagation [a(z) � a0] and the
change in the axial intensity I(0; z) of the beam with the
propagation distance is independent of the initial radius a0
of the beam. At the same time, for a0 � 1:5 mm, diffraction
causes a considerable redistribution of the radiation inten-
sity in the beam cross section, resulting in a decrease in the
axial intensity and an increase in the beam radius. The
systematic error of the corpuscular method in the analysis of
the propagation of a restricted beam in a dispersive medium
can be excluded by multiplying the beam proéle obtained by
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Figure 3. Intensity proéles I�r� of a collimated radiation beam of radius
a0 � 3 mm at a wavelength of 0.8 mm propagating in monodisperse
aerosol with particles of radius R � 15 mm and concentration n � 50
cmÿ3 at distances z � 10 ( 1, 2 ) and 30 m ( 3, 4 ) calculated by the
corpuscular ( 1, 3 ) and wave ( 2, 4 ) methods.
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this method by the diffraction factor I(r; z)=I0 determining
the relative change in the intensity caused by diffraction [see
expression (2)]. This is possible due to the multiplicativity of
scattering and diffraction processes in a dispersive medium.
Note that the stratiéed model used in the wave MCM is
based on the multiplicativity of radiation scattering and
diffraction.

It is interesting to compare the MCM results with the
dependence determined by the Bouguer law describing the
attenuation of a plane wave in a dispersive medium [23]:

IB�z� � I�0� exp�ÿt�, (3)

where t � a0z is the optical thickness of the dispersive
medium at a distance of z. The attenuation (a0) and
scattering (ms) coefécients in a medium with absorbing
particles coincide and are equal to

ms � a0 � KppR
2n (4)

for a monodisperse aerosol [21], where Kp is the scattering
factor for an aqueous spherical particle depending on its
radius and the radiation wavelength [25]. The intensity
proéles I(r; z) of a collimated beam with the initial Gaussian
proéle (1) calculated by the Bouguer law (3) coincide with
the proéle obtained by the corpuscular MCM but differ
from proéles obtained by the wave MCM because
expression (3) neglects diffraction.

3.4 Inêuence of the particle size and scattering function
on the beam proéle

The angular width of the scattering function increases with
decreasing the particle size [21, 22]. However, upon
propagation of a restricted light beam in a dispersive
medium with particles of radius much smaller than the
wavelength, the scattering function weakly affects the beam
intensity proéle. The wave MCM calculations of the beam
propagation in a monodisperse medium containing particles
of radii 15 and 2 mm have shown that the intensity proéle
for the same optical thickness t of the medium is
independent of the particle radius.

The inêuence of different approximations of the scatter-
ing function of particles on the beam proéle was studied
only by the corpuscular MCM describing multiple scattering
at large angles and, in particular, scattering into a rear
hemisphere. Analysis performed for a medium with particles
of radii 15 and 2 mm showed that the consideration of
scattering into the rear hemisphere by using the Mie
scattering function did not change the beam intensity proéle
obtained in the anomalous diffraction approximation taking
into account all the lobes of the scattering diagram despite
the fact that in the latter case only scattering into the front
hemisphere was considered. The error of measuring the
beam intensity by neglecting the side lobes of the scattering
diagram does not exceed 2%. It was also shown by using
the corpuscular MCM that due to a smaller width of the
scattering function of large particles, the beam intensity in a
medium with particles of radius 15 mm was higher by 2%
than that for particles of radius 2 mm. The inêuence of
different approximations for the scattering function of
particles in a polydisperse medium was studied in [26].

4. Conclusions

The corpuscular and wave MCMs are identical methods for
statistical studies of the propagation of radiation multiply
scattered in dispersive media. Despite different physical
concepts of radiation scattering by a set of particles, both
these methods give equivalent results by analysing the
intensity of a beam propagating in a dispersive medium.
The corpuscular MCM does not describe the diffraction
divergence of a restricted beam, which can be taken into
account by introducing the diffraction factor. The wave
MCM does not describe backscattering, which for the size
parameter r > 1 does not result in considerable errors in
the description of directional radiation and corresponds to
the approximation of slowly varying amplitudes. The wave
MCM is intended for solving the problems of nonlinear
statistical optics, while the corpuscular MCM can be used
for studying the propagation of low-intense radiation in
random media.

We have presented in this paper the results of analysis
performed in the scalar approximation. To take into
account the depolarisation of radiation upon multiple
scattering by particles in a dispersive medium, it is necessary
to substantiate additionally the models used above.
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