
Abstract. Self-induced transparency is theoretically studied
in the system of quantum transitions whose frequencies differ
due to the isotope shift caused by differences in the mass,
shape, and shell structure of atomic nuclei. In the case of
good mutual resolution of the spectral lines of different
isotopes, only one component of the mixture is in resonance
with the pulse éeld, while the rest of the components interact
with the pulse under quasi-resonance conditions. This circum-
stance determines the speciéc features of the effect in
heterogeneous media. The conditions for realisation of self-
focusing and quasi-channeling are found taking into account
transverse perturbations. The latter regime is characterised
by a change in the shape of the propagating pulse whose
transverse size remains invariable.
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1. Introduction

The resonance effect of self-induced transparency (SIT) has
been attracting the attention of researchers from the time of
its discovery [1, 2] till now [3 ë 5]. The SIT is very sensitive
to the detuning D � o0 ÿ o of the carrier frequency o of a
light pulse from the central frequency o0 of a resonance
atomic transition. This is especially pronounced in media
with a small inhomogeneous broadening when the corre-
sponding relaxation time T �2 greatly exceeds the optical
pulse duration tp. If jDj > 1=T �2 and 1=tp, atoms in the
medium are excited weaker and slowing down of the pulse
velocity occurs weaker than in the opposite case. In
addition, the tuning value and sign play an important
role in the transverse dynamics of the pulse [6]. Thus, when
D < 0, the pulse propagation in an equilibrium medium is
accompanied by its self-focusing, whereas for D > 0, the
pulse defocusing occurs [7, 8].

The SIT effect has been studied in detail both in
homogeneous media and media with resonance quantum
transitions, which differ from each other in some param-
eters. Thus, the propagation of laser pulses in the system of
quantum transitions with equal frequencies but different

matrix elements of dipole moments was studied in papers
[9, 10] where many nonlinear regimes of the SIT develop-
ment, in particular, chaotic regimes were observed. The
passage from one regime to another was achieved by
changing the relative concentrations of different compo-
nents of the mixture.

The heterogeneous nature of resonance media introduces
considerable speciéc features in collective emission at
initially inverted quantum transitions [11]. This concerns
to a great extent the situation when atoms of different types
are inhomogeneously spatially distributed [12]. A rigid
correlation between the type of spatial distribution of atoms
and the degree of their initial excitation, on the one hand,
and parameters of the emitted pulses, on the other, allows
the control of the collective emission process.

In a gas mixture of isotopes emitting narrow spectral
lines, only atoms of one of the isotopes can be exactly
resonant with the laser pulse éeld, which is caused by the
isotope shift [13 ë 15]. This shift is especially large for the
atoms of light (the nuclear mass number A � 10) and heavy
(A � 100) elements. In the érst case, the isotope shift is
caused by the difference in nuclear masses of the corre-
sponding isotopes, while in the second one ë by the
difference in their size and distribution of intranuclear
charges [13 ë 15]. The relative isotope shifts jDo0=o0j
achieve �10ÿ5 ÿ 10ÿ4 [13]. By taking o0 � 1015 for the
visible range, we obtain Do0 � 1011 sÿ1. For tp � 0:1 ns and
T �2 � 1 ns, this value of Do0 is sufécient for selective
excitation of atoms of various isotopes.

This selectivity should eféciently affect the differences in
the delay times upon the propagation of pulses resonantly
tuned to the atomic frequencies of various isotopes, which
can give information, for example, on the partial concen-
trations of isotopes in the isotopic mixture. In addition, as
pointed out above, the type of the transverse dynamics of
SIT pulses should depend on these tunings and relative
concentrations of isotopes. As a result, a competition
between self-focusing and defocusing can appear because
the signs of the resonance detuning for different isotopes can
be different. Here, the situation is completely opposite to
that considered in [9, 10] in the sense that quantum
transitions for different components of the mixture differ
only in frequency but have almost identical matrix elements
of the dipole moments (see below).

