
Abstract. The statistics of the angles of light deêection
during its propagation in a random two-phase medium with
randomly oriented phase interfaces is considered within the
framework of geometrical optics. The probabilities of énding
a randomly walking photon in different phases of the
inhomogeneous medium are calculated. Analytic expressions
are obtained for the scattering phase function and the
scattering phase matrix which relates the Stokes vector of the
incident light beam with the Stokes vectors of deêected
beams.

Keywords: light scattering, phase function, phase matrix, inhomo-
geneous medium.

1. Introduction

The interaction of electromagnetic waves with inhomoge-
neous media has been extensively studied for the last
century. Interest in these studies is considerably related to
practical needs of radio communication, radiolocation,
space reconnaissance, astrophysics, etc. The main results of
these studies are reported in many papers and monographs
[1 ë 4]. The most universal approach to the problem is based
on the solution of the Maxwell equations with the
corresponding boundary and initial conditions [5]. In the
case of the inhomogeneous medium, these conditions
become statistic, which substantially complicates the prob-
lem. Therefore, different approximations are used, which
yield analytic solutions or considerably simplify computer
calculations [6]. Thus, if the characteristic size of the
medium inhomogeneities is rather large compared to the
wavelength, the approximation of geometrical optics is
quite suitable [7]. To estimate the angular deêections of
light beams in a random medium, eikonal equations
together with the correlation function of the refractive
index [8] or Einstein ëFokker diffuse equations [9 ë 11] were
mainly used. The development of computers made it
possible to perform complex calculations of statistics of
the beam propagation and to simulate different random
media. In biomedical optics, Monte-Carlo methods or

diffuse models are often used, which are in fact based on
the geometrical concept of light propagation. These
methods assume the knowledge of the main optical
properties of random media such as absorption, scattering
and anisotropy coefécients. The anisotropy coefécient is
deéned as a mean cosine of the angle of beam deêection in
a single scattering event. It depends on the scattering phase
function p(s; s 0), which is the probability density of a
change in the direction vector s of a beam by the vector s 0

upon scattering [3]. Therefore, the radiation propagation in
an inhomogeneous medium is determined to a great extent
by the type of the scattering phase function.

Unfortunately, it is difécult or impossible to measure the
scattering phase function in many real cases [12 ë 16].
Therefore, the phenomenological Henyey ëGreenstein phase
function has become widely used in biomedical optics [17].
In fact, this function is the sum of the érst two expansion
coefécients of the generalised phase function in series in
Legendre polynomials with cos g as an argument, where g is
the angle between vectors s and s 0 [18]. The Henyey ë
Greenstein phase function usually lays the basis of the
medium model upon measuring the optical properties.
Because in the following applications it is used similarly,
despite the absence of relations with the physical nature of
the scattering medium, the énal result is often quite
reasonable. Other types of phase functions are encountered
rather seldom [19 ë 25]. Some of these functions were
critically considered in [20] from the point of view of their
possible use in optics of biological tissues. All the known
phase functions have substantial drawbacks because they
are not related to the physical nature of biological tissues. In
addition, the majority of these functions are not sensitive to
the light wave polarisation, and that is why they are often
used together with the Mie theory, which allows one to
calculate the scattering of polarised light by spherical
particles. It is evident that simulation of the biological
tissue by spherical particles is far from reality.

In other papers, the light scattering by randomly
deformed particles was simulated by using ray tracing by
the Markov method [6]. In this case, reêection and
refraction on the surface of particles were taken into
account in accordance with the statistical weights equal
to the Fresnel coefécients. The shape of the particles was
generated with the help of two parameters: the standard
deêection of radius and the correlation length of angular
variations. The spatial orientation of particles was chosen
randomly. The similar approach was used to calculate the
scattering phase function in hexagonal ice crystals in
atmosphere [26 ë 28]. For particles with éxed statistical
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parameters, this approach in principle allows the calculation
of all elements of the phase matrix relating the angular
distributions of the Stokes parameters of a scattered wave to
the Stokes parameters of an incident plane wave [29]. The
relation with real media and the possibility to verify
experiments with polarised light make this method very
attractive. However, it requires complex calculations, espe-
cially if the size and shape of the particles vary considerably
[30].

