
Abstract. It is shown that the quasi-geometrical approx-
imation permits a quite accurate calculation of the eigenfre-
quency spectrum of axially symmetric dielectric resonators
with whispering-gallery modes and also gives expressions for
the radiative Q factor and Q factor related to surface losses.
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eigenfrequencies, Q factor.

High-Q fused silica resonators were érst demonstrated in
paper [1]. In succeeding years, the interest in miniature
optical dielectric whispering-gallery-mode (WGM) resona-
tors continuously increased and their manufacturing
technology was considerably improved. The characteristic
features of WGM resonators such as their small size (0.01 ë
10 mm), high Q factor (up to 1011), an arbitrary proéle of
the generator surface (torus, spheroid [2, 3], special proéle
[4]), the possibility of using crystal materials, including
nonlinear ones, makes these resonators very attractive for
wide applications in experimental physics and applied
problems of optoelectronics (see reviews [5] and [6] devoted
to the theoretical problems of WGMs and also review [7]
devoted to experimental applications of WGM resonators),
in particular, to stabilise semiconductor lasers [8, 9].

In the case of a sphere or a cylinder, it is possible to énd
the eigenmodes and corresponding eigenfrequencies exactly,
to calculate the éeld distribution inside and outside the
resonator, and estimate energy losses. However, in the
general case of a resonator representing an arbitrary
body of revolution, this cannot be done because exact
analytic solutions do not exist, whereas numerical methods,
for example, the method of énite elements loses its eféciency
when the resonator size considerably exceeds the wave-
length. The geometrical optic approximation (eikonal) is
one of the most efécient asymptotic methods for estimating
the eigenfrequencies of whispering-gallery modes if exact
solutions cannot be found [10]. We obtained in [11] quite
accurate approximations for eigenfrequencies in a spheroid
and showed that this method can be applied to an arbitrary
body of revolution. In this paper, we reéne the results and

obtain expressions for the Q factors determined by losses
depending on the shape of axially symmetric dielectric
WGM resonators.

The geometrical optics approximation is described by
the eikonal equation

�HS�2 � E�r�; (1)

where E is the dielectric constant. For a homogeneous
resonator in vacuum, E is independent of coordinates,
E � n2 inside the resonator and is unity outside (n is the
refractive index). To reduce the eikonal equation to the
eigenvalue problem, we can seek at the solutions for rays
and sew them together at the dielectric boundary. But there
exists a more descriptive and at the same time more efécient
method to énd the resonance conditions for WGMs ë
quasi-classical quantisation of closed optical paths [10 ë 15].

Consider a model problem of the eigenmodes of a
dielectric spheroid. The spheroidal coordinate system for
oblate and prolate spheroids has the form

x � d

2
��x 2 ÿ s��1ÿ Z 2��1=2 cosf;

y � d

2
��x 2 ÿ s��1ÿ Z 2��1=2 sinf; (2)

z � d

2
xZ;

where d is the distance between foci. The parameter s � 1 in
the system of prolate spheroidal coordinates (x; Z;f) for
x 2 �1;1� corresponds to prolate spheroids and for
Z 2 �ÿ1; 1� ë to two-sheeted hyperboloids of revolution.
Correspondingly, if s � ÿ1, then x 2 �0;1� corresponds to
oblate spheroids and Z 2 �ÿ1; 1� corresponds to one-sheeted
hyperboloids. We are interested in WGMs, when the éeld is
concentrated near the surface and equatorial plane of the
resonator. In the spheroidal coordinate system, the eikonal
equation is separable if we assume that S �
S1(x)� S2(Z)� S3(f):

S1�x� �
nd

2

� ��x 2 ÿ x 2
c ��x 2 ÿ sZ 2

c ��1=2
x 2 ÿ s

dx;

S2�Z� �
nd

2

� ��Z 2
c ÿ Z 2��x 2

c ÿ sZ 2��1=2
1ÿ Z 2

dZ; (3)
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S3�f� � m
�
df;

where

Z 2
c �
�1� sg� ÿ ��1� sg� 2 ÿ 4sgZ 2

0 �1=2
2sg

;

