
Abstract. The geometrical and wave approaches to the
transformation of a family of the illumination distributions,
measured at different sections of a laser beam focused by an
optical system, to a family of different-aspect projections of
the Wigner function of this beam required for the recon-
struction of this function by the method of computer
tomography are considered from a uniéed point of view by
using the mathematical apparatus of matrix optics.

Keywords: Wigner function, phase-spatial tomography, fractional
linear Fourier transform, matrix optics.

1. Introduction

The Wigner function has been used in quantum mechanics
beginning from the 1930s. In 1968 Walter began to use the
Wigner function in optics and showed that the two division
of optics, which had been considered before independent ë
the theory of the partial spatial coherence and radiometry
of non-Lambert sources, have in fact the general subject for
investigations, namely, the radiation energy transfer from
sources with the non-Lambert directivity diagram, in
particular, from laser sources [1]. The Wigner function is
used in modern international standards to describe the
energy structure of a laser beam because only this function
can provide a uniéed description of experimentally control-
lable beam parameters such as its diameter, divergence, M 2

factor, etc. [2 ë 4].
The photosensitive area of an array detector (for

example, a charge-coupled device (CCD) [5]) is not
angle-selective and detects only the radiation intensity
distribution in the laser beam cross section where it is
placed. Therefore, such a photodetector cannot be used to
measure directly the Wigner function of a laser beam
speciéed in the coordinate ë spatial frequency phase plane,
where the coordinate corresponds to the coordinate of the
cross section plane. The illumination distribution measured
with a detector can be treated as the orthogonal projection
of the Wigner function on the coordinate axis.

There exists a special class of optical systems in which
the Wigner function of a propagated laser beam turns in the
phase plane through some angle j depending on the optical
system parameters [6]. Therefore, a photodetector whose
photosensitive area is placed in the output plane of such an
optical system will measure the projection of the Wigner
function speciéed in the input plane of the optical system
with the projection (aspect) angle j.

In the simplest one-dimensional case of the meridional
section of a laser beam, the Wigner function is a three-
dimensional object speciéed in the phase plane at the optical
system input, while the intensity distribution detected with a
detector at the optical system output is its two-dimensional
projection with the aspect angle j. A three-dimensional
object can be reconstructed from a family of its different-
aspect two-dimensional projections by the method of
computer tomography [7]. A variant of computer tomog-
raphy in which the required Wigner function of a laser beam
in the input plane of the optical system is calculated from a
family of illumination distributions measured in the output
plane of the optical system by varying its parameters is
called the method of phase-spatial tomography [8 ë 10]. The
speciéc feature of this method is that the mechanical
rotation of an object in the real space is replaced by the
optical rotation of the Wigner function in the imaginary
phase space.

However, to create an optical system allowing the
rotation of the Wigner function in the phase space, it is
necessary to have a variable-focus lens [6]. The role of such a
lens is fulélled by a multilens objective or a deformable
mirror. The use of such nonstandard optical elements leads
to a considerably increase in the cost of the device and,
which is most important, to the distortion of the laser beam
structure. For this reason, simpler optical systems with usual
lenses are employed in practical studies. The illumination
distribution in the output plane of such systems can be
recalculated to the projection of the required Wigner
function of a laser beam [8 ë 10]. Calculations of this
type can be performed by using two alternative approaches.
The érst one is based on wave optics and uses the
mathematical apparatus of Fourier optics [8, 9], while the
second one is based on geometrical optics and employs the
mathematical apparatus of matrix optics [10].

The aim of this paper is to consider from a uniéed point
of view the known geometrical and wave approaches to the
calculation of optical systems intended for practical realisa-
tion of the method of phase-spatial tomography by using the
mathematical apparatus of matrix optics.

