
Abstract. The dependence of the focal-spot size of a `deep'
parabolic mirror reêector on the laser-beam divergence is
analysed by the method of elementary reêections. The depen-
dence of the focal-beam diameter of an ideal focusing optical
system on the laser-beam parameters is described. The
expression is obtained for calculating the illumination dis-
tribution in the focal spot of a `deep' mirror reêector which
takes into account both aberrations and light-gathering power
of the reêector and the divergence of a focused laser beam.

Keywords: Wigner function, laser-beam divergence, parabolic
reêector, focusing.

1. Introduction

The interaction of light with matter depends both on the
laser radiation power and possibility to concentrate radia-
tion on an area of minimum size. Radiation is concentrated
by using wide-aperture focusing optical systems, as a rule, a
`deep' parabolic reêector. The methods of calculating the
illumination distribution in the focal spot of a parabolic
reêector applied at present in laser technologies take into
account aberrations of the reêector [1, 2] and polarisation
of the focused radiation [3, 4] but neglect the main factor ë
the divergence of the focused wave beam.

The necessity of considering the divergence of a light
beam in calculations of the transfer and concentration of
light energy in optical systems is presented in a bitter
polemic form by Slyusarev in his book `On Possible and
Impossible in Optics' [5]. The radiometric approach pro-
posed in [5] emphasises that only a parallel pencil of light
rays (plane wave) can be focused to a point, but it cannot
carry energy. The energy can be carried by a diverging pencil
of rays, but it cannot be focused to a point. From this
radiometric point of view, nearly diffraction-limited wave
beams emitted by lasers can carry energy only due to their
divergence.

Traditional radiometry uses the theoretical concepts of a
variety of technical disciplines: the energy calculations of
optical systems, lighting technology, the theory of thermal

radiation, etc. [6]. In addition, many theoretical concepts of
traditional radiometry are based on a priori assumption of
the Lambert radiation pattern of sources. To order logically
the construction of the radiometry theory and generalise its
results to sources with a non-Lambert radiation pattern (in
particular, lasers), the basic relations of this theory were
derived in [7] from Hamiltonian optics. This approach is
called in the literature [8] `the description of radiation energy
transfer in the phase space'. Another, alternative approach
to the construction of the theory of generalised radiometry
of non-Lambert sources, in particular, laser beams based on
Fourier optics, the theory of a partial coherence, and the
mathematical properties of the Wigner function was pro-
posed by Walther [9]. It is important that the mathematical
formalism of both theories of the so-called generalised
radiometry was borrowed from mechanics and therefore
they mutually supplement and enrich each other. The
Hamiltonian radiometry allows the use of the mathematical
apparatus of calculation optics (the eikonal theory) for
energy calculations, while the generalised Walther radio-
metry reénes the region of applicability of relations of the
Hamiltonian radiometry in the case of diffraction-limited
laser wave beams.

In this paper, the inêuence of the laser-beam divergence
on the focal-spot size in the focus of an optical system is
analysed based on the concepts of generalised radiometry
and the expression is derived for calculating the illumination
distribution in the focal spot, which takes into account both
aberrations of a wide-aperture mirror reêector and the
divergence of the focused laser beam.

2. Method of elementary reêections

Let us estimate the inêuence of the divergence of a wave
beam on the focal-spot size produced by a `deep' mirror
reêector. The dimensions of a laser reêector expressed in
wavelengths are approximately the same as those in
microwave antennas, and therefore a laser wave beam
can be represented in calculations of reêectors as a pencil of
light rays with a low divergence satisfying the laws of
geometrical optics [10, 11].

Before proceeding to the solution of the problem under
study, we consider the solution of the inverse problem of
estimating the inêuence of the size of a spherical luminous
body on the divergence of a beam produced by a `deep'
mirror reêector. In lighting and laser technologies, a para-
bolic reêector is widely used as a `deep' mirror reêector. The
speciéc property of this reêector is that the pencil of rays
from a point source located at the focus F of the reêector is
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reêected parallel to its optical axis [12]. The meridional cross
section of this reêector is a parabola, which is described in
the polar coordinate system Rj centred at the point F by the
equation

R�j� � 2f

1� cosj
,

where f is the focal distance of the parabolic reêector. The
inêuence of the size of a spherical luminous body on the
divergence of a beam reêected from a mirror reêector is
calculated in lighting technology by the method of
elementary reêections [13], in which each point P of the
mirror reêector is considered as the centre of two
elementary homocentric pencils of rays: incident from the
spherical source and reêected to space (Fig. 1). According
to the law of reêection, the solid angles of these
homocentric pencils are equal; therefore, if a point source
located at the focus of the parabolic reêector is replaced by
a spherical source, the point ²(R,j) of this reêector will
emit the homocentric pencil of rays with the axis directed
along the symmetry axis of the parabola and the divergence

Y�j� � d

R�j� � Y0�1� cosj�,

where Y0 � d=(2f ) is the divergence of a paraxial pencil of
rays and d is the diameter of the spherical source.

