
Abstract. The structure of the fundamental mode of a laser is
calculated by the iteration Fox ëLi method in the case of
inhomogeneous unsaturated ampliécation produced by axially
symmetric longitudinal pumping. The calculation is performed
for different parameters g1 and g2 of the resonator within the
entire stability region. It is shown that in the case of
inhomogeneous ampliécation, the fundamental mode conside-
rably deviates from the Gaussian mode of an empty resonator
only in the so-called critical conégurations of the resonator,
when the quantity [arccos ( g1g2)

1=2 ]=p is zero or takes a
number of values expressed by irreducible fractions m=n. For
the Fresnel number NF � 9, conégurations with m=n � 1=2,
2/5, 3/8, 1/3, 3/10, 1/4, 1/5, 1/6, 1/8, and 1/10 are
pronounced. As NF increases, the number of critical
conégurations increases. The expansion in a system of
Laguerre ëGaussian beams shows that the fundamental
mode in critical conégurations is formed by a set of beams
with certain radial indices p phased in the active medium.

Keywords: longitudinal pumping of lasers, stable resonators, funda-
mental mode, transverse mode locking.

1. Introduction

The use of longitudinal pumping, for example, diode
pumping of solid-state lasers provides a high excitation
eféciency due to the possibility of forming the required
spatial distribution of the inversed population. The problem
of increasing the eféciency of solid-state lasers due to the
optimal matching of the spatial distribution of the
longitudinal pump intensity and the fundamental mode
was studied in a number of papers [1 ë 5], where it was
assumed that the resonator mode was Gaussian upon
inhomogeneous pumping as well. It was shown theoretically
that the lasing eféciency increased and lasing threshold
decreased with increasing the parameter x � w=r, where w
is the radius of a mode of an empty resonator and r is the
radius of the ampliécation region. The eféciency of inho-

mogeneous pumping (x > 1) was experimentally conérmed
in [5, 6]. In earlier paper [5], an active Nd :YAG crystal was
longitudinally pumped by a krypton laser. As x increased
from �2 to� 2:5, the lasing eféciency increased from 26%
to 40%. The question arises of whether or not this increase
in the lasing eféciency is accompanied by the distortion of
the spatial structure of laser radiation.

Of course, the lasing eféciency should be estimated ta-
king into account the gain saturation in the active medium.
Therefore, strictly speaking, the problem of optimisation of
the lasing eféciency should be solved by considering the
laser éeld taking saturation into account. Nevertheless, it is
reasonable to calculate the laser éeld taking into account the
proéled ampliécation but without saturation. Saturation is
virtually absent, for example, in repetitively pulsed picose-
cond lasers operating in the regime of radiation stabilisa-
tion with an external negative feedback (NFB) [7]. In this ca-
se, the NFB causes the generation of low-energy picosecond
pulses (a long train of picosecond pulses). Saturation can be
neglected when the NFB circuit is suféciently sensitive.

The noticeable differences in the spatial structure of
radiation of a longitudinally diode-pumped laser (x � 5)
from the Gaussian mode of an empty resonator were
experimentally observed in [8]. A Nd :YVO4 crystal was
used; the resonator was formed by a plane mirror on the
active medium surface and the output spherical mirror with
the radius of curvature 80 mm. The resonator length d was
varied from 59 to 64 mm. The far- and near-éeld spatial
radiation distributions were measured behind the spherical
mirror. When the value of d approached the so-called
critical value (�60 mm), at which the output power
decreased and the radiation intensity proéle became con-
siderably different from the Gaussian mode of an empty
resonator, the near-éeld spatial intensity distribution nar-
rowed down, while in the far éeld a complex ring structure
was observed. It was found in [8] that the parameters
g1 � 1ÿ d=R1 and g2 � 1ÿ d=R2 of the resonator in the
critical conéguration satisfy the relation g1g2 � 0:25, which
corresponds to the frequency degeneracy of the transverse
modes of the resonator.

