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Use of the theory of coupled waves
for constructing multilayer optical coatings

P.A. Kholokhonova, P.E. Tverdokhleb

Abstract. A general numerical method is proposed for
constructing multilayer optical coatings without using the
basic structure. The possibility of application of the theory of
coupled waves for describing optical coatings with a large
difference in the values of the refractive index is demon-
strated. As design parameters, the coefficients of harmonic
expansion of the required functions n(x) are used, which
makes it possible to produce local variations in a certain
spectral region. The method is quite pictorial. An example of
application of this method for calculating a broadband divider
is considered.
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1. Introduction

A multilayer optical coating is a system of dielectric layers
with various thicknesses and refractive indices. The
coordinate dependence n(x) of the refractive index will be
referred to as the structure of optical coating, while the
dependence of the reflectance R (or transmittance 7)) on the
wave number k =2n/A will be referred to as its spectral
characteristic.

The problem of constructing a multilayer optical coating
involves the determination of the structure, which satisfies
the required spectral characteristics and which can be
implemented.

The existing methods for constructing thin-film coatings
can be classified as universal and special [1—3]. Universal
methods can be used for calculating any optical coating,
while special methods are used to calculate coatings of a
special type. The calculation technique (numerical or
analytical) is also an important characteristic of the method.

At present, numerical computer techniques have become
a powerful tool for designing, which often exceed the
potentialities of analytic methods. The numerical method
essentially involves the variation of design parameters to
optimise a given target function. Such parameters are
usually the thickness and the refractive index of each layer.
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We will refer to these quantities as microparameters because
they determine the structure of an individual layer rather
that the entire structure.

Numerical methods make it possible to obtain very
accurate results as regards the extent to which spectral
characteristics of the resultant structure approach the
specified values. For this reason, the major part of these
methods employs special numerical algorithms, in which
individual features of the structure are used [4—7].

There also exist very powerful special analytic methods
(for example, for calculating chirped mirrors [8]). Among
universal analytical methods, Fourier synthesis is the most
widely used [9]. This is an approximate method that can be
used for obtaining a structure with a gradient refractive
index profile. However, because of its approximate nature,
Fourier synthesis is used in practice not directly, but as the
basis for an iterative numerical algorithm [10, 12]. Another
powerful universal numerical method is the needle-shaped
synthesis [13, 14]. Finally, numerous universal numerical
methods are used for optimising a certain basic structure
[15—17]. In some cases, a structure whose spectral character-
istics are very close to required values, but do not satisfy a
certain criterion (minimal/maximal layer thickness, accu-
racy, or stability) is chosen as the basic structure. In other
cases, a basic structure of an elementary form is used for
determining the starting values of design parameters.

The available design methods make it possible to solve
most of the existing problems. However, a sequence of a few
methods is commonly used for calculating the structure of
the required coating because each of these methods cannot
separately provide the optimal solution in an arbitrary case.
An approximate solution is obtained using a method that
does not require the presence of the basic structure. Then
one of the methods of numerical optimisation is used, in
which the approximate structure is used as the basis. For
this reason, the development of universal methods that can
be used for obtaining basic structures for subsequent
optimisation remains an actual problem.

Below, we present a universal numerical method for
designing multilayer optical coatings. This approach differs
from most numerical methods because it employs as design
parameters the coefficients of harmonic expansion of the
required function n(x) rather than the thickness and
refractive index of each layer. Such a choice of design
parameters (which will be referred to as macroparameters)
was made on the basis of the results of the coupled-wave
theory (CWT). This imparted an important feature to this
method, i.e., the possibility of local variations in a certain
range of dependences R(k) and T(k). In this case, the
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number of parameters being optimised is reduced by an
order of magnitude. In this method, a transition to
structures with a discrete refractive index profile is per-
formed at once.

