
Abstract. The appearance of the harmonic modulation
regime at the Hopf bifurcation point is described analytically
for a delayed-feedback semiconductor laser. The second-order
delay differential equation with complex coefécients is
derived. The frequency of oscillations appearing at the
Hopf bifurcation point is determined by the solution of two
relatively simple transcendental equations, from which the
bifurcation point itself is found. These equations contain
dependences on all the control parameters of the problem.
The exact upper and lower limits of the oscillation frequency
are found. A comparison with numerical results shows that
the modulation frequency is preserved almost constant in a
broad range of feedback phases. A procedure is proposed for
determining the parameters of the laser providing the
presence of bifurcations with a passage to oscillations with
the speciéed frequency. The results obtained in the paper are
of interest for WDM communication systems.
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1. Introduction

A delayed-feedback (DF) semiconductor laser is charac-
terised by a variety of dynamic regimes [1], some of them
being used in optical communication systems [2]. The
complexity of these dynamic regimes is caused by the
presence of two coupled resonators, of which one is formed
by the reêecting end facets of a semiconductor crystal, and
the other ë by a combination of a highly reêecting end facet
of the crystal and an external mirror. Lang and Kobayashi
[3] derived dynamic equations for a laser diode with an
additional external mirror by neglecting the reêection of
incident radiation from the diode facet. The Lang ë
Kobayashi (LK) equations form the basis of modern
theories describing the dynamics of DF laser diodes. The
system of LK equations contains six control parameters,
which results in a variety of dynamic regimes, of which
chaotic regimes are of special interest. The fundamentals of

the theory of external-feedback lasers and the results of
recent studies (till the year 2000) are presented in [1].

The system of LK equations has stationary particular
solutions in which the radiation intensity is independent of
time and the rate of phase variation is determined by the
frequency O found from the system itself. The number of
stationary solutions depends on the control parameters and
can be large. Many of these states prove to be unstable. The
complication of the dynamics of a DF semiconductor laser
with increasing number of stationary solutions was studied
in our paper [4]. One of the results of this paper was the
discovery of the regime of quasi-harmonic intensity self-
oscillations. It was found that the frequency of these
oscillations exceeds the relaxation oscillation frequency
and can be quite high (it lies in the gigahertz frequency
region).

Such regimes with the harmonic modulation of the
radiation intensity can be used in WDM optical commu-
nication systems [2]. The power of a signal at the input to a
channel is limited by nonlinear effects produced in the
optical ébre. As a result, the length of an optical ébre
between two neighbouring ampliéers is limited by
50 ë 100 km. The harmonic modulation of the radiation
power, which expands the spectrum of a signal, allows the
use of input signals of higher powers, thereby increasing the
distance between the ampliéers. Thus, semiconductor lasers
operating in regimes of intensity self-oscillations in the
gigahertz range are of interest for optical communication
systems.

2. Basic equations

The LK equations describing an external-feedback laser
diode in the dimensionless variables have the form [5, 6]

qE
qt
� �1ÿ ia�NE�t� �ME�tÿ t� exp�i�k� p=2��;

(1)

T
qN
qt
� PÿNÿ �1� 2N�jEj2:

The equations were derived by using the frequency
dependence of the éeld in the form exp (ÿ io0t); k� p=2
� o0t(mod2p). Here, a is the linewidth enhancement factor
(antiwaveguide parameter) and t is the delay time in the
feedback loop. All the quantities having the dimensionality
of time are divided by the photon lifetime tph in the diode
resonator of length L; tÿ1ph � (c=n)�aint � (2L)ÿ1 ln rÿ1�; c/n is
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the group speed of light in a medium; aint are internal
losses; r is the reêection coefécient of the crystal facet; and
T � ts=tph is the lifetime of carriers. The gain in the active
medium slightly above the lasing threshold Gth can be
approximately described by a linear function of the carrier
density Nc as G(Nc)=Gth � 1� gtph(Nc ÿNth), where g is
the differential ampliécation in the medium. The rest of the
dimensionless variables are introduced as follows: the éeld
amplitude is E � ( 1