The light is usually scattered due to the interaction with
particles, êuctuations of the medium density or due to
reêection (refraction) on a rough surface. The optically
inhomogeneous medium can be often represented by several
phases separated by randomly deformed surfaces. Thus, for
example, many biological tissues consist mainly of water
and organic matrix. When the light propagates in this
medium, many events of the radiation interaction with
surfaces of the phase interface occur due to which the
beam direction randomly changes. This process is charac-
terised by the probability density of the beam deêection by a
speciéed angle, this density being equivalent to the phase
function of light scattering by particles. A part of the êux is
reêected and the other is refracted in each such event.
According to the Fresnel formulas, the ratio of energies in
these êuxes, depends on the angle of incidence, the relative
refractive index, and the direction of the polarisation vector.
The fact that the light êux is multiply split considerably
complicates the consideration. However, if we consider the
spatial orientation of the phase interface as a statistical
process, the light refraction and reêection can be treated as
independent events with statistical weights equal to Fresnel
coefécients. One should only take into account that the light
deêection in the given direction is possible for two different
orientations of the surface, in the érst case refraction
occurring, while in the second case ë reêection.

This randomly oriented surface is in fact an ideal
physical object with a statistical generator of spatial
orientations of the phase interface. It is characterised by
two parameters: the relative refractive index and the
probability density of realising the given angle between
the normal to the phase interface and the direction vector of
the incident beam. If we assume that different spatial
orientations of the interface are equally probable, the
only parameter characterising it is the relative refractive
index. In this case, one can determine the phase function of
light scattering for a particular medium by using only the
érst principles. Because the proposed model uses Fresnel
formulas, it is also applicable for polarised light.

Earlier, many authors described the light scattering by
rough surfaces by using the facet models [31 ë 34], which
ideologically are close to the proposed two-phase model of a
medium with randomly oriented phase interfaces. However,
they are mainly limited to the case when the light is incident
on a rough surface from one of its sides. The speciéc feature
of a multiphase inhomogeneous medium is that photons in
it fall on the phase interface at random angles from both
sides. In this case, a part of the êux is reêected remaining in
the same phase, while a part being refracted, penetrates into
the other phase. Therefore, it is necessary to determine in
which of the medium phases is the photon when it reaches
the surface of the phase interface, performing the sampling
according to the Fresnel formulas. Another approach to the
problem consists in determining the probability of énding
the stochastic photons in each phase of the medium and in

using them as the statistical weight of the corresponding
terms of the scattering phase function. It is the solution of
this problem that forms the novelty of the present paper.

Because the model is based on the ray representation of
light, it is limited by the geometrical optics, i.e. the
characteristic size of optical inhomogeneities of the medium
should be great enough compared to the wavelength. For
many biological tissues the scattering coefécient in the
visible and near-IR regions lies between 100 and
1000 cmÿ1. Optical inhomogeneities of size 100 ë 10 mm
correspond to this range, which substantially exceeds the
wavelength of � 1 mm. This implies that the geometrical
approximation can be used for simulating the light prop-
agation in biological tissues. Unlike the wave model, the
geometrical approximation does not take into account light
diffraction and interference. However, we can assume that
upon multiple scattering of stochastic photons in an
inhomogeneous medium these effects are averaged, so
that the results obtained in the geometrical approximation
satisfactorily describe the situation.