A.V. Gitin Max-Born-Institut f�ur Nichtlineare Optik und
Kurzzeitspektroskopie, Max-Born-Str. 2A, 12489 Berlin, Germany;
web-site: www.mbi-berlin.de; e-mail: andrey.gitin@gmx.de

Received 29 December 2005; revision received 13 June 2006
Kvantovaya Elektronika 37 (1) 85 ë 91 (2007)
Translated by M.N. Sapozhnikov

PACSnumbers: 42.30.Wb; 42.60.Jf
DOI:10.1070/QE2007v037n01ABEH013271

Optical systems for measuring the Wigner function
of a laser beam by the method of phase-spatial tomography

A.V. Gitin

045/191 ëVOLO ë 13/iii-07 ë SVERKA ë 7 ÒÑÎÑÔ ÍÑÏÒ. å 1
Quantum Electronics 37 (1) 85 ë 91 (2007) ß2007 Kvantovaya Elektronika and Turpion Ltd



2. Wigner function of a laser beam

We will restrict our consideration to the scalar quasi-
monochromatic approximation, by neglecting polarisation
effects and the spectrum of radiation, and will study for
simplicity the one-dimensional case corresponding to the
meridional cross section of a laser beam in an optical
system consisting of cylindrical lenses with parallel gen-
eratrices. Consider a scalar quasi-monochromatic one-
dimensional light wave propagating along the z axis. The
wave éeld speciéed in the orthogonal cross section z can be
described by the complex amplitude U(x) or complex
spectrum ~U(u), where x and u are the spatial coordinate and
frequency, respectively. These descriptions are equivalent:

~U�u� � Fx!ufU�x�g, U�x� � F ÿ1u!x

�
~U�u�	, (1)

because they are related by the Fourier transform

Fx!uf. . .g �
�1
ÿ1
f. . .g exp�ÿiux�dx,

F ÿ1u!xf. . .g � 1

2p

�1
ÿ1
f. . .g exp�iux�du.

The spatial coherence of this light wave is characterised
by two-point correlation functions ë the mutual intensity

G�x1; x2� � hU�x1�U ��x2�i (2a)

or the mutual spectrum

~G�u1; u2� �



~U�u1� ~U ��u2�
�
. (2b)

Here, the angle brackets denote averaging over an ensemble
and the asterisk denotes complex conjugation.

By introducing mean variables x � (x1 � x2)=2, u �
(u1 � u2)=2 and difference variables z � x2 ÿ x1, x �
u2 ÿ u1 and using the Fourier transform from difference
variables, it is easy to obtain from correlation functions (2a)
and (2b) the mathematically equivalent to them but more
convenient characteristic of the spatial coherence of radi-
ation ë the Wigner distribution function [1, 11, 12]:

W�x; u� � Fz!u

�
G
�
x� z

2
; xÿ z

2

��

� F ÿ1x!x

�
~G
�
u� x

2
; uÿ x

2

��
. (3)

In particular, by combining expressions (1) ë (3), we obtain
the Wigner function in the explicit form in the coordinate
representation:

W�x; u� �
�1
ÿ1

U

�
x� z

2

�
U �
�
xÿ z

2

��
exp�ÿiuz�dz. (4)

The Wigner function has many useful properties. By
integrating this function with respect to the coordinate x
and spatial frequency u, we obtain the radiation êux F�1

ÿ1

�1
ÿ1

W�x; u�dxdu � F,

by integrating it with respect to the coordinate x, we obtain
the radiation intensity distribution I(u) over spatial frequen-
cies:�1

ÿ1
W�x; u�dx �

D�� ~U�u���2E � I�u�, (5a)

and by integrating this function with respect to the spatial
frequency u, we obtain the illumination distribution E(x):�1

ÿ1
W�x; u�du � 
jU�x�j2� � E�x�. (5b)

It is known that Wigner function (4) can take negative
values, but illumination distribution (5b) is always a
nonnegative function.