Note that, generally speaking, the isotope scatter of
quantum transition frequencies cannot be taken into
account by considering an arbitrary inhomogeneously
broadened absorption line. The inhomogeneous broadening
caused by the Doppler effect has the statistical nature,

S.V. Sazonov Russian Research Centre `Kurchatov Institute', pl. akad.
Kurchatova 1, 123182 Moscow, Russia; e-mail: barab@newmail.ru

Received 25 April 2006; revision received 6 August 2006
Kvantovaya Elektronika 37 (1) 29 ë 35 (2007)
Translated by M.N. Sapozhnikov

PACSnumbers:42.50.Gy; 42.65.Tg; 42.81.DpNONLINEAR OPTICAL PHENOMENA

DOI:10.1070/QE2007v037n01ABEH013194

Self-induced transparency in a heterogeneous isotopic mixture

S.V. Sazonov

138/194 ëMBë 13/iii-07 ë SVERKA ë 7 ÒÑÎÑÔ ÍÑÏÒ. å 3
Quantum Electronics 37 (1) 29 ë 35 (2007) ß2007 Kvantovaya Elektronika and Turpion Ltd



whereas the isotope frequency scatter is regular, i.e. in the
latter case the absorption frequency at each transition (the
Doppler effect apart) remains éxed during the interaction of
this transition with the light pulse éeld. In this case, each
isotopic component of the mixture has its own absorption
line, which can be inhomogeneously broadened due to the
Doppler effect. The difference between the regular and
statistical frequency scatters caused by the isotope shift
and Doppler effect, respectively, can be especially pro-
nounced in the case of inhomogeneous spatial
distributions of atoms of different isotopic components.

In this connection it is interesting to study the features of
the longitudinal and transverse dynamics of SIT pulses
propagating in an isotopic mixture. The results of this study
are presented below.

2. Equations of the pulse and medium dynamics

Consider a laser pulse propagating parallel to the z axis in
the N-component isotopic mixture. The pulse frequency is
assumed close to quantum transition frequencies, which are
different due to different isotope shifts for isotopic
components. We describe all the isotopes by the model
of two-level atoms. In this case, the pulse and medium
dynamics is described the Maxwell ë Bloch equations [16,
17]

qO
qz
� n0

c

qO
qt
� ÿib

XN
j�1

ajRj ÿ i
c

2n0o
D?O, (1)

qRj

qt
� iDjRj � iOWj, (2)

qWj

qt
� i

2
�O �Rÿ OR ��, (3)

where i � 1, ...,N; O � 2dc=�h is the complex Rabi fre-
quency of the optical pulse; d is the dipole moment of
resonance transitions; �h is Planck's constant; c is the slowly
varying complex envelope of the electric éeld E of the pulse
determined by the expression E(r; t) � c(r; t) exp�io(tÿ
n0z=c)�� c. Ô.; c is the speed of light in vacuum; n0 is the
refractive index of the mixture caused by nonresonance
quantum transitions, which differ from transitions
described by constitutive equations (2) and (3); b �
oco=(cn0); oc � 4pd 2n=�h is the collective frequency [18];
n is the concentration of atoms in the isotopic mixture;
aj � nj=n; nj is the partial concentration of the jth isotope;
D? is the transverse Laplacian; Dj � o � j �0 ÿ o and o � j�0 are
the resonance detuning and the central absorption fre-
quency for the jth isotope, respectively; Rj is the Bloch
variable determining the nonstationary dipole moment and
related to the element r � j �1;2 of the density matrix of the
1$ 2 resonance transition in the jth isotopic component by
the expression r � j �12 � Rj exp�ÿio(tÿ n0z=c)�; and
Wj � ( r � j �22 ÿ r � j �11 )=2 is the population inversion for
resonance transitions.

