
Abstract. Two models of metal ë dielectric composite media
are used to study the optical properties of their active
(amplifying) components under conditions of compensation
for the absorption of external electromagnetic radiation
appearing due to the presence of metal inclusions. It is shown
that the electrostatic approximation for describing the
concentrated composite media (a metal nanosphere in a
dielectric shell) and bulk composite media (a system of metal
nanocylinders in a dielectric matrix) can be applied only in a
small range of geometrical and optical parameters. Precise
electrodynamic calculations give much smaller gains in the
active component required to compensate for absorption,
which can be useful for developing `transparent' composite
materials with unique optical properties or `invisible'
composite particles.

Keywords: metal ë dielectric composites, heterogeneous media,
metamaterials.

1. Introduction

A number of publications have been devoted in recent years
to the unusual properties of metal ë dielectric composite
media. Along with a great number of works in which the
optical properties of photonic crystals and materials with a
negative refractive index have been studied, attention
should be paid to studies devoted to the problem of
obtaining a high [1 ë 6], small [7] or unit [8 ë 10] effective
refractive index of the composite medium, the problems of
giant absorption or supertransmission [10 ë 14], and the
problem of reducing electromagnetic scattering by nano-
particles [15]. It is assumed that composite nanostructure
materials with unusual optical properties can be used as
classical optical elements such as polarisers, prisms and
lenses. The optical properties of such artiécial media can be

selected by choosing proper materials, geometry of
inclusions, and their concentration.

However, practical applications of composite media can
be restricted by absorption of incident electromagnetic
radiation due to the presence of metal components. It
was proposed [2, 3, 8, 10] to use an active (amplifying)
matrix to compensate for absorption by metal inclusions.
Estimates based on the Maxwell ëGarnet theory show that a
high gain, close to the limiting value achieved at present [2,
8] or even exceeding it [3], is required to compensate for
absorption. In addition, it follows from the Maxwell ë
Garnet formula that as the concentration of metal nano-
inclusions tends to zero, the gain of the dielectric matrix
should remain high enough [8]. The latter result is a non-
physical consequence of the inapplicability of the Maxwell ë
Garnet electrostatic theory in the region of low concen-
trations of inclusions where electrodynamic delay effects
start playing a signiécant role [16]. In this paper, we
consider the optical properties of metal ë dielectric compo-
site media with amplifying components and use precise
electrodynamic calculations for different component con-
centrations for studying the behaviour of the gain required
for compensating absorption by metal inclusions.

2. A metal nanosphere in an amplifying shell

The simplest model of a composite medium is a nanosphere
covered by a shell. At present, the optical resonance
properties of a sphere in a shell are interesting because such
nanocomposites are widely used as markers in electron
microscopy [15] and elementary optical biosensors [17].
Such devices are important for analytic chemistry, biology
and medicine. A change in the thickness and permittivity of
the shell and in the permittivity of the environment leads to
a noticeable shift of a plasmon resonance, allowing a
detection of materials under study.

It was shown in [18] that for a certain relation between
the core and shell parameters of the sphere, electromagnetic
scattering may be considerably suppressed, which leads to
`invisibility' of the object. It was pointed out in [18] that the
presence of a small absorption slightly affects the extinction
cross section.

In order to determine the gain required for compensat-
ing energy dissipation at the core, we consider the model of
a sphere with an amplifying shell. It is also necessary to
determine the extent to which the results of electrostatic
approximation agree with those obtained from the exact
electrodynamic theory.
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The scattering properties of a sphere covered by a shell
can be described in the electrostatic approximation if its size
is much smaller than the electromagnetic radiation wave-
length. The dielectric properties of the particle as a whole
are characterised in this case by the polarisability a which
has the form [19]

a � 4pa 3
2

�e2 ÿ e��e1 � 2e2� � Zv�e1 ÿ e2��e� 2e2�
�e2 � 2e��e1 � 2e2� � Zv�2e2 ÿ 2e��e1 ÿ e2�

; (1)

where a2 is the external radius of the particle, equal to the
sum of the core (sphere) radius and the shell thickness; Zv is
the part of the particle volume occupied by the core; and e1,
e2 are the permittivities of the core and the shell,
respectively. The particle is located in a medium with
permittivity e. Let us analyse the particular case a � 0 when
scattering of electromagnetic radiation by a nanosphere
covered by a shell is absent and we can speak of the
`invisibility' (the term `transparency' is also used in the
literature) of such a particle [18, 19]. The invisibility
condition can be easily obtained from expression (1) by
equating the numerator of the fraction to zero:

Zv
e1 ÿ e2
e1 � 2e2

ÿ eÿ e2
e� 2e2

� 0: (2)

For deéniteness, we assume that the environment is air
or vacuum (e � 1). Silver is chosen as the core material.
Because the size of the particle under study is assumed to be
much smaller than the electromagnetic radiation wave-
length, the core radius a1 in the optical range should not
exceed several tens of nanometers. Let us assume that
a1 � 20 nm. Generally speaking, the permittivity of such
small particles differs from the bulk permittivity of the
medium. We estimate e1 by using the classical model taking
into account the constraint imposed on the electron mean
free path [20]. According to this model, the énite size of a
metal sphere leads to a change in the relaxation rate of
conduction band electrons. The electron relaxation rate g in
a nanosphere is related to the electron relaxation rate g0 in
the metal by the expression

g � g0 �
vF
a1
;

where vF is the mean electron velocity at the Fermi surface,
equal to 1:4� 106 m sÿ1 for silver. The expression for the
permittivity of the nanosphere has the form [21]:

e1�o� � eexp�o� �
o 2

p

o�o� ig0�
ÿ o 2

p

o�o� ig� ; (3)

where eexp(o) is the experimentally determined permittivity
for a bulk sample; op is the plasma frequency, and o is the
frequency of the external radiation. For silver, �hg0 �
0:02 eV and �hop � 9:2 eV [21]. The values of eexp for a
number of radiation frequencies are presented in [22].
Calculations show that the correction taking into account
the énite size of the particle leads mainly to a variation of
the imaginary part of the permittivity e1. For an external
radiation wavelength of 400 nm, for example, the value of

e1 for a bulk silver sample is ÿ3:72� 0:29i, while cal-
culations based on expression (3) give the value ÿ3:72
� 0:42i for a sphere of radius 20 nm.

Our analysis shows that because the permittivity of the
metal core is complex, condition (2) cannot be satiséed
exactly for a shell with real e2. Let us try to compensate the
effect of the imaginary part of the metal permittivity on the
optical properties of the entire composite medium by
choosing an amplifying medium as the shell material.
For this purpose, we will simulate the optical parameters
of the amplifying medium by adding an imaginary part to
the permittivity:

e2 � n 2
2 ÿ g 2 ÿ 2in2g;

where n2 is the refractive index and g is the gain (extinction
coefécient), which is equal to the gain multiplied by l=2p.

Consider the dependence of the gain, which is required
for compensating the absorption of external electromagnetic
radiation, on the shell thickness. The imaginary part of the
permittivity of the silver core is much smaller than the real
part, and therefore, we can assume that the gain g of the
shell will also be much smaller than its refractive index. In
this case, we obtain

g � 9Zv
2�1ÿ Zv�

n 3
2 Im�e1�

�Re�e1� � 2n 2
2 �2 � 2Zv�Re�e1� ÿ n 2

2 �2
; (4)

where n2 is obtained from Eqn (2) by the replacement
e1 ! Re(e1), e2 ! n 2

2 . The dashed curves in Fig. 1 show the
dependence of the refractive indices n2 and gain g of the
shell on its radius a2 obtained from (2) and (4) for the shell
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Figure 1. Refractive index (a) and the gain (b) of the shell of a composite
spherical particle as functions of its radius, calculated on the basis of
electrostatic approximation condition (2) (dashed curves) and satisfying
the condition of minimum scattering (solid curves), as well as the gain of
the shell of a composite spherical particle as a function of its radius,
calculated on the basis of exact electrodynamic theory for values of n2
satisfying condition (2) (dot-and-dash curve); the computational para-
meters are e1 � ÿ3:72 � 0:42i, a1 � 20 nm, l � 400 nm.
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radius varying in the interval 22.5 ë 93 nm, which corre-
sponds to a relative core volume Zv � 0:7ÿ 0:01. One can
see from Fig. 1 that the condition g5 n2 is satiséed quite
well for any value of a2. Note that for a2 > 50 nm (Zv <
0:065), the gain takes a éxed value of about 0.07.