(4)

x 2
c �
�1� sg� � ��1� sg� 2 ÿ 4sgZ 2

0 �1=2
2g

� 1� sg
g
ÿ sZ 2

c ;

g � n 2d 2=(4n 2); Z 2
0 � 1ÿ m 2=n 2; m and n are separation

constants.
The eikonal equation describes the rays propagating

inside the resonator, reêecting from its surface. The rays
touch the internal caustic, a spheroid xc, and propagate
along the geodesic lines on it. In an ideal sphere, all the rays
of the same family lie in the same plane, but even a small
eccentricity removes this degeneracy and causes the pre-
cession of the ray path around the z axis [16]. The geodesic
lines acquire the form of unclosed spirals winding on a
caustic spheroid, the upper and lower points of these
trajectories specifying another caustic corresponding to
Zc, which is a two-sheet hyperboloid if the resonator is a
prolate spheroid or a hyperboloid of one sheet if the
spheroid is oblate.

Within the framework of a classical ray interpretation of
the eikonal method, it is necessary to use the phase-
matching conditions during the cyclic change of each of
the coordinate functions Sj, which gives the equations

2kS1jxsxc � 2p�qÿ 1=4�;

2kS2jZcÿZc � 2p�p� 1=2�; (5)

kS3j2p0 � 2pjmj

for the eigenvalues of the problem, where k is the wave
number; xs is a spheroid corresponding to the resonator
surface; and q, p, and m are integers. The equations are
written taking into account the changes in the phase of a
ray after touching caustics and reêection from surfaces.
Each contact of the ray with the caustic changes its phase
by p=2, while reêection changes the ray phase by p [17].

The same equations can be obtained by the method
proposed in [14]; in this case, the eikonal equations obtained
formally can be clearly interpreted. The integral S1 corre-
sponds to the difference of two geodesic paths between
points P1(xc;ÿZc;f1) and P2(xc;ÿZc;f2) on the surface ÿZc
(Fig. 1). The érst path begins from a circle at which caustics
xc and ÿZc, intersect, passes along ÿZc to the resonator
boundary xs, is reêected from it and returns back to the
same circle, while the second path passes along the circle arc
between points P1 and P2. The integral S2 corresponds to
the difference of two paths, of which the érst one passes
from the point P 01 over the surface xc, descends on the
surface ÿZc and returns to the point P 02 on the surface Zc,
while the second one passes along the circle arc between
points P 01 and P 02. The third integral S3 simply corresponds
to the length of the intersection circle of caustics xc and Zc.
As a result, we have for S1 one caustic phase shift by p=2 on
the surface xc and one reêection from the spheroid surface,
for S2 ë one caustic phase shift by 2(p=2� on the surfaces Zc

and ÿZc, whereas S3 has no additional phase shifts. Such an
interpretation is a more general and is valid also in case
when the eikonal solution cannot be written in the explicit
form.

In the geometrical optics approximation, WGMs rep-
resent a set of rays reêecting from the internal surface of a
dielectric resonator at an angle greater than the total
internal reêection angle. To pass from a spheroid with
simple zero boundary conditions described by the obtained
equations to a real dielectric spheroid within the framework
of the geometric optics approximation, we should take into
account the additional phase shift upon total internal
reêection. The amplitude reêection (rF) and transmission
(tF) coefécients for a plane wave incident on a plane
interface of two media are obtained from the known Fresnel
formulas (see section 1.5 in [17]):

Er � rFEi �
wni cos yi ÿ nt cos yt
wni cos yi � nt cos yt

Ei;

(6)

Et � tFEi
2
���
w
p

ni cos yi
wni cos yi � nt cos yt

Ei:

Here, Ei, Et, and Er are the electric éeld amplitudes for the
incident, transmitted, and reêected waves, respectively;
yi � yr, yt are the angles of incidence, transmission, and
reêection waves, respectively (Fig. 2a); ni and nt are the
refractive indices in two media; and w is the coefécient
depending on the wave polarisation. For the wave with the
vector E perpendicular to the plane of incidence (transverse
electric TE wave) and parallel to the interface, the
coefécient w � 1. For the TM wave with the vector E
lying in the plane of incidence and directed in the érst
medium at an angle yi to the interface, w � (nt=ni)