The structure of the fundamental radiation mode was
studied in more detail in [9] for an inhomogeneously
longitudinally diode-pumped chip Nd :YVO4 laser. As
the resonator length was changed, nearly Gaussian far-
éeld intensity distributions were predominantly observed.
However, for some discrete set of resonator lengths, the
radiation intensity distribution acquired a ring shape. The
authors of [9] supplemented their experimental data by
calculations of the mode structure performed by expanding
the éeld in a set of sixty Laguerre ëGaussian beam modes.
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A direct method for calculating the modes of lasers, in
particular, containing elements with an arbitrary and (or)
amplitude transfer function is the iteration Fox ëLi method
[10]. Distortions of the fundamental mode, appearing upon
inhomogeneous ampliécation due to the saturation of the
active medium [11] and upon inhomogeneous pumping of a
solid-state laser [12], were calculated by the iteration method
as early as 1965. It was shown [11] that the mode remained
Gaussian when saturation was weak, whereas in the case of
suféciently strong saturation, the mode amplitude preserved
the Gaussian shape but strong phase distortions appeared.
A similar result was obtained in [12], where it was found that
the inhomogeneity of pumping weakly affected the ampli-
tude distribution of the fundamental mode but the phase
was distorted noticeably.

The Fox ëLi calculations of the modes of resonators
with elements described by inhomogeneous transfer func-
tions again attracted attention due to the development of
diode-pumped solid-state lasers. The iteration method was
used to analyse distortions of the fundamental mode caused
by the nonspherical phase transfer function of an aberration
thermal lens produced in the active medium [13]. The
inêuence of the inhomogeneous ampliécation (x � 5) on
the fundamental mode of lasers with a plane ë spherical
resonator (active medium on a plane mirror) was studied in
[14]. It was found that in the case of a semi-confocal
resonator (g1 � 0:5, g2 � 1), the inhomogeneity of pumping
leads to the ring structure of the fundamental mode at the
output spherical mirror. Below, we will denote the coné-
guration of a resonator in the form (g1, g2). The authors of
[15] analysed numerically mode distortions produced in an
inhomogeneously pumped (0.25, 1) plane ë spherical reso-
nator taking into account saturation. The radiation éeld
distributions on the output end of the active medium with a
plane mirror deposited on it were obtained. The calculated
intensity distribution consists of a narrow axial peak and a
broad pedestal. The pedestal intensity is two ë three orders
of magnitude lower than that of the peak. The central
maximum is �3:5 times narrower than the empty resonator
mode. It is shown that for the selected Fresnel number, the
éeld distribution (amplitude and phase) can be described
with good accuracy by a linear combination of phased
Laguerre ëGaussian modes with transverse indices p � 0, 3,
6, ... , 18 and l � 0, whose set is frequency-degenerate for
g1g2 � 0:25.

In [16], an attempt was made to consider in general the
spatial structure of the fundamental mode of a laser pumped
by a Gaussian beam for a whole family of resonator coné-
gurations. The quality of the fundamental mode was charac-
terised by two integral parameters, M 2 and the Petermann K
factor [17]. Plane ë spherical resonators were studied for
which the frequency degeneracy condition

arccos �g1g2�1=2 � p
m

n
(1)

was fulélled, where m=n is an irreducible fraction. The
consideration was restricted to the cases m=n � 1=x, where
2:74 x4 9. The dependence of M 2 on x was calculated.
For x � 3, 5, 6, and 8, the increase in M 2 by a few times
was observed, and for x � 4 ë by a factor of �20.
Calculations performed in broad ranges of the gains (no
less than 1.1) and parameters x (no more than 10) showed
that for x � 4, the phase of the fundamental mode on a
plane mirror has a constant value.

The spatial structure of the fundamental mode éeld in
the case of inhomogeneous ampliécation was calculated in
the papers cited above for individual plane ë spherical
resonators and éxed Fresnel numbers NF. Strong distortions
of the spatial structure of the fundamental mode of the
(0.25, 1) resonator upon inhomogeneous ampliécation was
explained in [15] by the synchronisation of the frequency-
degenerate modes of an empty resonator. However, the
number of degenerate conégurations is equal to the number
of irreducible fractions m=n. The reasonable question arises:
For which resonator conégurations the spatially inhomoge-
neous ampliécation leads to dramatic distortions of the
fundamental mode? In addition, whether or not the values
of m and n are related to the type of distortions of the
amplitude and phase of the fundamental mode? And énally,
how eféciently affects a change in the Fresnel number the
degree and type of distortions of the fundamental mode?

These questions require a detailed analysis of the
fundamental mode structure depending on the parameters
g1 and g2 within the entire stability region of resonators
taking into account the inêuence of the Fresnel number.
This paper is devoted to the study of the effect of the
transversely inhomogeneous unsaturated ampliécation in a
thin active medium on the spatial structure of the funda-
mental mode of lasers within the entire stability region of
resonators. The fundamental mode was calculated by the
iteration Fox ëLi method.