Let us return to the initial problem when a pencil of
uniformly diverging rays (Y0 � const) is incident on the
parabolic mirror reêector. In this case, the size d(j) of the
focal beam produced by a thin pencil of parallel rays
incident on the parabolic reêector in the vicinity of the
point ²(R,j) increases with distance from the point P to the
paraboloid focus F, i.e. with increasing the angle j:

d�j� � 2fY0

1� cosj
.

The change in the focal-spot size is so large that, unlike a
lens, a `deep' wide-aperture reêector cannot produce the
distinct image of an object. (The focal spot at the focus of
the parabolic reêector represents a superposition of focal
spots formed by the elementary pencils of parallel rays.)

3. The Wigner function and phase brightness

The parameters of laser beams, in particular, their
divergence are measured at present according to interna-

tional standards [14 ë 16] based on the mathematical
properties of the Wigner function. Let us describe the
relation of the divergence and the possibility of laser-beam
focusing with the properties of the Wigner function in more
detail.

Consider for simplicity the one-dimensional case in the
scalar quasi-monochromatic approximation, i.e. neglect
polarisation effects and the spectrum of radiation. Let us
assume that the z axis approximately coincides with the
propagation direction of radiation and the x axis is
perpendicular to it. Under these assumptions, the wave
éeld in the laser-beam cross section is described by the
complex amplitude U(x), where x is the spatial coordinate.
The spatial coherence of this light wave is characterised by
the two-point correlation function ë the mutual intensity

G�x1; x2� � hU�x1�U ��x2�i.
Here, the angle brackets denote averaging over an
ensemble, and the asterisk � means complex conjugation.
By passing to the average variable x � (x1 � x2)=2 and the
difference variable z � x2 ÿ x1 and using the Fourier
transform over the difference variable, we can obtain the
characteristic of the spatial coherence of radiation ë the
Wigner distribution function [9, 17]

W�x; u� �
�1
ÿ1

G
�
x� z

2
; xÿ z

2

�
exp�ÿizu�dz (1)

(where u is the spatial frequency), which is mathematically
equivalent to the mutual intensity but is more convenient.

For example, if the wave éeld in the cross section of the
diffraction-limited Gaussian beam is described by the
expression [17]

U�x� �
�

2

r 2

�1=4
exp

�
ÿ p
r 2
�xÿ x0�2 � iu0x

�
,

where r is the positive quantity, the Wigner function W G of
this wave éeld takes the form

W G�x; u� � 2 exp

�
ÿ 2p
r 2
�xÿ x0�2 ÿ

r 2

2p
�uÿ u0�2

�
. (2)

The level line at the 1/e height of the function W G has the
shape of an ellipse with the centre at the point x0, u0 in the
xu plane and symmetry axes directed parallel to the
coordinate axes x and u. The projections of the function
W G in planes Wx and Wu have the Gaussian shape, i.e. the
root-mean-square width of the beam is

sG
x �

�
1

2

r 2

2p

�1=2
,

and the root-mean-square width of the spectrum is

sG
u �

�
1

2

2p
r 2

�1=2
.

It follows from the symmetry of the widths sG
x and sG

u that
the identity

sG
x sG

u �
1

2
(3)

is valid for a Gaussian wave beam.

Mirror reêector
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Y
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j

d

Figure 1. Scheme of elementary reêections in the case of a parabolic
reêector.
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The Wigner function of the wave éeld in an arbitrary
cross section of a real laser beam in the xu plane also usually
has the shape of an ellipse, but the product of its root-mean-
square sizes (3) is greater than (or equal to) 1/2, while its
symmetry axes doe not coincide in the general case with the
coordinate axes x and u.