2. The
angle of refraction yt is related to the angle of incidence by
the Snell law

ni sin yi
nt sin yt

� 1: (7)

Fresnel formulas can be easily obtained from the continuity
condition at the interface of the longitudinal components of
the vector E and transverse components of the vector
D � n 2E. The Snell and reêection laws follow from the

xs

xc

ÿZc

Zc

P 01 P 02

S2

S1

S3

P1
P2

Figure 1. View of caustics and geodesic curves of a spheroidal resonator.
The éeld of a whispering-gallery mode is concentrated in the equatorial
region near the resonator surface and élls the space restricted by this
surface xs and caustics xc and �Zc. The éeld can be represented as a set of
geometrical rays reêected from the surface, tangential to caustics, and
adjacent to geodesic lines on these caustics.
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continuity of the longitudinal component of the wave
vector at the interface: kt � nik sin yi � nik sin yr �
ntk sin yt.

The coefécient rF relating Er and Ei in the érst Fresnel
formula in (6) is simply equal to the amplitude reêection
coefécient R because it relates directly the amplitudes of
incident and reêected waves. The relation between the
amplitude transmission coefécient T of the wave with the
second Fresnel formula and tF can be found from the
expressions for the optical wave power

R � wni cos yi ÿ nt cos yt
wni cos yi � nt cos yt

;

(8)

T � tF

�
ntRe�cos yt�
ni cos yi

�1=2
� 2�wnint cos yiRe�cos yt��1=2

wni cos yi � nt cos yt
:

When light is incident from an optically denser medium
to a less optically dense medium (ni > nt), the angle of
refraction remains real only for angles of incidence satisfy-
ing the condition sin yi < ni=nt. For larger angles of
incidence, the angle of refraction becomes complex (the
real part is p=2) and its cosine [cos yi � (1ÿ sin yini=nt)

1=2]
and, hence, the transverse component of the wave vector
ktz � ntk cos yt become purely imaginary. This means that
the wave in the second medium with the amplitude propor-
tional to exp (ÿ ikn2 cos y2) transforms to a decaying wave
with the amplitude proportional to exp�ÿ k(n 2

i sin
2yiÿn 2

t )
1=2�

and not propagating at inénity. In this case, the modulus of
the reêection coefécient is jRj � 1, and T � 0. The éeld in
the second medium, determined by the second Fresnel
formula in (6), does not vanish at the boundary due to
the presence of such a decaying wave. This effect of the
evanescent éeld upon total internal reêection plays a very
important role in the properties of WGMs because it
provides coupling with these modes and is responsible
for the interaction of modes with the surrounding medium.

The penetration of the éeld to the second medium can be
described in the ray approximation by introducing the
imaginary mirror boundary separated by a distance sr
from the real boundary (Fig. 2). This distance can be

obtained from expression (8) for the reêection coefécient
by assuming that the additional phase shift in the expansion
coefécient is caused by the propagation over this additional
path. For almost grazing angles of incidence in WGMs,
when the value of cos yi is small, we obtain from Fresnel
formula (6)

R � ÿeifr � wni cos yi ÿ i�n 2
i sin

2 yi ÿ n 2
t �1=2

wni cos yi � i�n 2
i sin

2 yi ÿ n 2
t �1=2

;

fr � 2 arctan
wn cos yi

�n 2 sin 2 yi ÿ 1�1=2
(9)

' 2wn

�n 2 ÿ 1�1=2
cos yi �

wn 3�3ÿ 2w 2�
3�n 2 ÿ 1�3=2

cos3 yi

� wn 5�15ÿ 20w 2 � 8w 4�
20�n 2 ÿ 1�5=2

cos 5 yi �O�cos7 yi�;

where n � ni=nt. Rays behave as if they were reêected
without displacement for a surface separated from the real
surface by the distance

sr �
fr

2kn cos y
� kÿ1

�
w

�n 2 ÿ 1�1=2
� wn 2�3ÿ 2w 2�

6�n 2 ÿ 1�3=2
cos 2 yi

� wn 4�15ÿ 20w 2 � 8w 4�
40�n 2 ÿ 1�5=2

cos 4 yi �O�cos6 yi�
�
: (10)

For the same reason, the longitudinal displacement
st � sr tan yi of the reêected beam occurs. This effect is
known as the Goos ëH�anchen effect [18] and it can be quite
large for grazing angles.