2. Scattering phase function

Consider the light propagation in an optically inhomoge-
neous medium consisting of two phases with the refractive
indices n1 and n2. Let us assume that a thin light beam,
which is in phase with the refractive index n1, intersects the
phase interface. We will locate the centre of the three-
dimensional Cartesian coordinate system in the assumed
intersection point of the beam with the phase interface of
the medium and direct the z axis towards the incident beam.
We will also introduce the equivalent spherical coordinate
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Figure 1. Diagram of the light beam deêection by a randomly oriented
phase interface. The interface element is located at the origin of the
coordinates and the normal to it can be directed to any solid angle of the
upper hemisphere, while the deêected beam can have any direction. Two
possible positions of the normal determined by the angles Zr and Zt for
which the beam is reêected or refracted, correspond to the speciéed angle
g of the beam deêection. Other peculiarities of the diagram are explained
in the text.
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system with the polar angle, which is measured with respect
to the z axis, and the azimuthal angle, which is measured
with respect to the x axis. The similar coordinate system is
commonly used when considering the light scattering by
particles [29, 35]. Let Z;j and g;c be the angular
coordinates of the normal to the phase interface and of
the direction vector of the beam deêected in the spherical
coordinate system. A hemisphere (z > 0), whose centre is in
the origin of the coordinates, is the geometrical locus of the
ends of the normal, while a complete sphere is the
geometrical locus of the ends of the direction vector of
the deêected beam (Fig. 1). For the normal, we have
Z 2 �0; p=2� and j 2 �0; 2p� while for the direction vector of
the deêected beam, g 2 �0; p� and c 2 �0; 2p�. In our case,
the normal to the surface, incident, refracted and reêected
beams lie in the same plane, hence, c � j, and, the angles g
and j are independent. Let s(Z;j) be the probability
density of realising the direction of this normal to the phase
interface, and p(g;j) be the required probability density of
this direction of the deêected beam. By deénition, the
probability of énding the deêected beam within the element
of the solid angle in the direction speciéed by angles g and
j is p(g;j) sin gdgdj, while the probability of énding the
normal to the phase interface within the element of the solid
angle in the direction speciéed by angles Z and j is
s(Z;j) sin ZdZdj.

3. Probability density of the beam deêection
angle in the given direction

The incident beam can be deêected in the direction speciéed
by the angles g;j, if the normal to the surface has only
deénite directions speciéed by the angles Zr;j and Zt;j
(Fig. 1). The subscripts r and t correspond to reêection and
refraction, respectively, Zr and Zt are the angles between the
normals to the phase interfaces and the incident beam, and
the beam deêection angle is g. We assume that the
probability of énding a photon in the solid angle
sin gdgdj is equal to the sum of probabilities of énding
the normal to the phase interface in the elementary solid
angles sin ZrdZrdj and sin ZtdZtdj taking into account the
statistic weights of the reêection and refraction events. We
also assume that the statistical weights of these events are
equal to the Fresnel coefécients for the intensities of the
reêected [R(Zt;j)] and transmitted [T(Zt;j)] light. These
assumptions lead to the equation:

p�g;j� sin gdg � R�Zr;j�s�Zr;j� sin ZrdZr�

�T�Zt;j�s�Zt;j� sin ZtdZt: (1)

To perform transformations of random variables, it is
necessary to determine the relation between angles Zr, Zt and
g. They follow from the laws of reêection and refraction:

Zr�g� � �pÿ g�=2; (2)

Zt�g� � arctan

�
n sin g

1ÿ n cos g

�
, (3)

where n � n2=n1 is the relative refractive index. Figure 2
shows these dependences. Here, the region of admissible
deêection angles is expanded from ÿp to p, which, in
principle, corresponds to the two-dimensional medium. It is

assumed also that the clockwise deêection with respect to
the initial direction gives negative values of the angle g. In
the case of refraction, the region of admissible values of the
modulus of the deêection angle |g| is restricted by the
quantities p=2ÿ arcsin (1=n) for n5 1 and p=2ÿ arcsin n
for n < 1. Correspondingly, in the case of n < 1 the region
of angles of incidence upon refraction is limited by the
critical angle ÿ arcsin n. By substituting the angles Zr(g) and
Zt(g) and the absolute values of derivatives dZr/dg and
dZt/dg into (1), we obtain the expression for the probability
density of the beam deêection in the given direction:

p�g; n� � R�Zr�g�� sin�Zr�g��
2 sin g

s��Zr�g��

� T�Zt�g�� sin�Zt�g��
sin g

���� �n 2 ÿ sin2 g�1=2
cos gÿ �n 2 ÿ sin2 g�1=2

����s��Zt�g��: (4)

Hereafter, the angle j is omitted assuming the azimuthal
symmetry. The Fresnel coefécients in (4) depend on the
relative refractive index of the medium phases and the
direction of the polarisation vector of the incident light with
respect to the plane of incidence.