It is known that if a plane monochromatic wave with the
wavelength l in vacuum is incident normally on a sinusoidal
diffraction grating with the period d0, the diffracted wave is
deêected through the angle y (Fig. 2). In this case, the
projection k? � kn sin y of the wave vector k on the
diffraction grating in an optically homogeneous medium
with the refractive index n is equal to the spatial frequency
u � 2p=d0 of this grating [18]:

u � k? � kp, (4)

where p � n sin y is the `momentum' (optical unit vector)
and k � jkj � 2p=l is the wave number. Thus, for a éxed
wavelength in vacuum l � 2p (here l is normalised for
convenience so that k � 1) and k > u, the `momentum' p of
the diffracted wave is proportional to the spatial frequency
u of the diffraction grating. This proportionality, which is
known as the `dual meaning of spatial frequencies' [19],
allows one to go over easily from the concepts of wave
optics to the concepts of Hamiltonian optics and radio-
metry.

The radiation êux (power) F from a source in the one-
dimensional Hamiltonian radiometry is distributed over the
coordinate x and `momentum' p 2 �ÿn, n�]. The distribution
of the radiation êux F in the phase xp plane is described by
the phase brightness [7]:

d2F � b�x; p�dxdp. (5)

Expression (4) relates the phase brightness b(x, p) in (5)
with the Wigner function W (x, u) (1) by the similarity
transformation

b�x; p� � kW�x; kp�wn�p�, (6)

where

wn�p� �
1 for j pj4 n;

0 for j pj > n:

�

The proportionality between p and u allows us to use the
phase brightness instead of the Wigner function.

Note that the dual meaning of spatial frequencies
described by expression (4) allows us to write identity
(3), which is valid for diffraction-limited Gaussian wave
beams, not in the coordinate-frequency representation but
in the coordinate-momentum representation:

sG
x sG

p �
sG
x sG

u

k
� 1

2k
� l

4p
. (7)

Consider the matrices of the érst and second moments of
the phase brightness [16 ë 18]

�x
�p

� �
�
�1
ÿ1

� n

ÿn
x
p

� �
b�x; p�dxdp

� �1
ÿ1

� n

ÿn
b�x; p�dxdp

�ÿ1
,

S � s 2
x mxp

mpx s 2
p

 ! (8)

�
�1
ÿ1

� n

ÿn
�xÿ �x��xÿ �x�� �xÿ �x��pÿ �p��
�pÿ �p��xÿ �x�� �pÿ �p��pÿ �p��

� �
b�x; p�dxdp

�
� �1
ÿ1

� n

ÿn
b�x; p�dxdp

�ÿ1
.

Note that square roots from the elements of the leading
diagonal of the beam matrix S characterise the beam width
sx and its divergence sp.

In matrix optics [20, 21], the position and orientation of
a light beam in the meridional plane of an optical system is
described by the column matrix and its transformation in
the optical system is described by the ABCD matrix:

x 0

p 0

� �
� A B

C D

� �
x
p

� �
. (9)

Hereafter, primed variables are related to the image space
of the optical system, while non-primed variables are
related to the object space. After the propagation of the
wave beam through the optical system, the phase brightness
of the beam and the corresponding matrix S change. The
transformation of the matrix of second moments S (8) after
the propagation of the beam trough the ABCD system (9) is
described by the expression [16 ë 18]

s 2
x 0 mx 0p 0

mp 0x 0 s 2
p 0

� �
� A B

C D

� �
s 2
x mxp

mpx s 2
p

� �
A C
B D

� �
. (10)

Note that, because the determinant of the ABCD matrix is
unity [20, 21],

det
A B
C D

� �
� det

A C
B D

� �
� 1,

the determinant of the matrix S of second moments of the
phase brightness is the same in an arbitrary cross section of
the wave beam [18]:

det
s 2
x 0 mx 0p 0

mp 0x 0 s 2
p 0

 !
� det

A B
C D

� �
det

s 2
x mxp

mpx s 2
p

 !
�

k

k?
k

d0

y

Figure 2. Dual meaning of spatial frequencies.
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� det
A C
B D

� �
� det

s 2
x mxp

mpx s 2
p

 !
� I 2 � const.

Thus, the determinant I of the matrix of second moments is
an invariant of the laser beam (analogue of the Lagrange ë
Helmholtz invariant [21] in classical optics).