When a ray is incident on a plane interface under the
condition sin yi > ni=nt, its reêection will be total. However,
if the surface is convex outside, this will not be the case
(Fig. 2b). The reason can be easily explained, and the effect
can be estimated from simple physical considerations. The
evanescent éeld of the wave moves along the curved surface
with the radius of curvature rcv with the tangential velocity
vt � o=kt � c=(ni sin yi) (o is the cyclic frequency, c is the
speed of light in the surrounding medium), and the phase
fronts move away from the surface at a constant angular
velocity. However, at a distance of rt � rcvc=vt � rcvn sin yi
from the centre of curvature, this velocity becomes equal to
the speed of light, and the `tail' of the evanescent éeld
reaching this boundary is emitted tangentially and therefore
cannot return back to the érst medium [19]. Unlike
reêection from a plane, the decay of the evanescent éeld
with r occurs not exponentially, but can be easily found. It
is described by the law E � EitF exp�i

�
kr(r)dr�, where

kr�r� �
�
k 2 ÿ

�
ktrcv
r

�2�1=2

� ik

��
rcvn sin yi

r

�2
ÿ 1

�1=2
: (11)

One can see from this expression that the decay ceases at
the distance rt, and the imaginary kr becomes real. Thus,
by taking the integral, we obtain the énal expression for
power losses after reêection from the curved surface:

yi yr

rt

yi yr

yt

sr

a

b

Figure 2. Incidence of a ray on a plane (a) and curved (b) surfaces.
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jT j 2 � jtFj2
�n 2 sin2 yi ÿ 1�1=2

n cos yi

� exp

�
ÿ 2k

� rt

rcv

��
rcvn sin yi

r

� 2

ÿ 1

�1=2
dr
�

� 4nw cos yi�n 2 sin 2 yi ÿ 1�1=2
n 2 ÿ 1ÿ n 2�1ÿ w 2� cos 2 yi

eÿ2C�yi�; (12)

C�yi� � krcv�n sin yi arcosh �n sin yi�

ÿ�n 2 sin 2 yi ÿ 1 �1=2�:
By using the expression found for the displacement sr

and calculating asymptotically integrals in the approxima-
tion of smallness of Zc and �xs ÿ xc�=xs, we obtain the
following approximation for the eigenfrequencies of a
spheroidal resonator [11]

nka � l� aq

�
l

2

�1=3
� 2p�aÿ b� � a

2b

ÿ wn

�n 2 ÿ 1�1=2
� 3a 2

q

20

�
l

2

�ÿ1=3
� aq
12

�
2p�a 3 ÿ b 3� � a 3

b 3

� 2n 3w�2w 2 ÿ 3�
�n 2 ÿ 1�3=2

��
l

2

�ÿ2=3
�O�lÿ1�; (13)

where a and b are the semiaxes of the spheroid and
l � jmj � p is the mode order. To obtain a better accuracy,
the formal solutions aq � � 32p(qÿ 1

4
)�2=3 of (13) should be

replaced by the roots of the equation Ai(ÿ aq) � 0,
(aq ' 2:3381; 4:0879; 5:5206; ...), where Ai(z) is the Airy
function. The validity of such a substitution follows from
the properties of the approximation of the éeld near the
caustic by the Airy functions [12]. The obtained expression
with the error �O(l ÿ1) is considerably more accurate than
approximations found earlier [2, 14, 15], whose error is
O(lÿ1=3). The accuracy of the approximation obtained here
is conérmed by numerical simulation [11].