3. Projection of the Wigner function
with the aspect angle u and the fractional
Fourier transform

By choosing the system of units in which the wavelength l
of monochromatic radiation is éxed and equal to 2p, for
example, we pass to the dimensionless coordinates x and u.
Consider the Cartesian coordinate system xjuj in the
dimensionless phase space, which is turned through an
arbitrary angle j in the counterclockwise direction with
respect to the initial coordinate system xu. These coordinate
systems are related by the transformation

xj � x cosj� u sinj, uj � ÿx sinj� u cosj, (6a)

or by the transformation

xj
uj

� �
� cosj sinj
ÿ sinj cosj

� �
x
u

� �
(6b)

in the matrix form.
The orthogonal projection Pj(xj) of the Wigner func-

tion W(x, u) with the aspect angle j is deéned by the
expression (Fig. 1a)

Pj�xj� ��1
ÿ1

W�xj cosjÿ uj sinj; x sinj� uj cosj�duj. (7)

Note that the projection (7) of the Wigner function with
the aspect angle j � 0 corresponds to the illumination
distribution and the square of the complex amplitude
(5b), while the projection with the aspect angle j � 908
ë to the radiation intensity distribution over spatial fre-
quencies and the square of the complex spectrum (5a)
(Fig. 1c):

P0�x0� � E�x� � hU�x�U ��x�i,

P908�x 908� � I�u� � 
 ~U�u� ~U ��u��.
The projection of Wigner function (7) with an arbitrary

aspect angle j can be also written as the square of the
corresponding amplitude, i.e.,

Pj�xj� �

jUj�xj�j2

� � hjUj�xj�U �j�xj�ji, (8)
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where Uj(xj) is an intermediate amplitude between the
initial amplitude U(x) and its Fourier transform ~U(u),
which is called the fractional Fourier transform of degree
m � j=90 8[6]. The initial signal U(x) has the degree m � 0,
the `inverted' signal U(ÿ x) has the degree m � 2, while
traditional Fourier transform (1) of this signal has the
degree m � 1.

Let us énd the explicit form of the fractional Fourier
transform of degree m. For this purpose, we express the
spatial frequencies u and uj in (6a) in terms of coordinates x
and xj:

u � xj

sinj
ÿ x

tanj
,

uj �
�

xj

sinj
ÿ x

tanj

�
cosjÿ x sinj � xj

tanj
ÿ x

sinj
.

By using these relations and making the change of variables
in (7), we obtain

Pj�xj� �
�1
ÿ1

�1
ÿ1

U

�
x� z

2

�
U �
�
xÿ z

2

�
�

� exp

�
ÿ iz

�
xj

sinj
ÿ x

tanj

��
d

�
ÿ x

sinj

�
dz. (9)

By using the variables x � (x1 � x2)=2, z � x2 ÿ x1, and the
relation

dxdz � d

�
x1 � x2

2

�
d�x2 ÿ x1�

� det
qx=qx2 qz=qx2
qx=qx1 qz=qx1

���� ����dx2dx1
� det

1=2 1=2
1 ÿ1

���� ����dx2dx1 � ÿdx2dx1,
we reduce (9) to the expression with separable variables

Pj�xj� �
1

sinj

�1
ÿ1

�1
ÿ1

U�x1�U ��x2�

� exp

�
ÿ i

�
x2xj

sinj
ÿ x1xj

sinj
ÿ x 2

2 ÿ x 2
1

2 tanj

��
dx2dx1,

which allows us to represent the required projection as the
product of two integrals

Pj�xj� �
1

sinj

�1
ÿ1

U�x2� exp
�
ÿ i

�
x2xj
sinj

ÿ x 2
2

2 tanj

��
dx2

�
�1
ÿ1

U ��x1� exp
�
i

�
x1xj

sinj
ÿ x 2

1

2 tanj

��
dx1.