Let us assume that all positions of the phase interface
with respect to the incident beam are equally probable, i.e.
s�Z;j� � 1=(2p). Then, Eqn (4) is simpliéed:

p�g; n� � R�Zr�g�; n� sin�Zr�g��
4p sin g

�T�Zt�g�; n� sin�Zt�g��
2p sin g

���� �n 2 ÿ sin2 g�1=2
cos gÿ �n 2 ÿ sin2 g�1=2

����: (5)

The two terms in the right-hand side of Eqn (5) correspond
to the reêection and refraction events in which the
deêection angle g is the same. We will denote them for
convenience as pr(g; n) and pt(g; n), respectively. In fact,
these are the probability densities of reêection and
refraction events, which occur for different orientations
of the normal to the phase interface. Therefore, they are
statistically independent. In addition, the reêection and
refraction events are independent of any surface position,

Zt; Zr
�
deg

Zr�g�

50

0

ÿ50

ÿ100
ÿ200 ÿ100 0 100 g

�
deg

Zt�g; n � 2=3�

Zt�g; n � 3=2�

Figure 2. Dependences of the angles Zr and Zt of incidence of light beams
on the deêection angle g upon reêection and refraction on the phase
interface.
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because their sampling is performed according to the
statistical weights, the sum of which is equal to unity. It
follows from here that the total numbers of photons
transmitted through the randomly oriented surface and
reêected from it in all possible directions are also statisti-
cally independent.

The Fresnel coefécients in (5) depend on the polarisation
direction of the incident light wave with respect to the plane
of incidence. The nonpolarised light beam can be decom-
posed into two orthogonally linearly polarised incoherent
beams of equal intensity. Therefore,

R�Zr�g�; n� � 0:5�Rp�Zr�g�; n� � Rs�Zr�g�; n��; (6)

T�Zt�g�; n� � 0:5�Tp�Zt�g�; n� � Ts�Zt�g�; n��; (7)

where the subscripts p and s correspond to the light
polarisation parallel and perpendicular to the plane of
incidence, respectively. The dependences of the Fresnel
coefécients on the incidence angle are presented in the
Appendix. The dependences of the probability density p(g)
for two relative refractive indices (n � 2=3 and 3/2) are
presented in Fig. 3. One can see from the comparison of the
curves that in the case of n � 2=3, a sharper increase in the
curve for g! 0 and simultaneously a higher plateau for
large deêection angles are observed. This is caused by the
effect of total internal reêection. As g tends to zero, both
curves tend to inénity, while the integrals

� p
0 p(g; n)dg

converge. By substituting expressions (6) and (7) into (5), it
is easy to see that the normalisation condition� 2p

0

� p

0

p�g; n� sin gdgdj � 1 (8)

is fulélled for the probability density p(g; n) independently
of the value of n. Therefore, the probability density p(g; n)
for a two-phase medium plays the same role as the
scattering phase function for particles.

In many cases the angle-integrated probability density of
the beam deêection by the speciéed angle g, i.e. the function
p(g; n)2p sin g is of interest. Its behaviour is shown in Fig. 4
for the same relative refractive indices as in Fig. 3 (n � 2=3
and 3/2). It demonstrates many speciéc features of the
scattering phase function under study. Now, as the deêec-
tion angle g approaches zero, both curves tend to the énite

value of 0.5 and for g 6� 0 they have maxima. There also
exist two characteristic deêection angles for which the
functions p(g; n)2p sin g have breaks. The érst break is
observed for g � 488, which corresponds to the maximum
deêection angle gmax

t upon refraction, while the second
break occurs for g � 968, which corresponds to the deêec-
tion angle gc at the critical angle of incidence. It is interesting
that these angles are related by the expression 2gmax

t � gc.
All the peculiarities mentioned here are caused by the
physical nature of the multiphase scattering medium and
are absent in other known scattering phase functions.