2
gts)

1=2Eph (jEphj2 is the photon density);
the inverse population measured from the threshold is
N � 1

2
gtph(Nc ÿNth); the normalised pump intensity is

P � 1
2 gtph( jts ÿNth), where j � J=ed is the rate of injection

of carriers into the active layer of thickness d ( j is measured
in cmÿ3 sÿ1) for the current density J; the coupling constant
is M � (1ÿ r)�R=r)1=2(ctph=2nL), where R is the reêection
coefécient of the external mirror or the far end of the ébre
taking into account splice, absorption, and diffraction
losses.

The stationary solution is obtained from the conditions
qN=qt � 0; and qE=qt � iEO, where O is the detuning of the
radiation frequency from o0. For this solution,
N=M � sin (kÿ Ot) and PÿN � (1� 2N)jEj2, and the
detuning O is obtained from the equation

O=M�1� a 2�1=2 � sin�Otÿ k� arctan (1=a)�: (2)

3. Regime of harmonic oscillations

Because initial equations (1) have a strict 2p periodicity as a
function of the parameter k, we will study the behaviour of
solutions by varying k within the interval [0, 2p]. Previous
investigations [1, 4] have shown that the number of
stationary solutions increases with increasing the effective
feedback strength s �Mt(1� a 2)1=2. The analysis of the
stability of these solutions is considerably complicated by
the presence of six parameters of the problem (a, M, t; k, P,
T ). The two parameters a and T depend on the material
and design of a semiconductor laser, and we used their
typical values a � 3 and T � 1000. Although stationary
solutions depend formally on time, the analysis of their
stability with respect to small perturbations exponentially
depending on time as exp (lt) is reduced to the system of
three linear equations for variations of the éeld amplitude
and phase and population inversion [1]. Some elements of
the matrix A of this system contain the dependence of the
type 1ÿ exp (ÿ lt) on the eigenvalue l. The value of l is
obtained from the transcendental characteristic equation
det(Aÿ lE ) � 0.

The number of its roots in the case of a small effective
feedback strength is equal to three and increases with
increasing s. The scheme proposed in [4] allows us to
determine the number of l roots falling to the right half
of the complex plane, i.e. the number n of unstable
solutions. As parameters are changed, the roots move in
the complex plane. The instant of intersection of the
imaginary axis by the exponent l corresponds to the
bifurcation point. For the set of parameters presented in
Fig. 1, the stationary solution can be either stable (n � 0) or
unstable (n > 0), depending on the combination of O and k.

Let us put the eigenvalues in order of Rel and study the
phase portrait in the plane of a pair of eigenvectors senior in
Rel. The unstable stationary solutions correspond to the
singularities of three types: the saddle point (n � 1), unstable
focus (n � 2), and unstable (three-dimensional) knot ë focus

(n � 3). The bifurcation (n � 0! 2) is characterised by the
simultaneous creation of the unstable focus and stable limit
cycle. The winding of the phase trajectory on the limit cycle
results in periodic intensity oscillations. The creation of the
limit cycle is called the Hopf bifurcation of the system; in
this case, the two complex conjugate roots simultaneously
intersect the imaginary axis. As k continuously decreases
after the bifurcation point, the amplitude of oscillations
increases if the calculation is started from the solution
obtained for the previous value of k. However, oscillations
disappear near the point k � p, which is indicated in Fig. 1
by the arrow directed upward, and a jump to the stationary
solution occurs, which is preserved as k further changes.

We are interested in the situation when oscillations of
the éeld appear during the passage through the Hopf
bifurcation. As a whole, the scenario of the development
of self-oscillations is complicated, and under some con-
ditions the multistability and hysteresis are observed (the
arrows in Fig. 1 demonstrate the hysteresis found numeri-
cally for many-valued O by varying continuously k). The
solution has often the form of pulses or pulse packets, whose
shape is far from harmonic. In [4], the conditions were
found under which self-oscillations are close to harmonic
oscillations at large enough delay times (t � 80).