By comparing this relation with (8), we see that the required
fractional Fourier transform of degree m � j=908 has the
form [6, 8, 9, 13]

Uj�xj� �
1

�sinj�1=2
�1
ÿ1

U�x�

�
�1
ÿ1

U ��x1� exp

�
ÿ i

�
xxj

sinj
ÿ x 2

2 tanj

��
dx. (10)

4. Phase brightness and the optical u system

If a plane monochromatic wave with the wavelength l in
vacuum is normally incident on a sinusoidal diffraction
grating with period d, the diffracted wave is deêected by the
angle y (Fig. 2). In this case, the projection k? � kn sin y of
the wave vector k of the diffracted wave on the diffraction
grating plane in an optically homogeneous medium with the
refractive index n is equal to the spatial frequency of this
grating u � 2p=d [14]:

u � k? � kp, (11)

where p � n sin y is the `momentum' (optical unit vector)
and k � jkj � 2p=l is the wave number in vacuum. When
the condition k > u is satiséed, the `momentum' p of the
diffracted wave is proportional to the spatial frequency u of
the diffraction gating. This proportionality, characterising
the `double meaning of spatial frequencies' [14], allows one
to pass easily from the concepts of wave optics to those of
Hamiltonian optics and radiometry.

j j
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u u

xj
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Integration
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uu

I � P908
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c

Figure 1. Projection of the Wigner function with the aspect angle j on
an arbitrarily oriented axis xj (a); projection of the Wigner function
rotated through the angle ÿj on the coordinate axis x (b); and pro-
jection of the Wigner function on the coordinate axes x and u (c). The
projection of the Wigner function with the aspect angle j on an arbi-
trarily oriented axis xj (a) is equivalent to the projection of the Wigner
function rotated through the angle ÿj on the coordinate axis x (b).
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In the one-dimensional Hamiltonian radiometry, the
radiation êux (power) F from a source is distributed
over the coordinate x and `momentum' p 2 �ÿn, n�. The
distribution of the radiation êux F in the phase plane xp in
the cross section z is described by the phase brightness [15]

d2F � b�x; p�dxdp. (12)

In the general case, taking into account relation (11), the
phase brightness b(x, p) in (12) is related to the Wigner
function W(x, u) (3) by the similarity transformation

b�x; p� � kW�x; kp�wn�p�,

where

wn�p� �
1 for jpj4 n;

0 for jpj > n:

�
It is convenient to normalise the wavelength l so that k � 1;
then, the phase brightness b(x, p) is proportional to the
Wigner function W(x, p):

b�x; p� �W�x; p�wn�p�, (13)

which allows the use of the phase brightness in experimental
studies instead of the Wigner function.

By describing the transformation of a pencil of light rays
in an optical system by the methods of matrix optics, it is
convenient to represent its phase brightness (12) as a
function of the column matrix

b
x
p

� �� �
� b�x; p�. (14)

The basic mathematical model of a pencil of rays in
geometrical optics is a homocentric or parallel pencil of light
rays, which represent lines in the phase plane. Because such
lines have no area in the phase space, the homocentric or
parallel pencil of light rays cannot transfer energy from the
radiometric point of view. In radiometry, the radiation
energy transfer can be calculated by using a convenient
mathematical model of the simplest uniformly diverging
(transform-limited) pencil of light rays described by phase
brightness (14) in the form [13, 16]

b
xÿ x0
pÿ p0

� �� �
� rect

�
xÿ x0
sx

�
rect

�
pÿ p0
sp

�
, (15)

where

rectx �
1 for jxj < 1=2;

1=2 for jxj � 1=2;

0 for jxj > 1=2

8<:
is the rectangular function. The parameters sx and sp (root-
mean-square deviations) characterise the width of the
pencil, respectively. Such a uniformly diverging pencil of
light rays is formed, for example, in the symmetry plane of
the waist of a focused laser beam. The beam converges in
front of this plane and diverges behind it.

Note that these pencils of light rays for sx ! 0 are
continuously transformed to homocentric pencils, while a
uniformly diverging (converging) pencil is transformed for
sp ! 0 to a parallel pencil.