It is known that the wave-beam waist is formed in the
vicinity of the image focal point of a focusing optical system.
The waist region has the mirror-symmetry plane ~z in which
the so-called generalised beam waist is located [16]. Consider
the level line at the 1/e height of the phase brightness of a
real laser beam in the phase plane ~x ~p corresponding to the
generalised beam waist. This level line for Wigner function
(2) of a Gaussian wave beam has the shape of an ellipse with
symmetry axes coinciding with the coordinate axes of the
phase plane ~x ~p, and therefore the corresponding matrix S of
second orders is diagonal:

I � det
s 2
x mxu

mux s 2
p

 !
� det

s 2
~x 0

0 s 2
~p

 !
� s 2

~xs
2
~p . (11)

Thus, it is in this symmetry plane ~z that the invariant I of
the laser beam can be calculated most simply. In particular,
according to equality (7), the invariant of the Gaussian
wave beam in the symmetry plane ~z is

I G � s~xs~p �
l
4p

. (12)

4. The M 2 factor

Because a diffraction-limited Gaussian laser beam is the
ideal beam, its invariant IG is always smaller than that for a
real laser beam:

I5 I G � l
4p

. (13)

Because of this, it is convenient to characterise a real wave
beam by the M 2 factor [15, 16] representing the ratio of the
invariant I of a real laser beam to the invariant IG of the
reference diffraction-limited Gaussian beam:

M 2 � I

IG
�
�

detS
detSG

�1=2
� 4p

l
�detS�1=2 � 4p

l
s~x; s~p. ( 14)

In the small-angle approximation (p � ny), expression (14)
can be written in a more customary form [14]

M 2 � I

IG
� pn

l
dY
4

. (15)

In the one-dimensional case under study, the `generalised
diameter' [16] d and the `generalised angular divergence' Y
are determined by the expressions

d � 4sx, Y � 4

n
sp.

Let us show that the M 2 factor characterises the
possibility of focusing a real laser beam. For this purpose,
we consider the ideal optical system with the focal distance f,
in which a real wave beam and, for comparison, a
diffraction-limited beam of the same diameter D are

focused. The divergence of the wave beam determines
the ratio of the beam diameter D to the object focal distance
f of the optical system, and therefore the divergences of the
real (d � 4sx 0 ) and Gaussian (d G � 4sG

x 0 ) beams are the
same (Fig. 3):

4sp 0 � 4sG
p 0 � nY � D

f
. (16)

In this case, the M 2 factor is equal to the ratio of the
`generalised diameters' of focal spots of the real (d � 4sx 0 )
and Gaussian (d G � 4sG

x 0 ) laser beams:

M 2 � d

dG
. (17)

The product dY of the beam parameters used to
calculate the M 2 factor can be measured by two methods.

Single-lens measurement method. The required waist
region of a wave beam is formed in the vicinity of the
image focal plane of the ideal optical system. The diameter
d of the wave beam and its angular divergence Y can be
measured in the symmetry plane ~z of the waist [14 ë 16]
(Fig. 4).

Two-lens measurement method. To simplify the measure-
ment of the angular divergence Y of the laser beam in the
symmetry plane of the waist, we place the second optical
system behind the érst focusing system so that the object
focal plane of the second optical system would coincide with
the symmetry plane of the waist. It is known that the
illumination distribution in the image focal plane of the
second optical system produced by a diverging wave beam is
the same as that produced by a point source with the same
divergence located at the back node plane N 0 of this optical
system [22, 23]. Therefore, by measuring the wave-beam
diameter df in the image focal plane of the second optical
system (Fig. 5), we obtain the required angular divergence Y
from the expression

Y � df
f2
. (18)

D

f

dG d

Y

Figure 3. Effect of the M 2 factor on the focal-spot size.

f

d

Y

Figure 4. Scheme illustrating the single-lens method for measuring dY.
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The wave-beam diameter d is measured, as before, in the
symmetry plane of the waist formed by the érst focusing
system [24] (Fig. 4).

5. Calculation of the illumination distribution
in the focal spot of a wide-aperture focusing
optical system

The size of the focal spot of a real focusing system, for
example, of a `deep' parabolic reêector depends not only on
the divergence of the laser beam being focused but also on
its aberration. Therefore, the M 2 factor is useless for the

calculation of the focal-spot size of a wide-aperture mirror
reêector. Let us derive the expression for calculating the
illumination distribution in the focal spot of a wide-
aperture mirror reêector.