2. The model and results of calculations

The propagation of an axially symmetric light beam in a
free space, whose éeld is independent of the azimuthal
angle, is described by the expression

u 0�r 0� � ip
ld

exp�ÿikd �

�
� a

0

J0

�
kr 0r
d

�
exp

�
ÿ ik�r 0 2 � r 2�

2d

�
u�r�rdr, (2)

where J0(x) is the zero-order Bessel function; u(r) and u 0(r)
are the complex amplitudes of the éeld in front and behind
a mirror, respectively; r and r 0 are the coordinates in the
input and output planes; d is the distance between the
planes; a is the aperture radius; k � 2p=l; and l is the
wavelength. Expression (2) is obtained in the approxima-
tion a 2=(dl)5 (d=a)2 [10]. Upon reêection from the mirror,
the transformation

u 0�r� � u�r� exp
�
ÿ ikr 2

R

�
(3)

takes place, where R is the radius of curvature of the
mirror.

As in other papers devoted to calculations of the
radiation parameters of longitudinally diode-pumped lasers
[9, 13, 15], the active medium was assumed thin. The
transformation of the complex amplitude of such an active
medium has the form

u 0�r� � u�r�K�r�, (4)

where K(r) is the amplitude gain per pass.
An important feature of the fundamental mode is its

diffraction losses. They can be determined by calculating the
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power gains G� and Gÿ for a beam propagated forward and
backward in the active medium, respectively:

G�;ÿ �

� a

0

ju 0�;ÿ�r�j2rdr� a

0

ju�;ÿ�r�j2rdr
, (5)

where u�;ÿ(r) and u 0�;ÿ(r) are the complex amplitudes of the
éeld in front and behind the active medium, respectively,
and signs `+' and `ÿ' correspond to the forward and back-
ward passes in the resonator, respectively. The obtained
values of G� and Gÿ and the total power gain G per round-
trip transit in the resonator give the diffraction losses

g � 1ÿ G

G�Gÿ
. (6)

Expressions (2) ë (4) allow one to construct a chain of
transformation of the complex amplitude corresponding to
the round-trip transit in the resonator ë to one iteration. The
homogeneous distribution of the complex amplitude is
speciéed as the initial distribution on one of the resonator
mirrors. Iterations are repeated until the spatial éeld distri-
bution is reproduced with the required accuracy. It is this
éeld distribution that represents the fundamental mode
[10, 18]. The production of a self-reproducible distribution
can be judged, for example, by a decrease in the relative
change in diffraction losses from iteration to iteration [19].
In our case, the calculation was stopped when the relative
change in diffraction losses was reduced down to �10ÿ10.

The fundamental resonator mode was calculated for
stable resonators with different values of parameters g1 and
g2 (Fig. 1). The radii a of mirrors were assumed equal. The
active medium was located close to mirror M2. The
fundamental mode éeld was calculated in three planes:
behind mirror M1 [u 0

1 (r)], in front of the active medium
[u 0

2 (r)], and behind it [u 0
3 (r)]. The gain of the active medium

was speciéed in the form

K�r� � 1� �K0 ÿ 1� exp
�
ÿ r 2

r 2

�
. (7)

Note that the gain distribution close to (7) is obtained not
only by using radiation from individual diodes [9] or other
laser radiation [5] but also upon the transport of radiation
from diode arrays in optical ébres [7]. Calculations were
also performed for the transfer function corresponding to
the Gaussian aperture, for which K(r) � exp (ÿ r 2=r 2). The
parameter x � w2=r (where w2 is the radius of the Gaussian
mode on mirror M3 in an empty resonator) was set equal to
3, which is close to the value at which highly efécient lasing
was observed in [6]. The fundamental mode of a laser with
a spatially inhomogeneous amplitude transfer function was
calculated by assuming that the axial power gain K 2

0 per

pass in the active medium was 1:52. Such a gain was
achieved, for example, in a picosecond Nd :YAG laser
pumped by a beam of diameter 0.8 mm from a 35-W diode
array [7].