The coupled wave theory is applicable in the approx-
imation of slowly varying amplitudes, i.e., under the
conditions when the variation in the radiation-wave ampli-
tude is negligibly small at a scale comparable with the
perturbation period. For this reason, this theory was used as
a rule for studying structures with a small relative pertur-
bation of the refractive index. However, the application of
the CWT for calculating the phase characteristics of optical
coatings — structures with a large difference in the values of
the refractive index was demonstrated in [8]. We will show
below that the CWT can also be used for describing the
amplitude characteristics of optical coatings.

This approach has much in common with the methods in
which the Fourier synthesis relations and frequency filtra-
tion are used [10—12]; however, unlike these methods, the
CWT is simpler and descriptive because it does not employ
inverse integral relations and is reduced to solving a number
of direct problems.

2. Theory

Before designing an optical coating, it is necessary to find
the relation between R(k) and n(x). This relation can be
established by using the CWT [18]. Because the CWT
equations were derived with the help of the parabolic
approximation of the wave equation, the application of
these equations was usually limited to the study of
structures with a small relative perturbation of the
refractive index (for example, holographic gratings). It
was shown in [8], however, that the CWT can be employed
for describing phase characteristics of optical coatings with
a large difference in refractive indices (rp. = 2.45, Hpin =
1.5). The aim of the authors of [8] was to obtain exact
expressions for phase characteristics of the structure using
the CWT, which necessitated the introduction of certain
changes in the classical formulas for the coupling and
mismatch coefficients. Here, we confine our analysis to
qualitative agreement between R(k) and n(x), which is
described by the CWT, because unlike the analytic method
employed in [8], our approach is based on numerical
optimisation.

Consider briefly the basic principles of the CWT. For a
propagating light wave, an optical coating is a perturbation
of the medium, i.e., the region in which the refractive index
depends on the coordinate, resulting in the appearance of a
reflected wave. According to the CWT, the existence of a
harmonic component with frequency k), (Fourier compo-
nent) in the spatial structure of n(x) leads to the formation
of a reflection peak at a frequency of k, in the optical
spectrum R(k). This occurs due to the appearance of the
effective coupling between the forward and backward waves
at this frequency.

Let us expand the function n(x) in Fourier series
(assuming that this function is periodically continued):

n(x) = Z {am sin<¥x> +b,, cos(znmeﬂ

=5 [ sinth ) + b, costn)|

m

where D is the total optical thickness of the coating; a,, and
b,, are the Fourier expansion coefficients; m is the Fourier
harmonic number; k, =2mm/D; and x is the optical
thickness. We will refer to harmonic expansion functions
sin (k,,x) and cos (k,,x) as the basis functions.

Let us verify the correspondence between the Fourier
spectrum and the optical spectrum n(x) of the structure,
which is predicted by the CWT. Let us assume that the
dependence n(x) is described by a single Fourier harmonic;
in this case, only one Fourier coefficient is nonzero.
Consider the structure for which the maximal and minimal
refractive indices are equal to 2 and 1.45, respectively. By
using the characteristic matrix formalism, we calculate the
spectral characteristic of this structure (Fig. 1).
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Figure 1. Coordinate dependence n(x) of the refractive index described

by a Fourier harmonic and the wavenumber dependence of the reflec-
tance R(k) (where k = 2n/2).
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The Fourier harmonic b, of the spatial spectrum of the
structure corresponds to the reflection region in the optical
spectrum R(k). One can see that a qualitative agreement
between R(k) and n(x) is also observed for an optical coating
with a large difference between refractive indices. Thus, the
application of harmonic expansion coefficients as macro-
parameters of the structure establishes a linear relation
between R(k) and n(x). To form reflection regions at definite
frequencies, it is necessary to ‘construct’ n(x) from harmonic
functions of the corresponding frequency.

Note that this approach substantially differs from most
of numerical simulation methods. The structure is numeri-
cally selected by varying a microscopic parameter — the
thickness of a single layer, which changes the optical
spectrum in the entire frequency range. However, in our
case, variation of a macroscopic parameter — the harmonic
expansion coefficient results in changes of the entire profile
n(x), but this leads to variations within a certain spectral
region. In other words, we can introduce ‘local’ variations.