We neglected here the difference in the transition dipole
moments for different isotopes as the value of the higher
smallness order compared to the isotope shift. Indeed, the
isotope shift is the érst-order effect of the quantum-
mechanical perturbation theory, which is determined by
the corresponding addition to the atomic Hamiltonian at
invariable wave functions, whereas the perturbation of

matrix elements d � d21 differs from zero only in the second
order because it is characterised by the deformation of wave
functions. Another argument in favour of the neglect of this
difference will be presented at the beginning of the next
section.

The homogeneous and inhomogeneous widths of the
resonance absorption lines of isotopic components, char-
acterised by the relaxation times T2 and T �2 , respectively, are
neglected in (1) ë (3). This assumes that the pulse duration is
small compared to these relaxation times and the important
condition Do � j �0 4 1=T �2 , 1=T2 is fulélled, which means that
the resonance spectral lines of different isotopes can be well
resolved. Under such conditions, only one of the isotopic
components can be exactly resonant with the pulse éeld,
which we will denote below by the subscript r. By taking this
into account, the condition of selective excitation has the
form

DjT
�
2 4Djtp 4 1. (4)

The typical value of T2 in gases is �10ÿ8 s, while the
inhomogeneous broadening is caused by the Doppler effect.
Then, T �2 � (c=o0)�M=(kBT )�1=2, where M is atom mass; T
is the mixture temperature; and kB is the Boltzmann
constant. By taking the value o0 ' 3� 1015 sÿ1 for the
visible range, we obtain T �2 � (A=T )1=2, where T �2 is
measured in nanoseconds and temperature T in kelvins.

For Dj � 1011 sÿ1 and tp � 0:1 ns, both of the sides of
inequality (4) can be satiséed if T �2 � 1 ns. Then, T � 10 K
for light isotopes and �102 K for heavy isotopes. Thus, in
the érst case a gas mixture should be preliminary cooled,
which can be achieved by various laser methods [19]. In the
second case, the conditions of selective excitation can be
obtained at room temperature.

It is convenient to exclude material variables in (1) ë (3),
thereby reducing the study to the analysis of the nonlinear
wave equation.

For j � r (in the case of the zero detuning from the
resonance), we rewrite system (2), (3) in the matrix form

qS
qt
� iX̂S, (5)

where S � (Rr;R
�
r ;Wr)

T;

X̂ � 1

2

0 0 2O
0 0 ÿ2O �
O � ÿO 0

0@ 1A. (6)

Due to the self-consistency of the problem, the elements
of matrix X̂depend on the coordinate and time. Generally
speaking, this matrix is not self-commutable at different
instants. However, because condition (4) is violated for j �
r(Dr � 0), the pulse can be considered so short that the
commutator jX̂(t); X̂(t� tp)j can be neglected with good
accuracy [20, 21]. Then,

S�t� � Û�t; t0�S�t0�, (7)

where t0 is the onset time of the pulse action, and the
evolution operator can be written approximately in the
form
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Û�t; t0� � exp�iĥ�t!t0 ;jOj!1; ĥ �
� t

t0

X̂dt 0.

From the deénition of ĥ and the form of the matrix X̂, it
is easy to obtain the relations ĥ 2k�1 � jyj2kĥ and
ĥ 2�k�1� � jyj2kĥ 2 for any natural k, where jyj � j � tt0 Odt 0j.
By expanding the operator exponential exp (iĥ) in a
Maclaurin series and summing it taking into account these
relations, we obtain

exp�i ĥ� � I� i
ĥ

jyj sin jyj � 2
ĥ 2

jyj2 sin
2 jyj
2
.

By passing in this expression to the limit t! t0, jOj ! 1
and using the L'Hospital rule, we énd the evolution
operator

Û � I� i
X̂

jOj sin y� 2
X̂2

jOj2 sin
2 y
2
, (8)

where I is the unit operator; y � � tÿ1 jOjdt , and the onset
time of the pulse action is formally assigned to ÿ1. By
assuming that Ŝ(t0 !1) � (0; 0;Wr1)

T in (7), which
corresponds to the absence of initial atomic coherence,
we obtain

Rr � iWr1
O
jOj sin y, Wr �Wr1 cos y. (9)

Here, Wj1 is the initial inversion of jth quantum transition
(for all j, including j � r).