In our case, it is reasonable to compare the fundamental
resonator mode with the Gaussian mode of an empty
resonator with the help of the parameter

b0 � 2p
�
u �G�r�um�r�rdr, (8)

where uG(r) and um(r) are the éeld amplitudes of the
Gaussian mode of the empty resonator and the funda-
mental mode of the resonator with the inhomogeneous
ampliécation satisfying the normalisation conditions

2p
�
juG�r�j2rdr � 2p

�
jum�r�j2rdr � 1. (9)

The quantity jb0j2 is the fraction of the power of the non-
Gaussian fundamental mode contained in the Gaussian
mode of the empty resonator. Integral (8) is calculated in
the input plane of the active medium. Note that the
parameter jb0j2 used here differs from the parameter ja0j2
proposed in [20], which represents the fraction of energy
contained in a Gaussian beam approximating the initial
beam with the minimum root-mean-square deviation.

The non-Gaussian distribution of the fundamental mode
in the case of inhomogeneous ampliécation is illustrated in
Fig. 2 for different resonator conégurations. The values of
jb0j2 for NF � 9, K0 � 1:5, and x � 3 are represented in the
coordinates g1 and g2 for their positive values in the stability
region (0 < g1g2 < 1). We will call critical the resonator
conégurations for which the values of jb0j2 are noticeably
lower than unity, which clearly demonstrates the difference
of the fundamental mode from the Gaussian mode of the
empty resonator. One can see from Fig. 2 that regions near
the coordinate axes g1 and g2 and on a number of curves
representing the parts of hyperbolas correspond to the
pronounced critical conégurations. The values of jb0j2
considerably decrease for hyperbolas g1g2 � 0:096, 0.146,
0.25, 0.346, 0.5, 0.655, 0.75, 0.854, 0.905, and 1.

The results of calculations have shown that jb0j2 does
not change when the signs of g1 and g2 are changed

d
u 0
3 �r�

u 0
2 �r�u 0

1 �r�

2a2a

AMM2M1

Figure 1. Scheme of the laser resonator: (M1, M2) mirrors; (AM) active
medium.
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Figure 2. Dependences of jb0j2 on g1 and g2 for NF � 9, K0 � 1:5, and
x � 3.
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simultaneously. This is consistent with the results of
theoretical papers [21, 22], in which the question of the
equivalence of resonators with an intracavity element
described by the real non-Gaussian transfer function was
considered for a rigid aperture [21] and in the general case in
[22]. It was shown that when the signs of parameters g1 and
g2 were simultaneously changed, the distributions of the
mode amplitude on mirrors change to complex conjugate
distributions. The value of jb0j2 is preserved upon complex
conjugation, and therefore the dependence of jb0j2 on
(g1; g2) is symmetric with respect to the point (0, 0).

The dependence of jb0j2 on the conéguration of plane ë
spherical (g2 � 1) resonators for K0 � 1:5, x � 3 and
NF � 3, 5, 30 are shown in Fig. 3a. For NF � 3, the three
critical conégurations with g1g2 � 0, 0.5, and 1 are most
pronounced. For NF � 5, the number of critical conégura-
tions increases up to 5 due to the addition of conégurations
with g1g2 � 0:25 and 0.75. As NF is increased up to 30, the
number of critical conégurations increases approximately by
an order of magnitude. The similar dependences of jb0j2 on
g1 for symmetric (g1 � g2) resonators are shown in Fig. 3b.
Here, a peculiarity near the confocal conéguration is most
pronounced. As NF is increased, the number of critical
conégurations also increases. Calculations performed for a
Gaussian aperture showed the absence of peaks in the
dependence of jb0j2 on g1 (dot-and-dash lines in Fig. 3).

Consider the distribution of the amplitudes and phases
of the éelds u 0

1 (r), u
0
2 (r), and u 0

3 (r) of the fundamental mode
of resonators with characteristic critical conégurations.
Figure 4 shows the structure of the fundamental mode of
the confocal and plane ë spherical resonators of different cri-
tical conégurations for NF � 30, K0 � 1:5, and x � 3. The
distributions of the phase of the fundamental mode on the
surface of mirrors are also presented, i.e. the differences of
the phase distributions from the parabolic distribution cor-
responding to the mode of an empty resonator are shown in
fact. The dashed curves show the distributions of the Gaus-
sian mode amplitude of an empty resonator for resonators
of the (0, 0) and (0.5, 1) conégurations. This arrangement of
the égures showing the mode structure will be used below.