4. Light propagation

4.1 Distribution of light between phases
When the light propagates in a two-phase medium, the
probabilities of énding a photon in different phases are not
equal due to the so-called waveguide effect, when a part of
photons, which are in the medium with a higher refractive
index, will experience total internal reêection during the
interaction with the phase interface and will return back. At
the same time, this effect is absent for the photons in the
medium with a smaller refractive index. The probability
that the photon from the medium with the refractive index
n1 (phase 1) will pass into the medium with the refractive
index n2 (phase 2) is

T12 �
� p

0

� 2p

0

pt�g; n2=n1� sin gdgdj;

where the function pt(g; n) is the second term in the right-
hand side of Eqn (5), which is responsible for refraction.
Similarly,

T21 �
� p

0

� 2p

0

pt�g; n1=n2� sin gdgdj:

The probability of énding a stochastic photon in the phase
with the refractive index n1 is

w
�
n2
n1

�
� T21

T12 � T21

: (9)
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Figure 3. Probability density of the light beam deêection by the angle g
by the randomly oriented phase interface.
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Figure 4. Probability density of the light beam deêection by the angle g
by the randomly oriented phase interface integrated over the azimuthal
angle.
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The dependences w(n) and w(nÿ1) on the relative refrac-
tive index are presented in Fig. 5. They quantitatively
predict a higher probability of énding a photon in the
phase with a higher refractive index. Note that even small
differences in the refractive indices can lead to large
differences in the probabilities of énding a photon in
different phases of the medium. The ratio of the residence
times of photons in phases 1 and 2 can be estimated as
w(n�V 1=3

1 n1=�w�nÿ1�V 1=3
2 n2�, where V1 and V2 are the speciéc

volumes of phases 1 and 2, respectively. Here, the difference
in the speed of light in media is taken into account. The
density of photons in the phase with the refractive index n1
is proportional to the probability w(n2=n1) and inversely
proportional to the speciéc volume of this phase. Consid-
eration of the probabilities of the photon residence in
individual phases of the random medium can be very
important in many applications, for example, when solving
the radiation transfer problems or in êuorescence measure-
ments.

Taking into account the probabilities of énding a photon
in different phases of the medium, we can generalise the
expression for the scattering phase function in the form:

p 0�g; n� � w�n�p�g; n� � w�nÿ1�p�g; nÿ1�: (10)

This expression already includes the statistical sampling of
the phase and, hence, there is no need to énd out in which
speciéc phase of the medium is the photon when
determining the deêection angles of the light beam.

4.2 Anisotropy coefécient

The knowledge of the scattering phase function allows one
to estimate the anisotropy coefécient, or in other words, the
mean cosine of the deêection angle of photons during their
propagation in an inhomogeneous medium:

g�n� � hcos gi �
� p

0

� 2p

0

p 0�g; n� sin g cos gdgdj: (11)

This coefécient is usually employed as one of the main
parameters characterising the scattering properties of the

random medium. It is commonly calculated from the
experimental data by simulating the light propagation in a
medium with the help of the phenomenological Henyey ë
Greenstein phase function. Figure 6 shows the dependence
of the anisotropy coefécient on the relative refractive index.
Note that for n � 1:5=1:33, the anisotropy coefécient g is
0.933 and for n � 1:5 it is 0.721. These values of n are
chosen not accidentally, they are often used by different
authors to simulate the light propagation in scattering
media with the help of the Mie theory. The value
n � 1:5=1:33 approximately corresponds to the ratio of
refractive indices of organic components of biological
tissues and water in the optical spectrum. It is interesting
to compare the behaviour of the function p 0(g; n) and the
Henyey ëGreenstein phase function for equal anisotropy
coefécients. Figure 7 shows the Henyey ëGreenstein func-
tion calculated for g � 0:721 and the function p 0(g; n)
calculated for n � 1:5. Both curves are close to each other,
which, in principle is not surprising but can serve as an
additional argument in favour of the proposed alternative
approach. First of all, its advantages are the physical basis
and the possibility to take into account the light polar-
isation, which will be described below.
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w
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Figure 5. Probabilities of énding photons in different phases of the
inhomogeneous medium during their interaction with the phase interface
as a function of the relative refractive index.
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Figure 6. Anisotropy coefécient g(n) calculated by (11) for different
relative refractive indices n.
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4.3 Sampling
If the probability density p 0(g; n) is known, the sampling of
the deêection angle is not difécult by using modern
computers. To do this, it is sufécient to solve the equation
for the unknown parameter x:

2p
� x

0

p 0�g; n� sin gdg � RND, (12)

where RND is a random number between 0 and 1 with the
homogeneous distribution function. This sampling can be
required to simulate the light propagation in a medium by
the Monte-Carlo method by using the proposed phase
function. The azimuthal angle is generated simply as
j � 2pRND. The sampling of the photon free path L
between the scattering events is performed according to the
usual scheme: L � ÿ ln (RND)=ms, where ms is the scattering
coefécient.