The next step is the improvement of the obtained model
algorithm and extension of its possibilities. To avoid the
analysis of a smooth profile of the refractive index (which is
of no practical importance), we approximate in our simu-
lation the harmonic components (sinusoidal and
cosinusoidal) by functions with a rectangular profile, which
will be henceforth referred to as ¢ functions.



Use of the theory of coupled waves for constructing optical coatings

481

Let us assume that the total thickness D of the structure
and the maximum wavelength A, of the range we are
interested in are specified. Then the basis function of length
D and period 74y/2 will be called the zero-order basis
function and denoted by ¢y(x). This function corresponds
to the reflection peak at wavelength ;. All the remaining
basis functions can be obtained from ¢y(x) using a similarity
transformation (compression):  ¢,,(x) = go(%,,X), Where
Xy = Ao/2n. Each of these functions corresponds to a
reflectione peak at a wavelength of J, in the optical
spectrum.

The basis functions have the same number of periods,
but different carrier frequencies and total lengths D,
because these functions essentially represent the same parent
function ¢, compressed with the corresponding coefficient.
Figure 2 shows the functions ¢y(x) and ¢,, = ¢¢(0.8x).
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Figure 2. Basis functions g(x) used for specifying the optical coating
structure n(x); ¢o(x) is the zero-order basis function, ¢,, = ¢(0.8x) is an
arbitrary-order basis function.

Because the parent function can be compressed with an
arbitrary coefficient, the basis under study is continuous.
Note, however, that the harmonic functions used here are
not infinitely long, but are bounded by length D. These
functions do not form a complete basis and, strictly speak-
ing, are not independent; however, their interaction is not
critical for designing and can be neglected.

Thus, the refractive index profile will be specified by a set
of basis functions. Let us assume that the profile n(x) is
specified only by basis functions with coefficients b,,, i.e.,

n(x) = me‘h(%mx) = Zblnqm(x)~

The introduction of additional harmonics into the
spatial spectrum of the structure (‘Fourier’ spectrum) gives
rise to the corresponding reflection peaks in the optical
spectrum. In simulation of such an optical coating, layers
with refractive indices that do not correspond to real
materials appear. For this reason, the obtained structure
was transformed with the help of the Herpin algorithm [19]
into a structure consisting of layers with two refractive
indices. Figure 3 shows a structure specified by two ¢
harmonics and the optical spectrum of this structure.
Note that the peak value of the reflectance depends on
the relative amplitude b,, of the corresponding ¢ component
and can be easily controlled.

As mentioned above so far, only structures with even
basis functions were considered. The possibility of introduc-
ing basis functions with coefficients «,, (odd functions)
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Figure 3. Structure of the optical coating n(x) containing two ¢
harmonics and the corresponding dependence R(k) (49 = 1 pm).

makes it possible to introduce one mode design parameter.
The basis functions have the same number of periods, but
different carrier frequencies and different total lengths D,,.
Because D,, < D, we have an additional parameter in our
disposal (referred to as the ‘phase’ parameter), namely, the
displacement of basis functions relative to one another. By
varying this parameter, we can control the interaction
between the spectral components ¢,,(x), namely, by combi-
nation or separation of the reflection peaks corresponding
to them. Figure 4 shows the dependence n(x) specified by
two ¢ functions with the relative displacement 0.1437,/2 and
the spectral characteristic R(k) corresponding to it.

If, however, we change the shift of harmonic compo-
nents relative to one another for the same values of the
remaining parameters, we can obtain a single reflection
region in the optical spectrum (Fig. 5). One can see from
Fig. 5 that the reflection region has side peaks. This
complicates the simulation procedure because the presence
of oscillations near the reflection peak does not allow one to
construct transmission regions in adjacent frequency ranges
when it is required. The problem of elimination of undesir-
able side oscillations is well-known and can be solved using
finite functions [20]. The solution of this problem is based on
the wavelet analysis, according to which a set of finite
functions (unlike infinite harmonics) is used for expansion.
As the basis functions with a rectangular profile, the basis
wavelet functions can be obtained from the parent function
V(x) by a the similarity (compressions) transformation:
U,(x) = V(%,,x). In our case, we used functions of the
form v,,(x) = go(x,,x)sin(nx/D). Let us express n(x) in
terms of functions v,,(x), treating them as the basis
functions:

}’l(X‘) = meum(x)-
m

Figure 6 shows the refractive index profile and the
optical spectrum R(k) for a structure containing a wavelet
component of the form vy(x) = gy(x) sin (mx/D). One can see
that the reflection peak in this case has no side peaks, which
makes it possible to construct transmission regions along
with high-reflection regions.

The drawback of the wavelet approach compared to the
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Figure 4. Structure of the optical coating n(x) specified by two basis
functions ¢y and ¢, displaced relative to each other by 4 = 0.1434,/2
and the corresponding dependence R(k) (1p = | pm).
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Figure 5. Structure of the optical coating n(x) specified by two basis
functions ¢y and ¢, displaced relative to each other by 4 = 0.3564,/2
and the corresponding dependence R(k) (g = 1 pm).
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Figure 6. Structure of the optical coating n(x) specified by a wavelet
component v, (calculated values of the refractive index; dashed curve)
and the structure transformed with the help of the Herpin algorithm
(solid curve) and the corresponding dependence R(k).

application of ¢ functions is the relatively small amplitude of
reflection peaks for the same number of coating layers.
Therefore, the wavelet representation is superfluous if the
specified spectral characteristic does not contain regions in
which high transmission would be important.

Thus, the method for constructing an optical coating
with the specified spectral characteristic R(k) by using
macroparameters involves the following stages.

(1) Depending on the form of the specified function R(k),
the type of basis functions is chosen for the harmonic
representation of n(x). If the function R(k) contains critical
transmission regions, the wavelet expansion should be used.
Otherwise, conventional rectangular functions are emp-
loyed.

(ii) The number of layers described by the component
functions ¢,,(x) or v,,(x), which provides the required values
of R(k) and/or dR(k)/dk (steepness of the slopes) is
determined.

(iii) The primary structure of n(x) is formed by specifying
amplitudes b,, of several basis functions, ¢,,(x) or v,,(x),
whose frequencies are chosen proceeding from the arrange-
ment of the reflection regions in the required R(k) spectrum.
Then the parameters are optimised by changing the ampli-
tudes of the harmonics and their relative phases by
introducing additional harmonics when required.

3. Application of the method

Let us illustrate the possibilities of our approach. Let us
assume that a broadband optical divider has to be designed
for operation in a wavelength range between 680 and
900 nm with a reflectance R(Z) = 0.5+ 0.01. The refractive
indices of the layers are ny = 1.45, nyy = 2.25. The refractive
index of a substrate is ng = 1.45; the ambient medium is air
(n, = 1). The difference between the refractive indices at the
external coating —air interface is described by the expression
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x <0,
n,, x>0.

The spectral characteristic of the optical divider designed
in this way and shown in Fig. 7 satisfies the requirements
formulated above. The working range is 250 nm, which
makes it possible to use such a divider in femtosecond laser
systems. The difference in the reflectances in the working
range is less than 1 %.

The method considered here can be also used for
calculating other thin-film optical elements like comb filters
or broadband reflecting coatings.
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Figure 7. Structure n(x) of an optical divider and the corresponding
dependence R(/).

4. Conclusions

We have proposed a universal numerical method for
constructing multilayer optical coatings. The possibility
of application of the CWT for describing optical coatings
with a large difference in the refractive indices in the case
when the slowly varying amplitude approximation is
violated is demonstrated. A specific feature of this method
is the possibility of using the harmonic expansion
coefficients of the required function n(x) as design
parameters, which makes it possible to produce local
changes in a certain spectral region and to reduce
substantially the number of parameters being optimised.
The method is simple and descriptive. The possibilities of
the method have been illustrated by the example of
designing a broadband optical divider.
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