It is known that the position and orientation of a light
ray in the meridional plane of an optical system can be
characterised by a point in the phase plane xp. It is
convenient to describe the transformation of the light ray
in the optical system by the matrix method. A light ray is
described in matrix optics [16, 17] by the column matrix,
and its transformation in the optical system is described by
the ABCD matrix

x 0

p 0

� �
� A B

C D

� �
x
p

� �
. (16)

where ADÿ BC � 1. Hereafter, the primed variables
correspond to the output reference plane of the optical
system (image plane), while variables without primes ë to
the input reference plane (object plane).

Any optical ABCD system can be represented as a
cascade of lenses (modulators ë linear systems invariant
in the frequency domain) and air gaps (élters ë linear
systems invariant in the frequency domain) [16].

The transformation of the phase brightness after passage
through a modulator (lens with the focal distance f ) is
described in the quadratic approximation by the expression

bM
x 0

p 0

� �� �
� b

1 0
1=f 1

� �� �
� b M

x 0

p 0

� �� �
,

i.e the matrix

M � 1 0
1=f 1

� �
produces a linear shift in the spatial frequency (Fig. 3c).
The transformation of the phase brightness after passage
through a élter (layer of an optically homogeneous medium
with the refractive index n � 1 and thickness l ) is described
in the quadratic approximation by the expression

bF
x 0

p 0

� �� �
� b

1 ÿ1
0 1

� �
x 0

p 0

� �� �
� b F

x 0

p 0

� �� �
,

i.e. the matrix

F � 1 ÿl
0 1

� �
causes a linear displacement over the coordinate (Fig. 3b).

The author of [6] proposed to create a new class of
optical systems rotating the phase brightness distribution of

d

k

k? k

y

Figure 2. Scheme illustrating the double meaning of spatial frequencies.
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a laser beam through the speciéed angle j [see (6b)] in the
phase plane (Fig. 3d) upon its transfer from the input
reference plane to the output reference plane, which is
described by the expression

b
0
j

x 0

p 0

� �� �
� b

cosj ÿ sinj
sinj cosj

� �
xj
pj

� �� �
. (17)

For example [6, 13], such a system can be created by using
a cascade containing a free-space layer (élter) of thickness l,
a lens (modulator) with the focal distance f, and another
free-space layer (élter) of the same thickness (Fig. 4a). This
system can be described by the expression

FMF � 1 ÿl
0 1

� �
1 0
1=f 1

� �
1 ÿl
0 1

� �

� 1ÿ l=f ÿl�2ÿ l=f �
1=f 1ÿ l=f

� �
,

or, in a more symmetric form, by the expression

FMF � 1ÿ l=f ÿf �1ÿ �1ÿ l=f ���1� �1ÿ l=f ��
1=f 1ÿ l=f

� �
. (18)

Indeed, by assuming that 1ÿ l=f � cosj and 1=f � sinj,
expression (18) is simpliéed:

FMF � cosj ÿf�1ÿ cos 2 j�
1=f cosj

� �
,

and is transformed to the required rotation matrix [see
expression (6b)]:

cosj ÿ sinj
sinj cosj

� �
.

If l � 2f, then the ABCD matrix of optical j system (18)
is transformed to the matrix of an ideal optical system with
the magniécation ÿ1:

FMF � ÿ1 0
1=f ÿ1

� �
,

i.e. the image of the phase brightness turns through the
angle j � 1808 in the phase plane. If the input plane of the
optical j system is located in the object focal plane of the
lens (l � f ), then the ABCD matrix of optical j system (18)
is transformed to the Fourier-converter matrix

FMF � 0 ÿf
1=f 0

� �
,

which rotates the phase brightness through the angle
j � 908.