For the parameters presented above, the Hopf bifurca-
tion occurs in the vicinity of k � 3p=2. Numerical
calculations performed for P � 0:2, M � 0:02, and t � 80
show that the regime of harmonic oscillations of the éeld
intensity with respect to the stationary level takes place in a
broad range of feedback phases 1:05p < k < 3p=2 (Fig. 2).
In the interval p < k < 1:28p, both periodic and stationary
solutions can be realised. The change of regimes occurs at
the interval boundaries and is determined by the bypass
direction (hysteresis). The change in k after the Hopf
bifurcation point almost does not affect the frequency of
intensity oscillations, while the modulation remains har-
monic up to the amplitude modulation � 1.

Near the bifurcation point (k < 3p=2), equations (1) can
be linearized in small deviations of solutions from stationary
solution (2). Let us represent the éeld in the form E �
Est(1�C), where Est � [P�M sin (Otÿ k)�1=2 exp (iOt),

Ot=s

n � 0

n � 1

n � 2

n � 3

1.0

0.5

0

ÿ0:5

ÿ1:0
0 60 120 180 240 1808kp =deg

Figure 1. Stability diagram of stationary states for P � 0:21, M � 0:02,
and t � 80; n is the number of roots of the characteristic equation with
Rel > 0 (crosses correspond to curves in Fig. 2).
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jCj5 1 and jNj5 1. For a small perturbation C, the delay
differential equation can be derived:

ÿ �C �M� _Cÿ _Ct� exp�ÿiOt� i�k� p=2�� (3)

��1ÿ ia�o 2
r ReC,

where

Ct � C�tÿ t�; o 2
r �

2

T

�
P�M sin�Otÿ k�

�
: (4)

Equation (3) was derived taking into account that the
relaxation oscillation frequency in diode lasers is usually
or 4 1=T. Equation (3) belongs to the class of differential
delay equations. In addition, the appearance of ReC in its
right-hand side leads to the additional coupling between
ReC and ImC (similar situation appears in the problem of
a small-scale focusing [7]). In accordance with the deénition
of the Hopf bifurcation, the perturbation C at the
bifurcation point itself has the form of harmonic oscil-
lations. The oscillation frequency o should be found from
the condition of existence of nontrivial solutions (3). A
direct substitution of solutions in the form of exponentials
with constant complex coefécients gives the system of
transcendental equations of a rather complex structure.

To analyse this system, we study the group properties
(see [8]) of the operator Ltc � d=dt�c(t)ÿ c(tÿ t)�, entering
the right-hand side of equation (3). It is easy to verify that
the action of the operator on the function c � cos (ot) is
reduced to the multiplication by the parameter D �
ÿ2o sin (ot=2) and the backward displacement of the
argument of the initial function by t=2:

Ltc � ÿ2o sin�ot=2� coso�tÿ t=2� � Dct=2:

This circumstance suggests that it is reasonable to seek the
solution of (3) in the form of the linear combination

C � c1 cos�ot� � c2 coso�tÿ t=2�: (5)

The action of the operator Lt on the second term in (5)
produces a function of an argument delayed by t. To express
this function in terms of the functions introduced above,

note the following. The action of the operator Lÿt changing
the sign of the shift t produces the function with the
argument shifted forward by t=2: Lÿtc � ÿDcÿt=2. The
action of the difference of operators (Lt ÿ Lÿt) retains the
argument of the harmonic function:

(Lt ÿ Lÿt)c�t� � ÿ2o sin�ot�c�t� � Bc�t�: (6)

By using this property, we can express the result of the
action of the operator Lt on coso(tÿ t=2) in terms of
functions introduced in (5): Ltct=2 � �Lÿt � (Lt ÿ Lÿt)�
�ct=2 � ÿDc� Bct=2.