Consider now the exact solution of the problem of
scattering of optical radiation by a sphere with a shell.
The system consisting of a sphere covered by a shell is
convenient from the theoretical point of view because an
exact calculation of the electromagnetic properties is pos-
sible in this case. The corresponding theoretical approaches
are described in [18, 19]. We will calculate the required gain
for a known value of n2 by using the condition of equality of
the extinction and scattering cross sections Qext and Qsca,
respectively, described by the expressions [19]

Qsca �
2p
k 2

X1
n�1
�2n� 1��janj2 � jbnj2�;

(5)

Qext �
2p
k 2

X1
n�1
�2n� 1�Re�an � bn�:

Here k � 2p=l. For nonmagnetic materials, the coefécients
have the form

an � fcn�y��c 0n�m2y� ÿ Anw
0
n�m2y�� ÿm2c

0
n�y��cn�m2y�

ÿAnwn�m2y��gfxn�y��c 0n�m2y� ÿ Anw
0
n�m2y��

ÿm2x
0
n�y��cn�m2y� ÿ Anwn�m2y��gÿ1;

bn � fm2cn�y��c 0n�m2y� ÿ Bnw
0
n�m2y�� ÿ c 0n�y��cn�m2y�

ÿBnwn�m2y��gfm2xn�y��c 0n�m2y� ÿ Bnw
0
n�m2y��

ÿ x 0n�y��cn�m2y� ÿ Bnwn�m2y��gÿ1;

An �
m2cn�m2x�c 0n�m1x� ÿm1c

0
n�m2x�cn�m1x�

m2wn�m2x�c 0n�m1x� ÿm1w 0n�m2x�cn�m1x�
;

Bn �
m2cn�m1x�c 0n�m2x� ÿm1cn�m2x�c 0n�m1x�
m2w 0n�m2x�cn�m1x� ÿm1c 0n�m1x�wn�m2x�

;

x � ka1; y � ka2; m1, m2 are the refractive indices of the
core and the shell, respectively, relative to the environment;
wn�z� � ÿzyn(z) and cn(z) � zjn(z) are the Riccati ë Bessel
functions;

jn�z� �
�����
p
2z

r
Jn�1=2�z� and yn�z� �

�����
p
2z

r
Yn�1=2�z�

are spherical Bessel functions; and Jv, Yv are the Bessel
functions of the érst and second kind, respectively.

The dot-and-dash curve in Fig. 1b shows the results of
our calculations of the gain. Calculations were made for the
values of the refractive index n2 obtained from condition (2).
One can see that the values of the gain required for

compensation of absorption are much smaller than those
obtained in the electrostatic approximation.

A rigorous approach to the solution of the scattering
problem also requires the inclusion of éeld inhomogeneities
inside nanoparticles. Already for a2 > l=10, the éeld
inhomogeneity is such that expression (2) of the electrostatic
approximation is not applicable for analysing the conditions
of radiation scattering minimum and for calculating the
refractive index n2. For this reason, the conditions of
scattering minimum were obtained by direct numerical
computations based on formula (5).

The dependences of the refractive index of the shell,
providing the conditions of radiation scattering minimum,
on its radius are shown by solid curves in Fig. 1a. The
values of the gain corresponding to these refractive indices
are shown in Fig. 1b. One can see that according to the
exact calculations, the gain takes a éxed value of about 0.05
for a2 > 70 nm. Although this value is slightly higher than
the values of g calculated for n2 satisfying condition (2), it is
still considerably lower (by about 30%) than the gain g �
0:07 obtained in the electrostatic approximation.

Thus, calculations made for a sphere encased in a shell
indicate that the values of the gain of the active component
necessary for compensation of electromagnetic radiation
absorption obtained under electrostatic approximation
should be reéned. Exact electrodynamic calculations of
the optical properties of such a composite gives a qualitative
picture of the dependence of refractive indices and gain of
the active component on the external radius of the particle,
which is analogous to the electrostatic case, but at a much
lower value of the gain.