For other isotopes, inequalities (4) are fulélled, of which
the second one is called the quasi-resonance condition
[22, 23]. In this case, for j 6� r the left side of Eqn (2) is
proportional to the small parameter � (Djtp)

ÿ1. Then, the
solution of system (2), (3) can be found in the form of the
expansion in this parameter, which corresponds in fact to
the Crisp expansion [24]. As a result, we obtain in the third
order

Rj � ÿ
O
Dj

Wj �
i

D 2
j

q
qt
�OWj� �

Wj1
D 3
j

q 2O
qt 2
ÿ i

Wj1
D 4
j

q 3O
qt 3

. (10)

Here, the replacement Wj !Wj1 was made in the two last
terms because atoms quasi-resonant with the pulse éeld are
weakly excited.

By substituting (10) into (3) and taking into account only
the érst two terms in (3), we obtain

qWj

qt
� ÿ 1

2D 2
j

�
O �

q
qt
�OWj� � O

q
qt
�O �Wj�

�

� ÿWj1
2D 2

j

q
qt
�jOj2�.

which gives after integration

Wj �Wj1

�
1ÿ jOj

2

2D 2
j

�
. (11)

From (10) and (11), we obtain

Rj � ÿ
Wj1
Dj

O�Wj1
2D 3

j

jOj2Oÿ iWj1
2D 4

j

q
qt
�jOj2O��

� iWj1
D 2
j

qO
qt
�Wj1

D 3
j

q 2O
qt 2
ÿ i

Wj1
D 4
j

q 3O
qt 3

. (12)

By substituting (9) and (12) into (1), we obtain the equation

qO
qz
� 1

vg

qO
qt
� ÿs O

jOj sin yÿ igO� i
b

2
jOj2O

� g

2

q
qt
�jOj2O� � ib

q 2O
qt 2
� g

q 3O
qt 3
ÿ i

c

2n0o
D?O, (13)

where vg is the linear group velocity taking into account the
contribution of quasi-resonance transitions, which is
determined by the relation 1=vg�n0=cÿ b

P
j 6�r Wj1aj=D

2
j ;

where b � ÿbPj6�r Wj1aj=D
3
j and g � ÿbPj6�r Wj1aj=D

4
j

are the group velocity dispersion parameters of the érst and
second orders, respectively; s � ÿbarWr1 and
g � ÿbPj6�r Wj1aj=Dj.

Let us represent the complex Rabi frequency in the form

O � jOj exp�iF�, (14)

where the correction F to the light pulse phase (or its
eikonal) is, generally speaking, the function of coordinates
and time.

If only the érst term is retained in the right-hand side of
(13), we will have F � const under the condition that the
input pulse is not phase-modulated. This agrees with the
conclusion obtained earlier in [25, 26]. Thus, the nontrivial
dependence of F on coordinates and time can be caused by
all the terms in the right-hand side of (13) except the érst
one. These terms, except the last one, represent expansions
in powers of small parameters (Djtp)

ÿ1. Therefore, the
dependence F(r; t) is weak. For this reason, by substituting
(14) into (13), we can neglect the derivatives of F with
respect to time in the right-hand side of (13) as the values of
the higher order of smallness relative to the powers of
parameters (Djtp)

ÿ1.
By separating the real and imaginary parts, we obtain

from (13) and (14) the nonlinear system

q 2y
qzqt

� s sin yÿ 3g

2

�
qy
qt

�2 q 2y
qt 2
ÿ g

q 4y
qt 4

� c

2n0o

�
�D?F�

qy
qt
� 2�H?F�

�
q
qt

H?y
��

, (15)

qy
qt

�
g� qF

qz

�
ÿ b

2

�
qy
qt

�3
ÿ b

q 3y
qt 3

� c

2n0o

�
�H?F�2

qy
qt
ÿ q
qt

D?y
�
, (16)

where t � tÿ z=vg and it is taken into account that
jOj � qy=qt.