The fundamental-mode amplitude distributions consid-
erably differ from the amplitude distribution of the
Gaussian mode of the empty resonator. For critical coné-

gurations, the distributions ju 0
2 (r)j consist of an axial peak

and a rather broad pedestal. This peak is especially
pronounced in the conégurations (0, 0), (0.5, 1), (0.75, 1),
and (0.25, 1). According to the type of the amplitude
distribution ju 0

1 (r)j of the fundamental mode on mirror
M2, resonators can be divided into two groups. Conégura-
tions for which g1 � g2 � 0, g1g2 � 0:5 and 0.75 (Figs. 4a ë
c) belong to the érst group. These conégurations are
characterised by substantial differences between the distri-
butions ju 0

1 (r)j and ju 0
3 (r)j. The width of the amplitude

distribution of the fundamental mode in the confocal
resonator on mirror M1 noticeably exceeds the width of
the Gaussian mode of the empty resonator. The distribution
ju 0

1 (r)j does not contain the axial peak. A weak ring
structure of the pedestal in distributions ju 0

2 (r)j and
ju 0

3 (r)j is accompanied by drastic phase jumps by �p
(Fig. 4a, column IV). Unlike the confocal conéguration,
the amplitude distributions on mirror M1 for other reso-
nators of the érst group have a ring structure, which is most
pronounced for g1g2 � 0:5 (Fig. 4b, column I).

The amplitude distributions of the fundamental mode
for resonators of the second group (Figs 4d, e) are similar
on both mirrors in coordinates normalised to the corres-
ponding radii of the Gaussian mode of the empty resonator.
As for the phase distribution, we can point out a dynam-
ically stable resonator (g1g2 � 0:5) as a special case, for
which a constant phase distribution is realised on a plane
mirror (Fig. 4b, column IV), in accordance with calculations
performed in [16]. A constant phase distribution is also
realised on mirror M1 in the case of the confocal resonator
(Fig. 4a, column II). For resonators of other conégurations,
the phase on the mirror is not constant and depends in a
complicated way on the distance from the resonator axis.

3. Discussion

Substantial differences between the structures of the
fundamental and Gaussian modes are caused by the
peculiarities of the transfer function of the active medium
in the case of inhomogeneous ampliécation (7). Of great
importance is a énite value of the transfer function in the
regions outward from the axis. Note that if the Gaussian
aperture is used, the fundamental mode has the Gaussian
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Figure 3. Dependences of jb0j2 on g1 for plane ë spherical (g2 � 1; a) and symmetric (g1 � g2; b) resonators for K0 � 1:5, x � 3, NF � 3 (solid curves),
5 (dashed curves), 30 (dotted curves), and for a Gaussian aperture (dot-and-dash curves). Fractions m=n � �arccos�g1g2�1=2�=p are presented (see
section 4).
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structure in each section of the resonator, but the complex
parameter differs from the value corresponding to the mode
of an empty resonator (without aperture). In-homogeneous
ampliécation leads to a different type of the fundamental
mode. Our calculations show that in the case of inhomoge-
neous ampliécation, the structure of the fundamental mode
considerably differs from that of the Gaussian mode of an
empty resonator only in the case of certain (critical)
conégurations of the resonator. In critical conégu-rations,
as follows from the calculations, the fundamental-mode
structure does not change qualitatively in a rather broad
domain of variation of K0 (from 1.01 to 2.5).

The examples of the most pronounced critical conégura-
tions of stable resonators are conégurations with g1g2 � 0:5,
0.25, and 0.75. The amplitude distributions u 0

2;3(r) for these
conégurations exhibit the narrow axial peak located on a
relatively broad pedestal. The width of the peak is consid-
erably smaller than the width of the Gaussian mode of the
empty resonator. It is clear that a set of the Laguerre ë
Gaussian beam modes forming the fundamental mode
contains, in particular, higher-order beams. Another speciéc
feature of critical conégurations is the reproduction of the
mode amplitude distribution: the preservation of the peak
and the features of the pedestal during the propagation of

radiation over the part of the resonator not containing the
active medium, i.e. from the active medium to mirror M1
and backward (Fig. 4). This means that the differences of
the phase shifts of the Laguerre ëGaussian beams forming
the fundamental mode are multiple of 2p.