Thus, operators in Eqn (3) acting on linear combination
(5) retain the expansion form. Generally speaking, the
coefécients c1 and c2 are complex numbers for which
Eqn (3) is reduced to the homogeneous system of linear
equations. Without loss of generality, the coefécient c2 can
be chosen purely imaginary (c2 � iy). By substituting the
solution in form (5) into Eqn (3) and using the properties of
the operator Lt described above and the linear independence
of functions cos (ot) and coso(tÿ t=2), we obtain the
homogeneous linear system of equations for the
coefécients c1 and y:

o2c1 �M exp�ÿiOt� ik�Dy� �1ÿ ia�o2
rRec1; (7)

exp�iOtÿ ik�o2y �MDc1 � iMBy: (8)

By equating real parts in Eqn (8), we énd the relation
between y and Rec1:

o 2y cos�Otÿ k� �MDRec1: (9)

Then, by substituting this expression for y into Eqn (7)
and equating real parts, we énd one of the conditions for the
existence of the nontrivial solution of (3):

f1�o� � ÿo2 � o2
r �M 2D 2oÿ2

� ÿo2 � o2
r � 4M 2 sin2�ot=2� � 0. (10)

The second condition, which follows from Eqns (7) and (8),
contains the explicit dependence on a:

f2�o� � o2 � �Mo sin�ot� sinÿ1�Otÿ k��

ÿ 1

2
o2

r �1ÿ a tanÿ1�Otÿ k�� � 0: (11)

Thus, according to (10), o2 � o2
r � 4M 2 sin2(ot=2). This

relation gives exact upper and lower boundaries for the
frequency of small harmonic oscillations o: or 4o4 (o2

r�
4M 2)1=2 for the speciéed value of or.

Relations (10) and (11) determine the oscillation fre-
quency and position of the Hopf bifurcation point.
Functions f1 and f2 are constructed in Fig. 3 for k �
3p=2, P � 0:2, M � 0:02 and t � 80. The functions f1
and f2 vanish at the bifurcation point; in this case, the
frequency o is 0.044, which is approximately equal to 2:2or.
For the parameters selected and the photon lifetime in the
diode resonator tph � 1 ps, the oscillation frequency is
7 GHz. This coincides with the value obtained by the direct
numerical integration of LK equations with the help of the
program described in [4].

1808k=p � 2408
1808k=p � 2708

E=P 1=2

1.5

1.0

0.5

0
199.0T 199.2T 199.4T 199.6T 199.8T t

Figure 2. Field amplitude for 1808k=p � 2408 and 2708 for P � 0:2,
M � 0:02, and t � 80.
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As the pump intensity is decreased (P < 0:2), the
functions f1 and f2 no longer vanish simultaneously at
the point k � 3p=2, i.e. the Hopf bifurcation is absent
because the stationary solution O � 0:2M(1� a2)1=2

becomes stable. As the pump intensity P is increased, the
region of instability with respect to the Hopf bifurcation (see
the middle branch with n � 2 in Fig. 1) expands, and for
P � 0:2 the boundary of this region intersects the point
k � 3p=2. The direct numerical integration of LK equations
showed that the amplitude of intensity oscillations increased
with further increasing the pump intensity, which is
explained by the moving of the bifurcation point to the
right (see Fig. 1). For P � 0:2, harmonic oscillations were
preserved in a broad range of k: 4p=3 < k < 3p=2 (see
Fig. 2). The distortions of the harmonic modulation were
small over the entire interval 1:05p < k < 3p=2 of the
existence of oscillations.