System (15), (16) describes the nonlinear propagation of
a laser pulse in a quasi-resonance isotopic mixture taking
into account transverse perturbations.

3. One-dimensional SIT solitons

Before studying the effect of transverse perturbations on
light pulses, we consider their one-dimensional propagation
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when the right-hand sides in (15) and (16) can be neglected.
In this case, this system can be split with respect to
variables y and F, and (15) takes the form of the Konno ë
Kameyama ë Sanuki equation, which can be integrated by
the method of inverse scattering problem [27] and general-
ises the sine-Gordon equation describing SIT in a one-
component resonance medium. It is important to note here
that the necessary condition of integrability is that the ratio
of the nonlinearity coefécient produced by quasi-resonance
atoms to the corresponding dispersion coefécient should be
equal to 3/2 [27]. One can see from (15) that this condition
is fulélled, which is a direct consequence of the neglect of
the difference in the transition dipole moments for different
isotopic components. Taking into account that the third
and fourth terms in the left-hand sides of (15) are of the
expansion type, this difference is vanishingly small. There-
fore, its consideration would contradict the approximations
adopted in this paper.

The one-soliton solution of (15) for the zero right-hand
side has the form

y � 4 arctan

�
exp

�
tÿ z=v

tp

��
, (17)

jOj � 2

tp
sech

�
tÿ z=v

tp

�
, (18)

where the soliton velocity v in the laboratory coordinate
system is related to the soliton duration tp by the expression

1

v
� 1

vg
� st 2p ÿ

g

t 2p
. (19)

By substituting (17) into (16) in the absence of the right-
hand side, we obtain after integration

F � ÿ
�
gÿ b

t 2p

�
z, (20)

where the integration constant is set equal to zero (simply
by displacing the coordinate system).

The population differences for the resonance and quasi-
resonance components found from (17), (18), (9), and (11)
are

Wr �Wr1

�
1ÿ 2sech2

�
tÿ z=v

tp

��
, (21)

Wj �Wj1

�
1ÿ 2

�Djtp�2
sech2

�
tÿ z=v

tp

��
, (22)

respectively. We assume below that all the atoms are in the
ground state before pulsed excitation, i.e. Wj � ÿ1=2 for all
j, including j � r.

One can see from (21) that the resonance component of
the isotopic mixture experiences a complete inversion during
pulse propagation and then returns to the initial state. As
for quasi-resonance components, they are excited insignié-
cantly, as follows from (22) and the second inequality in (4).
As a result, the resonance and quasi-resonance components
differently affect the pulse propagation velocity.

The expression for the linear group velocity can be
rewritten in the form

vg �
c

n0�1� k� ,

where k � Z(o=�D)2=(2n 2
0 ); Z � oc=o; and 1=�D 2 �P

j6�r aj=D
2
j .

Consider, as an example, a mixture consisting of
samarium vapour in which two isotopes 150

62 Sm and 152
62 Sm

are present. The frequency of the spectral lines of the second
isotope in the visible region exceeds the characteristic
frequency of the lines of the érst isotope by D � 1011 sÿ1

[9]. Let a1 � 0:9 and a2 � 0:1. By assuming also that n0 � 1,
n � 1013 cmÿ3, d � 10ÿ18 esu, and o � 1015 sÿ1 [7, 8], we
obtain oc � 105 sÿ1, Z � 10ÿ10, and k � 10ÿ2. Thus, quasi-
resonance transitions reduce the linear group velocity of an
optical pulse by a few percent. As for the nonlinear addition
to the inverse velocity of these transitions, which is
determined by the last term in (19), its ratio to the linear
addition considered above is � (Dtp)

ÿ2 5 1.
In turn, the resonance transitions reduce the propagation

velocity of pulses essentially nonlinearly, which is expressed
by the second term in the right-hand side of (19). The
corresponding dimensionless addition to the inverse velocity
is of the order of the value cst 2p=n0 � arZ(otp)

2 � ar, which
we determined by using the numerical estimates presented
above. Therefore, the pulse velocity considerably depends
on the percentage of the resonance component in the
isotopic mixture.