Because the photosensitive area of an array photo-
detector is not angular-selective and integrates radiation
incident on it at different angles y, such a photodetector
with the photosensitive area located in the output reference
plane of the optical j system measures directly the illumi-
nation distribution E 0j(x

0) in this section related to the
phase brightness distribution rotated clockwise through the
angle j by a simple expression

E 0j�x 0� �
� n

ÿn
b

0
j

x 0

p 0

� �� �
dp 0. (19)

Because rotation is a relative motion, the projection of
initial phase brightness (19) with the aspect angle j read off
counterclockwise is equal to the illumination distribution
measured with an array photodetector in the output
reference plane of the optical j system, but the angle j
should be read off clockwise in this case [13] (Fig. 1b):

E 0j�x 0� � Pj�xj�.

The practical realisation of this method for measuring
the projection of the phase brightness with the aspect angle
j is prevented by the necessity to change the focal distance
of a lens used in the system. This requires the use of a
multilens objective with a variable focal distance instead of a
simple lens, which complicates the system and increases its
cost.

Note that a single projection cannot provide the
unambiguous reconstruction of an object; for example,
contours of the axial projections of a cylinder and sphere

u u
Transform-limited pulse

Coordinate chirp

sx

Filter

u

arctan l

su � const

sx 0 > sx
sx 0

arctan�1=f �

su 0
su 0 > su
sx � const

Frequency chirp

Modulatoru
x

x x

x

Rotation through angle

j

sua b

c d

Figure 3. Rectangular signal (a), its transformation by a quadratic élter
(b) and a quadratic modulator (c), and the rotation of the signal through
the angle j in the phase plane (d).

RP RP 0

l

L � const

f � const

b

f

l l

a

RP RP 0

Figure 4. Optical systems for rotating the Wigner function in the phase
plane (a) and performing the fractional Fourier transform (b); RP and
RP 0 are the input and output reference planes, respectively.
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of the same radius are indiscernible. This ambiguity allows
one to obtain the illumination distribution in the plane of
the photosensitive area of a photodetector, which is propor-
tional to the required projection Pj(xj), with the help of a
usual lens with a constant focal distance [8 ë 10]. Taking into
account that the obtained solution is constructive, we
consider two its proofs in the contexts of geometrical
and wave optics.

4.1 Proof in the context of geometrical optics

Let us construct an ideal optical system that produces the
illumination distribution in the output reference plane,
which is proportional to the illumination distribution in the
input reference plane, but with the coordinate system
rotated through the angle j. The matrix of such an optical
system can be obtained by combining the ABCD matrix
from (16) and the rotation matrix

cosj ÿ sinj
sinj cosj

� �
of the coordinate system:

x 0

p 0

� �
� A B

C D

� �
cosj ÿ sinj
sinj cosj

� �
xj
pj

� �

� A cosj� b sinj ÿA sinj� B cosj
C cosj�D sinj ÿC sinj�D cosj

� �
xj
pj

� �
. (20)

For the illumination distributions in the input (xjpj)
and output (x 0p 0) reference planes of this optical system to
be proportional, the right upper element of the matrix
should be equal to zero [15, 16]:

ÿA sinj� B cosj � 0.

This means that the rotation angle j is related to the
elements of the ABCD matrix of the optical system focusing
the laser beam by the expression tanj � B=A. In this case,
matrix (18) takes the form of the matrix of an ideal optical
system with the magniécation (A 2 � B 2)1=2:

x 0

p 0

� �
�

�A 2 � B 2�1=2 0

AC� BD

�A 2 � B 2�1=2
1

�A 2 � B 2�1=2

0B@
1CA xj

pj

� �
. (21)

It is important that the two-dimensional projections
required for tomography can be measured by using the
optical scheme (Fig. 4b) with a usual lens, while the scaling
factor (A 2 � B 2)1=2 can be easily taken into account in the
preliminary mathematical data processing because the
illumination distribution E 0j(x

0) experimentally measured
in the output plane of the optical system is related to the
required projection Pj(xj) of the Wigner function by the
similarity relation

Pj�xj� � �A 2 � B 2�1=2E 0j
ÿ
xj�A 2 � B 2�1=2�. (22)