5. Scattering matrix

Let us assume that a light beam incident on a randomly
oriented phase interface is partially polarised (Fig. 1) and
has the Stokes vector Ii in the laboratory Cartesian
coordinate system xyz. We will deéne the Stokes vector
Is(g;j) for the beam deêected in the direction speciéed by
the angles g;j; in the virtual coordinate system x 00y 00z 00, in
which the z 00 axis is directed along the deêected beam, the
y 00 axis lies in the plane of incidence and the x 00 axis is
perpendicular to the plane of incidence. Let us introduce
additional virtual coordinate axes x 0 and y 0 lying in the
plane xy and directed perpendicular and parallel to the
plane of the light incidence on the phase interface,
respectively (see Fig. 1). The counter-clockwise rotation
of the coordinate system by the angle p=2ÿ j yields the
érst transformation of the Stokes vector:

I 0i � K�j�Ii; (13)

where

K�j� �
1 0 0 0
0 ÿ cos 2j sin 2j 0
0 ÿ sin 2j ÿ cos 2j 0
0 0 0 1

��������
�������� (14)

is the transformation matrix during the rotation of the
coordinate axes.

If the incident beam is deêected by the angle g, the
Stokes vector changes in accordance with the corresponding
M�uller matrices for reêection R(Zr(g)) and refraction
T(Zt(g)) [36 ë 38]:

R�Zr�g��

� 1

2

rpr
�
p � rsr

�
s rpr

�
p ÿ rsr

�
s 0 0

rpr
�
p ÿ rsr

�
s rpr

�
p � rsr

�
s 0 0

0 0 2Re�r �p rs� 0

0 0 0 2Re�r �p rs�

���������

���������; (15)

T�Zt�g�� �
Re�n cos�Zt�g���

2 cos g
�

�
tpt
�
p � tst

�
s tpt

�
p ÿ tst

�
s 0 0

tpt
�
p ÿ tst

�
s

tpt
�
p � tst

�
s 0 0

0 0 2Re�t �p ts� 0
0 0 0 2Re�t �p ts�

���������

���������; (16)

where rs, rp, ts and tp are the corresponding amplitude
Fresnel coefécients depending on the deêection angle g via
the functions Zr(g) and Zt(g) (see Appendix); the asterisk
means complex conjugation.

In our case, the light scattered in the given direction
consists of two statistically independent beams, which are
produced during reêection and refraction of the incident
light beam on the randomly oriented phase interface.
Because the components of the Stokes vector obey the
superposition principle [36], the required Stokes vector
Is(g;j) is equal to the sum of the Stokes vectors of reêected
and refracted beams. We will take into account that the
angular distribution of the scattered light intensity and the
probability density of the deêection angles are equal within
a factor. Therefore, the equation for the Stokes vector
Is(g;j) in the matrix form should have the same form as
Eqn (5) for the probability density of the deêection angle,
but instead of the Fresnel coefécients we should substitute
the corresponding M�uller matrices R(Zr(g)) and T(Zt(g)):

Is�g;j� � �Qr�g�R�Zr�g�� �Qt�g�T�Zt�g���K�j�Ii: (17)

For convenience we introduce here functions Qr(g) and
Qt(g), which are cofactors of the Fresnel coefécients in (5).
Eqn (17) also includes the phase matrix of a randomly
oriented phase interface

Z�g;j� � �Qr�g�R�Zr�g�� �Qt�g�T�Zt�g���K�j�: (18)

The érst element (Z11) of this matrix is a scattering phase
function [29], and one can easily see that it coincides with
the expression for p(g; n) [see Eqn (5)]. The phase matrix for
non-spherical particles is usually expressed by the amplitude
matrix, which relates the amplitude of electric components
of the incident plane wave with the amplitudes of the
electric components of the scattered light [30]. For a
randomly oriented phase interface, this procedure probably
cannot be fulélled, because the deêected light beam is a
superposition of two incoherent polarised beams formed at
different angular positions of the interface. In this
connection, the transformation of the Stokes vector for a
partially polarised light by the proposed method seems very
convenient.