If we choose the value of the complex parameter of a set
of the Laguerre ëGaussian beams that is realised on mirror
M2 in the absence of ampliécation, the expression for the
phase shift cpl of a beam with the radial and angular indices
p and l, propagated in the part of a stable resonator
(0 < g1g2 < 1) not containing the active medium, has the
form (see, for example, [23])

cpl � 2kdÿ 2�2p� l� 1� arccos �� �g1g2�1=2 �. (10)

The sign at the radical is chosen to coincide with the sign of
g1(g2). To form a set of the Laguerre ëGaussian beams in
such a way that the self-reproducibility condition (differen-
ces of the phase shifts cpl ÿ cp 0l 0 are multiple of 2p) will be
satiséed for their arbitrary superposition is possible only if
arccos (g1g2)

1=2 � pm=n. In this case, the expression for the
phase shifts of the Laguerre ëGaussian beams has the form

a

b
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ÿ20
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Figure 4. Distributions of the fundamental-mode amplitude and phase on surfaces of the mirrors of the confocal resonator of the (0, 0) conéguration
(a) and plane ë spherical resonators of critical (0.5, 1) (b), (0.75, 1) (c), (0.25, 1) (d), and (0.6545, 1) (e) conégurations; column I: ju 0

1 �r�j; II: arg u 0
1 �r�;

III: ju 0
2 �r�j (dashed curve), ju 0

3 �r�j (solid curve); IV: arg u 0
3 �r�. Dashed curves are the amplitudes of the Gaussian mode of an empty resonator; w1;2 are

the radii of the Gaussian mode on mirrors M1 and M2, respectively; NF � 30, K0 � 1:5 and x � 3.
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cpl � 2p
�
kd

p
ÿ �2p� l� 1�m

n

�
. (11)

We consider here the éelds independent of the azimuthal
angle, and therefore the angular index l will be further
assumed zero. The differences of phase shifts will be
multiple of 2p for the beams with indices p different by
Dp � n for odd n or by Dp � n=2 for even n. An arbitrary
combination of the beams of such a set in the absence of
losses completely reproduces itself after the propagation
over the part of the resonator not containing the active
medium. To énd out a set of the Laguerre ëGaussian
beams forming the fundamental mode of the laser in the
case of inhomogeneous ampliécation, we expanded the
fundamental mode in the Laguerre ëGaussian functions

u 0
3 �r� �

X
p

bpu
LG
p �r�, (12)

where

bp � 2p
�
u ��r�uLG

p �r�dr.

The values of jbpj2 are the fraction of the energy contained
in the Laguerre ëGaussian beam with the index p.

Fractions m=n equal to 1/2, 2/5, 3/8, 1/3, 3/10, 1/4, 1/5,
1/6, 1/8, and 1/10 correspond to the most pronounced
critical conégurations with g1 � g2 � 0, g1g2 � 0:096, 0.146,
0.25, 0.346, 0.5, 0.655, 0.75, 0.854, and 0.905. The values of
m=n for these conégurations are presented in Fig. 3a.
Figures 5a ë e present the values of jbpj2 and arg bp for
different critical conégurations for NF � 30, K0 � 1:5, and
x � 3. Expansion (12) was performed for the éeld u 0

2 (r). In
the case of a confocal resonator (m=n � 1=2), the expansion
contains all the beams (Fig. 5a). For a resonator with
m=n � 1=4, the terms corresponding to beams with even

indices p are signiécant in expansion (12) (Fig. 5b). The
fundamental mode of the resonator with m=n � 1=3 is
predominantly formed by the beams with p � 3j, where
j � 0, 1, 2, 3, ... (Fig. 5c). For resonators with m=n � 3=8
and 2/5, the fundamental mode mainly consist of the beams
with indices p � 4j and 5j, respectively (Figs 5e,f ). For all
the resonators studied, a set of the beams making a
signiécant contribution to the fundamental mode is phased
on mirror M3, i.e. the phase locking of the beam modes
occurs.

Expansion (12) shows unambiguously that the funda-
mental mode in the critical conéguration is predominantly
formed by a set of the phased Laguerre ëGaussian beams
with radial indices differing by Dp � n for odd n and by
Dp � n=2 for even n, which will be called below the basic set.
In the case of even n for two adjacent beams of the basic set,
the difference of phase shifts on passing from one mirror to
another is mp, as follows from expression (11). If n is even,
m should be odd, and if the fundamental mode on mirror
M2 is the superposition

P
i bi n=2u

LG
i n=2�r) of beams, by

neglecting edge effects on mirror M1, the mode will have
the form

P
i (ÿ1)ibi n=2uLG

i n=2�r). As a result, the amplitude
distributions on the opposite mirrors should be noticeably
different.