4.2 Proof in the context of wave optics

It was shown in [17, 18] that the ABCD matrix of an optical
system unambiguously determines its point eikonal ë the
path length of a light beam coupling the point x in the

input reference plane of this system with the point x 0 in the
output reference plane:

S�x; x 0� � S0 ÿ
Ax 2 �Dx 0 2 ÿ 2xx 0

2B
, (23)

where S0 is the optical path along the optical axis of the
system between the input and output reference planes. It is
known [19] that the point eikonal determines the form of
the kernel of the integral transformation relating the
distributions of the wave-éeld amplitude in the input
[U(x)] and output [U 0(x 0)] reference planes of the optical
system:

U 0�x 0� �
�

q2S
qxqx 0

�1=2 �1
ÿ1

U�x� exp�ikS�x; x 0��dx. (24)

By combining expressions (23) and (24), we obtain

U 0�x 0� � const

�1
ÿ1

U�x� exp
�
ÿ ik

�
xx 0

B
ÿ A

2B
x 2

��
dx. (25)

Note that expressions (10) and (25) are similar. They
coincide if [8, 9]

k � 1, tanj � B

A
, x 0 � B

sinj
xj �

ÿ
A 2 � B 2�1=2xj. (26)

5. Example of an optical system

The simplest optical system for measuring the illumination
distribution proportional to the required projection of the
Wigner function of a laser beam is described in [8, 9]. The
optical system consists of a thin lens with the focal distance
f surrounded by layers of an optically homogeneous
medium of thickness l and Lÿ l (Fig. 4b). By knowing
the matrix description of the elements of the optical system,
we can easily obtain its integral description in the form of
the ABCD matrix:

1 lÿ L
0 1

� �
1 0
ÿ1=f 1

� �
1 l
0 1

� �

� 1 lÿ L
0 1

� �
1 l
ÿ1=f 1ÿ l=f

� �

� 1� Lÿ l

f
lÿ �Lÿ l � � l�Lÿ l �

f

ÿ1=f 1ÿ l=f

0B@
1CA.

In this case, expression (25) is simpliéed and can be
transformed to the expression

U 0�x 0� � const

�1
ÿ1

U�x� exp
�
ÿ i

�
xx 0

B
ÿ x 2

2R

��
dx

obtained earlier by the method of Fourier optics [8, 9],
where

R � B

A
� lÿ �Lÿ l � � l�Lÿ l �=f

1� �Lÿ l �=f � 2lfÿ Lf� l�Lÿ l �
f� Lÿ l

�
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� lfÿ Lf� l�Lÿ l� f �
f� Lÿ l

� lÿ f �Lÿ l �
f� Lÿ l

� lÿ R0

is the radius of curvature of the wave front and

R0 �
f �Lÿ l �
f� Lÿ l

, i.e.
1

R0

� 1

Lÿ l
� 1

f
.

In new notations, we have

B � �lÿ R0�A � �lÿ R0�
�
F� Lÿ l

f

�
�
�

l

R0

ÿ 1

�

�
�
f �Lÿ l �
f� Lÿ l

��
f� Lÿ l

f

�
�
�

l

R0

ÿ 1

�
�Lÿ l �.

6. Conclusions

The spatially coherent and energy properties of a laser
beam in a speciéed section are completely characterised by
the Wigner function. This function describes the radiation
power distribution in the phase plane, and therefore cannot
be directly measured but can be calculated by computer
processing a family of illumination distributions measured
in different sections of the laser beam focused by the optical
system. For this purpose, the method of phase-spatial
tomography is used, which has several alternative variants
of optical realisation, but all of them can be considered in
the context of matrix optics. The mathematical foundations
of the method of phase-spatial tomography of a laser beam
considered consistently in the paper include the fractional
linear Fourier transform, the properties of the Wigner
function and the method of its rotation in the phase plane
by using a combination of simplest linear operators, to
which lenses and gaps of an optically homogeneous
medium correspond, and also the calculation of projections
of the Wigner function over the illumination distribution.
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