By tuning the laser pulse frequency to resonances with
different components and determining the corresponding
time delays of the pulse emerging from the medium, we can
énd the percent composition of different isotopes.

It is important to note that the threshold value of the
input pulse area

Ap �
� �1
ÿ1
jO�z � 0; t�jdt5 p

is independent of the resonance to which the laser pulse is
tuned in the mixture.

It follows from (9), (12), (17), (18), and (20) that
expressions for the dipole moments Dj � d( r � j �21 �r � j �12 ) �
2dRefRj exp�io(tÿ n0z=c)�g induced by the light pulse have
the form

Dr � ÿ2d tanh
�
2ÿ z=v

tp

�
sech

�
tÿ z=v

tp

�
sin�o�tÿz=vph��(23)

for resonance components and

Dj �
2d

Djtp
sech

�
tÿ z=v

tp

�
cos�o�tÿ z=vph�� (24)

for quasi-resonance components. Here, vph is the phase
velocity of a soliton determined by the expression

1

vph
� ns

c
� n0

c
� g
o

�
1ÿ b

gt 2p

�
, (25)

where ns � nlin � n2jcj2m is the soliton refractive index;
nlin � n0 � cg=o is its linear part; jcjm � 2d=(�htp) is the
amplitude of the 2p soliton; and

n2 � ÿ
pd 4n

2�h 3n0

X
j6�r

aj
D 3
j

(26)

is the nonlinear refractive index.
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As expected, the ratio jDj=Drj � jDjtpj5 1. On the other
hand, the dipole response of resonance atoms is shifted by p/
2 with respect to the light pulse phase and its envelope has
the two-polar shape, as in the case of SIT in a homogeneous
medium [3]. The response of quasi-resonance atoms is one-
polar and virtually coincides in phase with the pulse éeld.

Note that the correction F to the phase of a one-
dimensional soliton is independent of time. Therefore, one-
soliton solution (17) ë (20) is the exact solution of Eqn (13)
without the assumption that the derivatives of F with
respect to time are small because here they are rigorously
zero. Thus, the frequency of the produced 2p soliton is
rigorously equal to the input pulse frequency. Analysis of
the multi-soliton solution of system (15), (16) in the one-
dimensional approximation shows that during collisions
between solitons, the phase modulation appears for each
of them. However, this modulation disappears after their
elastic interaction and the phase of each of the solitons
recovers its simple addition in form (20).

4. Effect of transverse perturbations

To take into account the effect of transverse perturbations
on the propagation of a SIT soliton in the isotopic mixture,
we will assume that its eikonal F and duration tp � 1=r are
now the functions of all the three coordinates. Note érst
that, by using (19) and (20), we can write the argument of
one-dimensional soliton (18) in the form

tÿ z=v
tp

� r�t� F�r�F�, (27)

where

F�r� � sÿ gr 4

r 2�gÿ br 2� . (28)

Taking into account transverse perturbations by the
adiabatic method [28], we will assume below that expres-
sions (27) and (28) remain also valid for non-one-
dimensional solitons. According to this, we will seek the
solution of system (15), (16) for y in the form (17) taking
into account the substitution (27), where now r � r(r) and
F � F(r). Because r � const and F � z in the one-dimen-
sional case, the variable r is assumed a `slow' function of
coordinates and F is assumed a `fast' function in the
consideration of transverse perturbations [28]. Therefore,
we have H?(F( r)F) � F( r)H?F. The dependence on t can
be excluded on average by multiplying (15) and (16) by jOj
and then integrating over t taking (17), (18), and (27) into
account. As a result, we obtain the system