A prominent example of resonators with even n is a
confocal resonator (m=n � 1=2). Indeed, as follows from
expansion (12), the phases of the beams with even and odd p
on mirror M1 for éelds u 0

1 (r) and u 0
2;3(r) differ by p, whereas

all the beams are phased on mirror M2. This leads to a
considerable difference in the amplitude distributions on the
opposite mirrors. The Laguerre ëGaussian beams on mirror
M2 are summed in phase, resulting in the formation of a
narrow axial peak (Fig. 4a, column III). On mirror M1, the
odd beams are summed with even beams out-of-phase, the
width of the total amplitude distribution exceeding that of
the zero Laguerre ëGaussian beam (Fig. 4a, column I).
Noticeable differences in the amplitude distribution on
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Figure 5. Coefécients of expansion of the éeld u 0
2 �r� in the Laguerre ëGaussian functions for resonators of critical conégurations (0, 0) (a), (0.5, 1) (b),

(0.25, 1) (c), (0.1464, 1) (d), (0.096, 1) (e), and the resonator of the noncritical (0.596, 1) conéguration (f) for m=n � 1=2 (a), 1/4 (b), 1/3 (c), 3/8 (d), and
2/5 (e), NF � 30, K0 � 1:5, x � 3. The vertical columns are jbpj2, circles are arg bp.
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the opposite mirrors are also observed for resonators with
g1g2 � 0:5 (m=n � 1=4) and 0.75 (m=n � 1=6), whose modes
are presented in Figs 4b, c, respectively. The amplitude
distributions u 0

2;3(r) exhibit the characteristic narrow axial
peak on a broad pedestal while the amplitude distribution
u 0
1 (r) on mirror M1 has a ring structure without the axial

peak.
The difference of phase shifts of the Laguerre ëGaussian

beams of the basic set for odd n in passing from one mirror
to another is 2mp, and therefore the mode amplitude
distributions on the opposite mirrors should be similar.
Indeed, fundamental modes in resonators with g1g2 � 0:25
(m=n � 1=3) and 0.6545 (m=n � 1=5), shown in Figs 4d, e,
respectively, have close amplitude distributions on the
opposite mirrors.

Along with the beams of the basic set, expansion (12)
(see Fig. 5) also contains other beams as a weak back-
ground. The calculation shows that for g1g2 � 0:5
(m=n � 1=4), as K0 is decreased from 1.5 to 1.05, the relative
intensity of the background beams with odd p decreases
from �10ÿ2 to �10ÿ4. For the value of k � 2p=l that is
resonant for the basic set, the phase shifts of background
beams after the round-trip transit in the resonator are not
multiple of 2p. The background beams exist in the resonator
due to the energy redistribution in the set of Laguerre ë
Gaussian beams during their propagation in the active
medium. First, the energy exchange in the active medium
together with edge effects on mirrors affects the formation
of the stationary energy distribution over the beams, i.e.
determines the values of bp, and, second, it provides the
multiplicity of the phase shifts of background beams per
round-trip transit in the resonator to 2p. The required phase
shift occurs due to the addition of éelds from the phased
basic set to the éeld of each of the background beams. For
example, for m=n � 1=4, all the beams have the same phases
at the output from the active medium, whereas phases of the
beams of the basic set (with even p) and background beams
(odd p) at the input to the active medium differ by p.

Aside from the properties of resonators with critical
conégurations considered above, note that the phase of the
fundamental mode for resonators with g1g2 � 0:5
(m=n � 1=4) on mirror M2 (Fig. 4b, column IV) and the
confocal resonator (m=n � 1=2) on mirror M1 (Fig. 4a,
column II) is constant. In the érst case, the fundamental
mode on mirror M2 consists predominantly of the phased
Laguerre ëGaussian beams with even indices p. The mode of
the confocal resonator on mirror M1 is formed by the
Laguerre ëGaussian beams with phases differing by p for
even and odd p. The constant phase distributions for con-
focal and semi-confocal resonators are related to the proper-
ties of the Laguerre ëGaussian functions: in a sum of the
Laguerre ëGaussian beams with even p, phase jumps are
absent even when jbpj2 decreases comparatively slowly with
increasing p. Similarly, phase jumps are also not observed
for the difference of the sums of beams with even and odd p.

The properties of critical conégurations discussed here
are determined only by the product g1g2. Therefore, during
the movement along the hyperbola g1g2 � const by increas-
ing one of the parameters g (and decreasing correspondingly
another), the structure of the mode amplitude distributions
on mirrors in coordinates normalised to the corresponding
radii of the Gaussian mode of an empty resonator are
preserved qualitatively. In the case of the sufécient deviation
from the symmetric conéguration (g1 � g2), diffraction

effects on a mirror with the lower value of one of the
parameters g prevent the creation of the synchronised set of
the Laguerre ëGaussian beams. This is manifested in an
increase in jb0j2 on hyperbolas g1g2 � const corresponding
to critical conégurations away from the symmetrical coné-
guration (see Fig. 2).