6. Conclusions

The formation of an optically inhomogeneous medium has
been described in this paper as a statistical process of
orientation of the normal to the phase interface with respect
to the light beam direction. An analytic expression has been
obtained for the probability density of the light beam
deêection in any solid angle, which is a physical analogue of
the phase function of light scattering by particles. It consists
of two terms describing the reêection and refraction of the
light êux in the given direction by the randomly oriented
surface. Due to the use of Fresnel reêection and trans-
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mission coefécients as statistical weights of the random
process, different photon êuxes interacting with the phase
interfaces are independent. This allows the additive
approach to be used to study the interaction of stochastic
photons with phase interfaces.

We have calculated the probabilities of énding the
randomly walking photon in different phases of the
medium, which allowed us to include in the statistical
process of the slope of randomly oriented surface the choice
of the phases of the medium from which the light falls on
this surface and to generalise the expression for the
probability density of the beam deêection in the given
direction. The comparison of the phase function obtained
in this paper with the Henyey ëGreenstein function has
shown that for the same anisotropy coefécients their
behaviour is similar except the region of small deêection
angles, where the proposed model predicts a sharp peak.

Apart from the physical foundation, the undoubted
advantage of this model is the possibility to calculate the
propagation of polarised light in an inhomogeneous
medium. The expression for the scattering matrix has
been obtained, which relates the parameters of the Stokes
vectors of deêected beams and the incident beam. This
allows one to abandon the Mie theory in simulating the
propagation of polarised light in such media as biological
tissues.
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Appendix. Fresnel formulas as functions
of the deêection angle

Recall the expressions for the amplitude Fresnel coefécients
for the reêected and transmitted electromagnetic waves:

rp�yi� �
cos yt ÿ n cos yi
cos yt � n cos yi

; (A1)

tp�yi� �
2 cos yi

cos yt � n cos yi
; (A2)

rs�yi� �
cos yi ÿ n cos yt
cos yi � n cos yt

; (A3)

ts�yi� �
2 cos yi

cos yi � n cos yt
; (A4)

where yi is the angle of incidence on the interface of two
media; and yt is the angle of refraction. Strictly speaking,
the value of cos yt is complex and can be calculated by
using the Snell law [38]:

cos yt � �1ÿ sin2 yi=n
2�1=2 for sin yi 4 n;

ÿi�sin2 yi=n 2 ÿ 1�1=2 for sin yi > n

(
(A5)

Expression (A5) for cos (yt) allows one to calculate the
reêection and transmission coefécients as:

Rp;s�yi� � rp;s�yi�r �p;s�yi�; (A6)

Tp;s�yi� � Re

�
tp;s�yi�t �p;s�yi�

n cos yt
cos yi

�
: (A7)

By replacing the angle of incidence yi by functions Zr(g) and
Zt(g) in the right-hand sides of Eqns (A6) and (A7),
respectively, we obtain the reêection and transmission
coefécients as functions of the deêection angle. Figures 1A
and 2A show their behaviour for n � 3=2 and 2/3. Note
that reêection and refraction events here occur at different
deêection angles.

Ts

Tp

Rs, Ts

Rp, Tp

ÿ200 ÿ100 0 100 g
�
deg

0

0.5

1.0

Rs

ÿ200 ÿ100 0 100 g
�
deg

0

0.5

1.0

Rp

Figure 1A. Fresnel reêection (Rp;s) and transmission (Tp;s) coefécients for
the phase interface with the relative refractive index n � 3=2 as a function
of the deêection angle for parallel (Rp, Tp) and perpendicular (Rs, Ts)
polarisations with respect to the plane of incidence of light.
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Figure 2A. Same as in Fig. 1A but for n � 2=3.
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