An arbitrary surface of a body of revolution can be often
approximated by an equivalent spheroid, taking into
account that the WGM éeld is concentrated near the
equatorial plane close to the resonator surface, and the
obtained result can be used directly.

In the case of an arbitrary convex body of revolution, we
can also construct a more general theory. First we determine
the families of caustics. The érst family can be found by
using the approximation [12]

sc�P� ' ÿ
1

2
k 2r1=3cv �P� �O�k 4�;

(14)

cos yi�P� � krÿ1=3cv �P�;
where sc(P) is the normal distance from the point P on the
surface body to the caustic; k is the family parameter; and
cos yi is the angle of ray incidence at the point P. If a
caustic of the érst family is found, which is speciéed
parametrically as r � g(z), we can also énd the second
family of caustics speciéed parametrically as h(z) and
orthogonal to any surface of the érst family for different k.

The geodesic curve on the surface is described by the
expression

df
dz
� rc�1� g 0 2�1=2

g�z��g 2�z� ÿ r 2
c �1=2

; (15)

where rc � g(zmax) is the radius of a circle on the caustic
located at a maximum distance from the equatorial plane.
The length of the geodesic curve of the segment is

dL � g�1� g 0 2�1=2
�g 2 ÿ r 2

c �1=2
dz: (16)

Then, the length of the geodesic curve connecting points f1

and f2 is

Lg
1 � 2

� zmax

ÿzmax

g�1� g 0 2�1=2
�g 2 ÿ r 2

c �1=2
dz; (17)

and the length of the arc from f0 � 0 to fc � 2

� Zc

ÿZc

df
du

du is

Lg
2 � rcfc � 2

� zmax

ÿzmax

r 2
c �1� g 0 2�1=2
g�g 2 ÿ r 2

c �1=2
dz: (18)

As a result, we obtain

nk�Lg
1 ÿ Lg

2� � 2nk

� zmax

ÿzmax

�1� g 0 2�1=2�g 2 ÿ r 2
c �1=2

g
dz

� 2p�p� 1=2�: (19)

Similarly, by taking integral over the resonator surface, we
obtain for the geodesic curve on the caustic r � h(z) of
another family

nk�Lh
1 ÿ Lh

2� � 2nk

� zs

zmax

�1� h0 2�1=2�h 2 ÿ r 2
c �1=2

h�z� dz

� 2p�qÿ 1=4�: (20)

The third condition is

2pnkrc � 2pjmj: (21)

For the spheroidal coordinate system, this system is
equivalent to (5).

In [20], another interesting method was proposed for
calculating the WGM eigenfrequencies. The éeld is repre-
sented in the form of the eigensolution for a dielectric
cylinder, which is slowly varying along the z axis. The
dependence on z is taken into account by the WKB method.
A similar method was proposed earlier in [2]. The use of this
method for solving the model eigenfrequency problem for a
sphere and a spheroid show that its accuracy is of the order
of O(lÿ2=3), i.e. worse than that of our method.

To estimate the intrinsic Q factor of WGMs in the quasi-
classical approximation, it is necessary to take into account
internal ray losses upon each reêection from the resonator
surface. The Q factor is determined by a simple expression
[1]

Q � 2pn
al

; (22)
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where a corresponds to losses per unit path length of the
ray; and l is the wavelength. The path can be represented as
many segments of a broken line, each of them of length
Ln � 2rcv cos y. Let energy losses upon reêection on the
given segment of the path be T(y) and an � T(y; rcv)=Ln. By
averaging an over one coil of the geodesic curve, we obtain
the total losses and Q factor

Q � 2pnLg

l

� �
T�y�

2rcv�y� cos y
dL

�ÿ1

� 2pnLg

l

� � zmax

ÿzmax

T�y�
rcv�y� cos y

dL

dz
dz

�ÿ1
: (23)

This expression can be used to estimate the Q factors of
arbitrary dielectric WGM resonators. Note that not only
the radiative Q factor but also scattering and absorption
losses on the surface can be calculated. The radiation losses
upon reêection from a curved surface were calculated
above. They can be also obtained by solving the model
problem in a sphere, when rcv � a and cos y0 �
�1ÿ �l� 1=2� 2=�kna� 2�1=2 ' (aq)