As NF is increased, the number of Laguerre ëGaussian
beams, for which aperture effects are insigniécant, increases.
Thus, for large NF in the case of inhomogeneous amplié-
cation, basic sets with large values of Dp can be manifested.
This is reêected in the appearance of critical conégurations
to which fractions m=n with increasing values of n corres-
pond.

The structure of the fundamental mode can be naturally
made close to Gaussian by passing from the critical to non-
critical conéguration. The calculation shows that in the case
of a moderate gain per round-trip transit in the resonator
(K0 4 1:5), for non-critical conégurations the deviation of
jb0j2 from unity does not exceed 10%. The value of jb0j2
also increases with decreasing the Fresnel number; if the
resonator length is éxed, this can be achieved, in particular,
by placing an aperture on one of the mirrors.

Figure 6a presents the structure of the fundamental
mode of a semi-confocal resonator of the (0.5, 1) conégura-
tion, for which jb0j2 substantially differs from unity (jb0j2
� 0:17). Figure 6b shows the mode of the same resonator
with an aperture placed on mirror M1. The radius Rd of the
aperture exceeds by a factor of 1.5 the radius of the
Gaussian mode of an empty resonator (Rd=w1 � 1:5).
The mode amplitude distributions on mirror M1 [ju 0

1 (r)j]
and at the input to the active medium [ju 0

2 (r)j] are close to
Gaussian amplitude distributions of the mode in an empty
resonator. The use of the aperture results in the increase in
jb0j2 up to 0.97. When an aperture for which Rd=w2 � 1:5 is
mounted on mirror M2 (Fig. 6c), the value of jb0j2 increases
up to 0.95. When the aperture was mounted on mirror M1
or M2, the diffraction losses for the fundamental mode were
5.3% or 4.1%. The fundamental mode of the resonator of
the noncritical (0.596, 1) conéguration, closest to the (0.5, 1)
conéguration, is shown in Fig. 6d. The parameter jb0j2 in
this case is 0.95 and diffraction losses are 3:1� 10ÿ4 %. The
values of jbpj2 and argbp, obtained by expanding (12) for
the resonator of the (0.596, 1) conéguration, are presented in
Fig. 5f.

4. Conclusions

We have performed numerical simulations of the structure
of the fundamental mode of stable-resonator lasers in the
case of spatially inhomogeneous ampliécation. The funda-
mental-mode éeld has been studied by the iteration Fox ëLi
method in the case of inhomogeneous unsaturated amplié-
cation produced by the axially symmetric longitudinal
pumping. The study has been performed for different
parameters g1 and g2 of the resonator within the entire
stability region. The calculations have been carried out for
the active medium located near one of the mirrors. It has
been shown that in the case of inhomogeneous ampliéca-
tion, the fundamental mode deviates considerably from the
Gaussian mode of an empty resonator only in the so-called
critical conégurations of the resonator, when the quantity
�arccos (g1g2)1=2�=p is either zero or takes the values
expressed by irreducible fractions m=n. For the values of
x of practical interest (x � 3) for the Fresnel number
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NF � 9, the conégurations with m=n � 1=2, 2/5, 3/8, 1/3, 3/
10, 1/4, 1/5, 1/6, 1/8, and 1/10 are pronounced. As NF is
increased, the number of critical conégurations increases.
The expansion in the Laguerre ëGaussian function showed
that the fundamental mode in critical conégurations is
formed by a set of phased beams in the active medium with
the radial indices p � nj=2 ( j � 0, 1, 2, 3, ...) for even n and
p � nj for odd n. Aside from these beams, which predom-
inantly form the fundamental mode, beams with other
values of p are also present as a weak background.
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Figure 6. Distributions of the fundamental-mode amplitude and phase on surfaces of the mirrors of the semi-confocal resonator of the (0.5, 1)
conéguration (a), semi-confocal resonator with an aperture on mirrors M1 (the aperture radius is Rd � 1:5w1) (b) and M2 (Rd � 1:5w2) (c), and of the
resonator of the noncritical (0.596, 1) conéguration (e) for NF � 30, K0 � 1:5, x � 3. The arrangement of the égures and notation are as in Fig. 4.
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