The results of exact electrodynamic calculations pre-
sented here suggest that the value of the gain in the active
component of bulk composite media providing the com-
pensation of absorption of external radiation can be
reduced. The conditions for energy loss compensation are
analysed in the next section of this paper.

3. A system of nanocylinders in an amplifying
matrix

To our knowledge, no appropriate analytic theory has been
developed so far for determining the effective optical
parameters of bulk composite media with an active matrix.
The methods for calculating the optical properties of
photonic crystals, such as the scattering matrix method
[23] and the Korringa ëKohn ëRostoker (KKR) method
[24], either need to be reéned substantially or are entirely
unsuitable for our purposes. For this reason, we determined
the effective parameters of composite media by using the
method of énite elements. The FEMLAB 3.0a software
developed by Comsol was used for numerical simulation.

To elucidate general properties only and to reduce the
calculation time, we restricted our analysis to the case when
a plane ë parallel layer of a composite medium contained
only one row of parallel inénitely long nanocylinders
(nanowires) located in the same plane and separated by
the same distance from one another. The analysis was
performed for the normal incidence of an electromagnetic
wave with polarisation vector directed normally to the
nanocylinder axes.

Following the approach developed in [3], we obtain an
expression for the effective permittivity eeff of the composite
medium formed by nanocylinders, which is analogous to the
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Maxwell ëGarnet equation. The corresponding calculation
in the electrostatic approximation involves an iterative
procedure in which the expression for eeff is obtained as
the érst approximation relative to the contribution from
nanoinclusions. Taking into account that the polarisability
of the unit length of a cylinder of radius ab with permittivity
eb placed in a medium with permittivity em in an external
éeld perpendicular to the cylinder axis is described by the
expression [25]

a � a 2
b

2

eb ÿ em
eb � em

;

we obtain the equation

eeff ÿ em
eeff � em

� Z
eb ÿ em
eb � em

; (6)

where Z is the volume concentration of nanocylinders
(élling factor).

The effective refractive index neff and absorption coefé-
cients Keff of a plane ë parallel layer of the composite
medium were numerically calculated by analysing the
dependence of the layer transmittance and reêectance on
the refractive index of the environment (for a éxed layer
thickness). It is known that the maximum ratio of the
transmittance T to reêectance R is achieved when the
refractive index of the environment is equal to (n 2

eff�
K 2
eff)

1=2. In the cases under study, Keff 5 neff, and the
approximate equality (n 2

eff� K 2
eff)

1=2 � neff is satiséed to a
high degree of accuracy. Thus, the effective refractive index
of a composite medium can be determined quite easily in
numerical calculations by analysing the dependences of R
and T on the refractive index of the environment.

In order to determine the effective absorption coefécient
of the layer, we analysed the energy losses during the
propagation of a wave through the layer. For this purpose,
we substituted the values of transmittance and reêectance,
obtained by numerical simulation, into the known analytic
expressions for the transmittance and reêectance of a
constant-thickness layer [26], and obtained Keff from the
known values of neff and the layer thickness h.

The effective refractive index and absorption coefécient
of a composite monolayer differ generally from those in the
bulk of a composite medium away from the interface. This
conclusion can be drawn easily by analogy with the
propagation of an electromagnetic wave through an ultra-
thin layer taking the discrete atomic structure into account
[27]. This difference was estimated from numerical calcu-
lations of a composite layer containing nanocylinders of a
very small radius ab � 5 nm separated from one another by
a distance of 13 nm. Because the length 400 nm of the
external electromagnetic wave greatly exceeds these param-
eters, the electrostatic approximation conditions are satiséed
in this case to a high degree of accuracy. The results of this
numerical simulation were compared with the results of
calculations by expression (6) describing the effective optical
parameters of the composite medium away from its surface.
Taking the obtained results into account, it can be expected
that the calculated effective optical parameters of the
composite layer, which are presented below, differ from
analogous values in the bulk of the composite by no more
than 10%.