1=2(l=2)ÿ1=3, and

T0 �
4pna cos y0

lQ0

; (24)

where rcv, cos y0, and T0 are mode constants. By using the
Debye approximation for the Neumann function in the
expression for the radiative Q factor found from the exact
equation for a sphere, we obtain the same expression (12).
The Q factor can be calculated, if T(y) is known, by using
the expressions

rcv �
jr 0j3
jr 0 � r 00j �

r 3�1� r 0 2�3=2
r 2
max�1� r0 2� ÿ rr 00�r 2 ÿ r 2

max�
;

dl

dz
� r�z��1� r0�z�2�1=2
�r 2�z� ÿ r 2

max�1=2
;

(25)

Lg � 4

� zmax

0

r�z��1� r0�z�2�1=2
�r 2�z� ÿ r 2

max�1=2
dz;

cos y ' �2sc=rcv�1=2;

where rmax � r(zmax) is the distance from the z axis to the
highest point of the geodesic curve; and sc is the normal
distance from the sphere surface to the caustic.

From (25), we énd the expressions for the intrinsic
radiative Q factor of a spheroid:

rcv � a
�1� z 2�a 2 ÿ b 2�=b 4�3=2
1� z 2max�a 2 ÿ b 2�=b 4

' a

�
1ÿ a 2 ÿ b 2

b 2
Z 2
c �

3

2

a 2 ÿ b 2

b4
z 2
�
; (26)

cos y ' �aq�1=2
�

l

2

�ÿ1=3�
1� a 2 ÿ b 2

2b 2
Z 2
c ÿ

a 2 ÿ b 2

2b 4
z 2
�
;

Lg ' 2pb� p
2

a 2 ÿ b 2

b
Z 2
c :

By setting z � Zc cosc, we obtain

Q ' p�n 2 ÿ 1�1=2l
4wn

� � p=2

0

eÿ2C�c�dc
�ÿ1

' �n
2 ÿ 1�1=2l
2wn

e2c0
ec1

I0�c1�
;

C0 � nka

�
1ÿ �2p� 1�a�a 2 ÿ b 2�

lb 3

�
(27)

�
�
arcosh n

�
1ÿ aq

2

�
l

2

�ÿ2=3�
ÿ
�
1ÿ 1

n 2

�1=2�
;

C1 � C0

3�2p� 1�a�a 2 ÿ b 2�
2b 3l

;

where I0(z) is the Infeld function. Figure 3 shows the
dependences of the radiative Q factor on the êatness
parameter of a spheroid for the TE and TM modes for
l � m � 100 (fundamental mode) and l � 100, m � 98. The
êattening f � 0 (a � b) corresponds to an ideal sphere.

We calculate losses caused by scattering from the
nonideal surface of the resonator by using the results of
calculations obtained for a sphere [21]:

T � 32n 2p3B 2s 2

3l 4
cos y; (28)

where B is the correlation length of inhomogeneities and s
is the inhomogeneity size.

As a result, we obtain the Q factor for surface scattering
in the form

Qss �
3l 2Lg

16np 2B 2s 2

�
� � zmax

ÿzmax

1� z 2max�a 2 ÿ b 2�=b 4

�z 2max ÿ z 2�1=2�1� z 2�a 2 ÿ b 2�=b 4�
dz

�ÿ1
�

TE100;100;1

TM100;100;1

TE100;98;1

TM100;98;1

Q

1012

1011

1010

109

108 ÿ1:5 ÿ1:0 ÿ0:5 0 f � �aÿ b�=a

Figure 3. Dependences of the radiative Q factor on the êatness
parameter.
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� 3l 2a

8np 2B 2s 2

1

�1� z 2max�a 2 ÿ b 2�=b 4�1=2
: (29)

Thus, by using the ray approximation, we have obtained
accurate approximate expressions for the eigenfrequencies
and Q factor of axially symmetric dielectric WGM reso-
nators with an arbitrary proéle of the generator surface.
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