qr
qz
� H?�rH?j� � 0, (29)

qj
qz
�
�
1� 1

3
r 2F 2�r�

� �H?j�2
2

ÿ c

n0o
�gÿ br 2�

�
�

c

2n0o

�2�D?r
r
ÿ 1

3

�
p 2

6
� 2

� �H?r�2
r 2

�
, (30)

where j � ÿcF=n0o.
Transverse perturbations in the left-hand side of (30) are

taken into account in the geometric optics approximation

[28], which corresponds to nonlinear refraction, while the
right-hand side takes diffraction effects into account [29].

Before proceeding to the general investigation of system
(29), (30), note that the solutions of this system in the one-
dimensional case (H? � D? � 0) have the form
r � 1=tp � const and F � ÿn0oj=c � ÿ(gÿ b=t 2p )z, which
exactly coincide with solutions for a one-dimensional SIT
soliton. This circumstance is an important argument in
favour of the approach proposed here.

According to [29, 30], we will seek the solution of system
(29), (30) for r in the self-simulating axially symmetric form

r � 1

t0

�
R0

R

�2
exp

�
ÿ r 2

R 2

�
. (31)

Here, t0 and 2R0 are the input pulse duration at the centre
of its cross section and its aperture, respectively;
2R � 2R(z) is the pulse aperture in the medium; and r is
the radial component of the cylindrical coordinate system.

We represent the expression for j in the form [29]

j � f1�z� �
1

2
f2�z�r 2, (32)

where f1 and f2 are the required functions of the coordinate
z.

The érst term in (32) corresponds to the one-dimensional
approximation, while the second one takes into account the
transverse structure of the wave fronts of the pulse (their
bending).

By substituting (31) and (32) into (29), we obtain the
relation

f2 �
R 0

R
. (33)

Hereafter, the prime denotes the derivative with respect to
z.

By substituting (31) and (32) into (30), expanding in
powers of e � (r=R)2 5 1 (the axial approximation [29 ë 32]),
and equating expressions with the zero and second powers
of e in the right- and left-hand sides, we obtain, by using
(33),

f 01 �
c

n0o

�
gÿ b

t 2p

R 4
0

R 4

�
ÿ
�

c

n0o

�2
1

R 2
, (34)

R 00 � ÿ a

R 3
� g

R 5
ÿ mR 0 2R 3, (35)

where a � 0:5(p 2=6ÿ 1)�c=(n0o)�2; g � cbR 4
0 =(n0ot

2
p �; and

m � s 2t 2p=(3g
2R 4

0 ). Expression (35) was obtained by assum-
ing, taking into account the second inequality in (4), that
F( r) � s=(gr 2). This circumstance does not affect princi-
pally the following conclusions.

The érst term in the right-hand side of (35) corresponds
to diffraction effects in the transverse dynamics of the pulse,
while the second and third ones ë to the nonlinear transverse
refraction produced by the quasi-resonance and resonance
isotopic components, respectively.

In the absence of quasi-resonance components (g � 0), it
follows from (35) that a resonance SIT soliton is stable with
respect to self-focusing [16]. The same conclusion is also
valid in the presence of quasi-resonance components of the
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mixture if g < 0. One can see from expressions for g and b
that in this case the components with frequencies lower than
the pulse carrier frequency dominate in the mixture. This
also follows from expression (26) for the nonlinear refractive
index, because n2 > 0 in this case, which provides self-
focusing. A similar conclusion was made in [7, 8], but in the
presence of atoms of only one type.

Of special interest is a situation when components with
transition frequencies exceeding the pulse carrier frequency
dominate in the isotopic mixture. In this case, g > 0 and, as
follows from (35), a competition appears between the
resonance and quasi-resonance components which favour
self-focusing and defocusing, respectively. Let us énd the
conditions under which these trends can be mutually
compensated and elucidate the type of pulse propagation.