As the radius of nanocylinders increases, the difference
in the values of the effective refractive index obtained by
exact electrodynamic calculations and in the electrostatic
approximation (6) becomes larger. Figure 2 shows the
dependences of the effective refractive index neff on the
refractive index nm of the matrix for various élling factors
for ab � 10 nm under the assumption that absorption by
nanocylinders is compensated by ampliécation in the
matrix. Regions with a negative effective permittivity of
the composite medium correspond to refractive indices of
the matrix for which the values of neff are not given on the
plots. For these values of nm, an external electromagnetic
wave cannot propagate in a composite medium and is
totally reêected from it. In particular, it is shown within
the framework of the electrostatic approximation that the
composite will not transmit light for any values of nm in the
range 1 ë 2.5 for a élling factor Z � 0:7 (Fig. 2d).

One can see from Fig. 2 that despite a small value of the
nanocylinder radius compared to the wavelength, the result
of exact electrodynamic calculations differs substantially
from that obtained in the electrostatic approximation. For
moderate volume concentrations of nanocylinders (Z �
0:1ÿ 0:3), this difference is only quantitative (Figs 2b
and c). Qualitative differences appear for a relatively low
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Figure 2. Effective refractive indices of a composite medium as functions
of the refractive indices of the matrix for a élling factor Z � 0:05 (a), 0.1
(b), 0.3 (c), 0.7 (d); the solid curves show the results of simulation based
on the énite elements method, while the dashed curves are calculated on
the basis of the electrostatic theory; the computational parameters are
ab � 10 nm, eb � ÿ3:72� 0:42i, l � 400 nm.
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(Z < 0:1) or high (Z � 0:7) concentration of nanocylinders.
For small values of Z, this is manifested in a decrease in the
effective refractive index of the composite with increasing
the refractive index of the matrix in the range nm > 2:3
(Fig. 2a). For large values of Z (Fig. 2d), the dependence of
neff on nm becomes substantially different from that in the
electrostatic case; consequently, a transmitted wave is
formed in the composite medium. In the former case, the
differences mentioned above can be attributed to delay
effects in the interaction of nanocylinders, while in the latter
case, they can be related to excitation of multipole moments
of closely spaced nanocylinders.

Figure 3 shows the dependences of the absorption
coefécient Keff of the composite layer on the refractive
index of the matrix for the same parameters as in Fig. 2
for the case when the matrix is not amplifying. One can see
that for small nm, the results of numerical calculations
coincide to a high accuracy with the results obtained in the
electrostatic approximation for élling factors Z � 0:05ÿ 0:3.
For large values of nm, the exact electrodynamic calculation
gives smaller values of Keff than in the case of the electro-
static theory. The difference in the values of Keff obtained by
these two different methods becomes signiécant for a low

concentration of nanocylinders: for Z � 0:05 and nm � 2:5
(see Fig. 3a), the absorption coefécients obtained from (6)
and exact calculations are 0.11 and 0.029, respectively, i.e.,
differ by a factor of 3.8.

Our calculations showed that for a composite matrix
with a large refractive index (nm � 2:5) situations may arise
when neff � 1 for a relatively small absorption coefécient
Keff � 0:05 (for Z � 0:06) or for neff 5 1 and Keff � 0:01 (for
Z � 0:04). The situations when the effective refractive index
becomes much larger than unity for a small absorption
coefécient are not realised in this system for the values of
parameters we used.

One can see from Fig. 3 that a metal ë dielectric compo-
site exhibits a noticeable absorption even for small Z and
large nm. We shall try to compensate for the absorption by
using an amplifying medium as the material for the matrix.
Let us calculate the gain required for this purpose. Similarly
to the case of a metal sphere in a shell under the condition
Im(eb)5Re(eb), we obtain from (6) an approximate expres-
sion for the gain of the matrix under conditions of
compensated absorption in the composite medium:
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Figure 3. Effective absorption coefécients of a composite medium as
functions of the refractive indices of the matrix for a élling factor
Z � 0:05 (a), 0.1 (b), 0.3 (c), 0.7 (d); the solid curves show the results of
simulation based on the énite elements method (simulation was not
carried out for the region in which the electromagnetic wave cannot
propagate), while the dashed curves are calculated on the basis of the
electrostatic theory; the computational parameters are the same as in
Fig. 2.
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Figure 4. The gain of the matrix as a function of its refractive index in
the absence of radiation absorption by a composite medium for a élling
factor Z � 0:05 (a), 0.1 (b), 0.3 (c), 0.7 (d); the solid curves show the
results of simulation based on the énite elements method (simulation was
not carried out for the region in which the electromagnetic wave cannot
propagate), while the dashed curves are calculated on the basis of the
electrostatic theory; the computational parameters are the same as in
Fig. 2.
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g � ÿ 2Zn 3
mIm�eb�

4Re�eb�emZÿ �Re�eb� � em�2 � �Re�eb� ÿ em�2Z 2
, (7)

where nm � �����
em
p

.
For comparison, Fig. 4 shows the dependences of the

gains obtained from (7) and from exact numerical simu-
lations. One can see that for nm � 1ÿ 1:5, the gains
obtained by these methods coincide. For larger values of
nm, however, the required gain is much lower than the value
obtained in the electrostatic approximation. The difference
in the gains increases with decreasing concentration of
nanocylinders. Thus, for Z � 0:05 and nm � 2:5, the values
of g obtained by the two methods differ almost by an order
of magnitude. According to the electrostatic calculations,
the gain under these conditions should be (2p=l)g �
12� 103 cmÿ1, which is an unattainable value at present.
According to the electrodynamic calculations, however, this
value can be lowered to 1:7� 103 cmÿ1, which is although a
large but attainable value in principle.

Note that the gain of the matrix required for compensat-
ing the absorption (Fig. 4) is much smaller than the
absorption coefécient of the composite (Fig. 3).

A comparison of Figs 3d and 4d shows that the
excitation of multipole moments in closely spaced nano-
cylinders leads to quantitative as well as qualitative
differences in the above dependences. Although the gain
required for compensating absorption of radiation in the
composite acquires slightly higher values in this case, its
magnitude still remains much smaller than the value
obtained in the electrostatic approximation.

4. Discussion

Exact electrodynamic calculation of the optical properties
of composite media for a nanosphere with a shell and a
system of metal nanocylinders in a dielectric matrix shows
that the difference from the results obtained for electro-
static approximation may be quite signiécant in some cases.
Such a situation arises, for example, if one of the
characteristic sizes of the system (thickness of the shell
surrounding the nanosphere or the spacing between nano-
cylinders) becomes comparable with the wavelength in the
corresponding material and the delay effects become
appreciable. The role of the delay effects also increases
for the optically denser matrix in a bulk composite medium.
Note that for a certain relation between the parameters of
the composite, the results of exact calculations may differ
from the results obtained in the electrostatic approximation
by an order of magnitude.

The models of composite media considered in the
absorption ë compensation regime predict a lower value
of the gain obtained in exact numerical calculations
compared to that obtained in the electrostatic theory (see
Fig. 1b and Fig. 4). The exact calculation shows that for
large values of the refractive index of the active matrix, the
gain required for compensation of absorption in the
composite assumes values that are attainable in actual
practice. This result is quite interesting from the point of
view of obtaining transparent or weakly absorbing compo-
site materials with extremely large, small or unit refractive
index.

Because the values of the gain of the composite are quite
small (0.01 ë 0.2), ampliécation leads only to a small
variation of the éeld in the medium as compared to the

case of a nonamplifying matrix. This may form the basis of
a new method of describing the optical properties of
composite media with amplifying components, where the
gain is used as a perturbing parameter. However, it should
be noted that in the case of plasmon resonance, the presence
of the amplifying medium may lead to a considerable
increase in the local éeld strength [28]. The éeld distribution
in the composite medium should be determined using the
exact electrodynamic calculations.

In our numerical calculations, we assumed that l �
400 nm. Such a wavelength was chosen because the require-
ments imposed on the gain become less stringent for shorter
wavelengths of the visible range, and the problem of
obtaining nonabsorbing or weakly absorbing composite
media is simpliéed for these wavelengths.

Note that we considered in this paper the normal
incidence of an electromagnetic wave on the composite
layer. Generally speaking, the optical properties of the layer
also depend on the angle of incidence because of retardation
effects [16]. A separate study will be devoted to an analysis
of this problem, as well as to generalisation of the results
presented here to other composite media.
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