The dependences of the frequency and square of the
amplitude of éeld oscillations on the feedback phase
obtained by the numerical integration of LK equations
are presented in Fig. 4. One can see from Fig. 4 that the
frequency decreases almost linearly with decreasing k in the
entire range of feedback phases, and its relative change does
not exceed 2.7%, whereas the square of the oscillation
amplitude E 2

mod increases up to 0.36 [here, Emod �
(Emax ÿ Emin)=2]. The dependences presented in Fig. 4
can be found analytically by taking into account nonlinear
corrections to Eqn (3). Nonlinear corrections, as the anhar-
monicity of oscillations in classical mechanics, cause the
shift of the oscillation frequency, which increases with
increasing the oscillation amplitude. Taking into account
the quadratic nonlinearity, the perturbation theory leads to
the renormalisation of the relaxation frequency
~o2
r � o2

r (1ÿ I ), where I � E 2
mod. In this case, the form of

Eqn (3) is preserved, and only the substitution o2
r ! ~o2

r

takes place. The same renormalisation or also occurs in
Eqns (10) and (11) determining the oscillation eigenfre-
quency. For a small vicinity of the bifurcation point in
Fig. 4, the expressions

1

o
Do
DI
� ÿ o2

r

2o2
;

1

o
Do
Dk
� a

4

�
o
2M
ÿ 2M

o

�2
can be derived for the rate of the frequency variation as
functions of I and k, respectively. The numerical estimate

gives I � ÿ0:3Dk, whereas Do=o � 0:03Dk. Thus, the
relative change in the frequency is indeed much smaller
than the change in the modulation amplitude.

Equations (10) and (11), determining the position of the
bifurcation point and the oscillation frequency, can be used
to obtain explicitly the parameters of the laser providing the
maximum oscillation frequency

oi �
p
t

�
2i� 1

�
�
�
o2

r � 4M 2

�1=2
;

where i is an integer. By specifying oi and ®, we can
determine the relaxation frequency. The phase entering the
equation for the stationary frequency O can be found from
the expression

tan�kÿ Ot� � ao2
r

2o2
i ÿ o2

r
� w:

By using the latter expression and (2), we can énd the
explicit expression for O:

Ot
s
�
�
wÿ 1

a

��
�1� w2�

�
1�

�
1

a

�2 ��ÿ1=2
:

The pump intensity corresponding to the chosen values of
oi and ® can be found from expression (4) for or. For
example, for i � 1, M � 0:035, t � 80 (s � 8:85), and the
photon lifetime 1 ps, we have f1 � o1=2ptph � 18.75 GHz.
This oscillation frequency is achieved for the pump intensity
P � 4:49, which corresponds to the fourfold excess of the
pump current over the threshold. The frequency of the
stationary solution at the bifurcation point is O=2ptph �
10:5 GHz and k � 1808. The numerical calculations
conérmed the presence of the bifurcation point and
solution oscillating at the frequency 19 GHz. The above-
described method for énding bifurcation points with the
high oscillation frequency of the obtained solutions should
be accompanied by a direct numerical calculation because
we are interested only in bifurcations from a stable
stationary solution. The expressions derived above also
describe the cases when bifurcation occurs from the
unstable (i.e. non-realised) stationary solution.

f1

f2

f1; f2

0.0008

0.0006

0.0004

0.0002

0

0.020 0.025 0.030 0.035 0.040 o

Figure 3. Plots of functions f1(o) and f2�o).
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Figure 4. Plots of the functions of the frequency detuning Do=o and
square of the éeld-modulation amplitude E 2

mod (k < 1:51p).
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4. Conclusions

By analysing the operation of an external-feedback semi-
conductor laser in the approximation of Lang ëKobayashi
equations, we have described the oscillatory solution
appearing at the Hopf bifurcation point when stationary
solutions become unstable. The delay differential equation
describing the harmonic modulation of the laser radiation
power has been derived and the method for its solution has
been proposed. A relatively simple transcendental equation
has been obtained from this equation, which gives the
upper and lower boundaries of the oscillation frequency for
the speciéed parameters of the laser. The procedure has
been proposed for determining the parameters of the laser
providing the presence of the bifurcation passing to
oscillations at the speciéed frequency. In particular, for
the photon lifetime in the diode resonator tph � 1 ps, the
parameters of the laser are found and its operation regime
is indicated in which oscillations occur at a frequency of
19 GHz, which can be of interest for WDM optical
communication systems.
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