Let us assume that we know the phase brightness b(x, p)
of a laser beam in the object plane of a mirror reêector. It is
known that aberrations of an optical system, in particular,
of a mirror reêector are completely characterised by the
point eikonal S(x, x 0f ) ë the optical length of the shortest
path connecting a point x in the object plane with a point x 0f
in the image focal plane (Fig. 6). The point eikonal has the
differential properties [20]:

p � ÿ qS�x; x 0f �
qx

, p 0f � ÿ
qS�x; x 0f �

qx 0f
. (19)

By knowing the point eikonal S(x, x 0f ) of the focusing

optical system and its aperture angle in the image plane 2a 0

and using expressions (5) and (19), we obtain the required
expression for calculating the inêuence of the Wigner
function of the laser beam in the object plane on the
distribution of the éeld E in the focal spot of the focusing
optical system [7, 21, 25 ë 27]:

E�x 0f � �
dF
dx 0f
�
�1
ÿ1

b

�
x;ÿ qS

qx

�
wa 0
�

qS
qx 0f

����� q 2S

qx qx 0f

����dx, (20)

where

wa 0 �p 0f � �
1 for j p 0fj4a 0;
0 for j p 0fj > a 0:

�
6. Generalisation of the results
to the two-dimensional case

Consider the two-dimensional generalisation of the
obtained results to the case of an axially symmetric optical
system and a light beam with coordinates x and y in the
cross section z. The propagation direction of the beam is
described by two optical unit vectors (`momenta') p �
n sin yx and q � n sin yy. In this case, the érst- and second-
order matrices of the phase brightness b(x, y, p, q) take the
form

�x
�y
�p
�q

0BB@
1CCA � �1ÿ1

�1
ÿ1

� n

ÿn

� n

ÿn

x
y
p
q

0BB@
1CCAb�x; y; p; q�dx dy dp dq

�
� �1
ÿ1

�1
ÿ1

� n

ÿn

� n

ÿn
b�x; y; p; q�dx dy dp dq

�ÿ1
,

respectively. The determinant of the second-order matrix of
the Hamiltonian brightness is the invariant of the laser
beam, and therefore its M 2 factor can be calculated by the
expression

M 2 � 4p
l
�detS�1=4

or by expression (15), if the `generalised diameter' and the
`generalised angular divergence' of the beam are calculated
by the expressions [14 ë 16]

d � 2
���
2
p ÿ

s 2
x � s 2

y

�1=2
, Y � 2

���
2
p

nÿ1
ÿ
s 2
p � s 2

q

�1=2
.

The two-dimensional generalisation of expression (20)
can be easily obtained in the form

d

N 0

df

Y

f1 f2 f2

Figure 5. Scheme illustrating the two-lens method for measuring dY.

S �
s 2
x mxu mxp mxq

myx s 2
y myp myq

mpx mpy s 2
p mpq

mqx mqy mqp s 2
q

0BB@
1CCA � �1ÿ1

�1
ÿ1

� n

ÿn

� n

ÿn

�xÿ �x��xÿ �x�� �xÿ �x��yÿ �y�� �xÿ �x��pÿ �p�� �xÿ �x��qÿ �q��
�yÿ �y��xÿ �x�� �yÿ �y��yÿ �y�� �yÿ �y��pÿ �p�� �yÿ �y��qÿ �q��
�pÿ �p��xÿ �x�� �pÿ �p��yÿ �y�� �pÿ �p��pÿ �p�� �pÿ �p��qÿ �q��
�qÿ �q��xÿ �x�� �qÿ �q��yÿ �y�� �qÿ �q��pÿ �p� �qÿ �q��qÿ �q��

0BB@
1CCA

�b�x; y; p; q�dx dy dp dq
� �1
ÿ1

�1
ÿ1

� n

ÿn

� n

ÿn
b�x; y; p; q�dx dy dp dq

�ÿ1
,

Mirror reêector

x

x 0f

F

Figure 6. Coordinates x and x 0f of a light beam in the object plane and
the focal plane of a mirror reêector, respectively.
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E�x 0f ; y 0f � �
�1
ÿ1

�1
ÿ1

b

�
x; y;ÿ qS

qx
;ÿ qS

qy

�
�

wa 0
���

qS
qx 0f

�2
�
�

qS
qy 0f

�2 �1=2�
det

q 2S

qx qx 0f

q 2S

qx qy 0f
q 2S

qy qx 0f

q 2S

qy qy 0f

0BB@
1CCAdx dy,

where S (x, y, x 0f , y
0
f ) is the point eikonal of a two-dimen-

sional optical system.
Thus, the expression has been proposed in this paper for

calculating the radiation intensity distribution in the focal
spot of a mirror reêector taking into account its aberrations
[the point eikonal S (x, y, x 0, y 0)], the light-gathering power
(the aperture angle 2a 0 in the image space), and the laser-
beam divergence [the phase brightness b(x, y, p, q)].
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