Equation (35) has the érst integral of the type

R 0 2

2
�U�R� � 0, (36)

where

U�R� � ÿR 0 20
2

exp

�
ÿ m

2

ÿ
R 4 ÿ R 4

0

��

�
� R

R0

exp

�
ÿ m

2

ÿ
R 4 ÿ z 4

��� a

z 3
ÿ g

z 5

�
dz. (37)

Equation (36) coincides formally with the energy integral
for a unit mass particle moving in a éeld with the potential
energy U(R). Therefore, conditions of a stable mutual
compensation of self-focusing and defocusing have the
form qU=qR � 0 and q 2U=qR 2 > 0.

Let the wave fronts of the input pulse be plane. Then, it
follows from (32) and (33) that R 00 � 0. In this case, the érst
compensation condition gives the solution
R � R0 �

��������
g=a

p � const, which means, as follows from
(33), that f2 � 0. By taking the second derivative from
(37) with respect to R, we énd that
(q 2U=qR 2)R�R0

� 2a 3=g 2 > 0. Thus, we conclude that the
required compensation is possible in principle.

By using expressions for g and a, we énd

R0 �
0:80������
oc
p ctp

o

�X
j6�r

aj
D 3
j

�ÿ1=2
. (38)

Expressions for the group and phase velocities of the
pulse obtained from (27), (28), (32), and (34) taking into
account the énite transverse size of the pulse have the form

1

v
� n0

c
� s=r 2 ÿ gr 2

1ÿ br 2=g

�
1ÿ b

gt 2p
ÿ d
�
, (39)

1

vph
� n0

c
� g
o

�
1ÿ b

gt 2p
ÿ d
�
, (40)

where d � c=(gn0oR
2
0 ) � (�Dtp)

ÿ2 is the correction to these
velocities caused by the énite transverse size of the pulse.
For R0 !1, these relations, as expected, transform to
expressions (19) and (25), respectively, for a one-dimen-
sional soliton. This demonstrated that the phase velocity of
the soliton is independent of the transverse coordinate.
Therefore, constant-phase surfaces in the medium remain
plane. The group velocity, however, decreases from the

centre of the pulse cross section to pulse periphery with
decreasing r. As a result, the central part of the pulse bends
forward during pulse propagation, overtaking its periphery
sites. As the pulse is elongated in such a way, its transverse
size 2R0 remains invariable, although its shape changes as a
whole, acquiring the form of an elongating hollow missile.
According to these two features, we will call this
propagation regime quasi-channeling.

If R0 6�
��������
g=a

p
at the input to the medium, quasi-

channeling will be accompanied by periodic pulsations of
the pulse radius around this value in accordance with the
stability of the process. In turn, this will produce pulsations
of the pulse amplitude, duration, and phase and group
velocities.

As an example, we determine the possible type of
propagation of a one-dimensional SIT soliton in the two-
component samarium mixture considered above. Let the
frequency of a pulsed laser be initially tuned to a quantum
transition in the 150

62 Sm isotope. In this case, D > 0 and,
therefore, the quasi-channeling regime is possible. Then, we
énd from (38) for numerical parameters presented in the
previous section that R0 � 0:1 cm. When the pulse fre-
quency is tuned to the 152

62 Sm isotope, the value of D becomes
negative and, therefore, self-focusing should occur.

Thus, the tuning of the pulse frequency to one or
another component of the isotopic mixture not only affects
the pulse velocity but can qualitatively change its transverse
dynamics.

5. Conclusions

We have established the speciéc features of the SIT effect in
a heterogeneous isotopic mixture, which are absent in
homogeneous media. By studying the longitudinal and
transverse dynamics in various pulse propagation regimes,
it is possible to perform diagnostics of heterogeneous
mixtures by measuring the percentage of various isotopes
(érst of all, of artiécially enriched mixtures). In addition,
media containing the speciéed amounts of various isotopes
can be used in optical delay lines with properties variable by
tuning the input pulse carrier frequency.
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