
Abstract. The dynamics of a wave packet formed by two
modes propagating in optically coupled channels with differ-
ent mode gain increments is studied. It is shown that in the
case of a linear intermode coupling, radiation in such
structures is decomposed into two autonomous partial pulses
with different values of the effective dispersion parameters
determining their dynamics. The conditions of the temporal
compression and realisation of the superluminal velocity of
the envelope maximum for partial pulses and the wave packet
as a whole are also investigated.

Keywords: wave-packet dynamics, optically coupled ébres, active
ébres.

1. Introduction

Systems of optically coupled ébres (OCFs), which can
provide a strong coupling of waves propagating in adjacent
channels, attract permanent great attention due to the wide
possibilities of their practical applications in devices for
controlling laser radiation [1 ë 4]. Optically coupled ébres
can be fabricated both from ébre and planar structures
[1, 5]. In recent years long-period ébre gratings, which can
provide the coupling of modes in the ébre core (in
particular, amplifying) and cladding (the core and cladding
having different waveguiding parameters) attract the
attention of researchers [6, 7]. Of great interest are also
multicore ébre arrays providing multiwave coupling with
one optical ébre [8, 9].

The effective dispersion parameters of wave structures in
such systems considerably depend on the strength of a linear
coupling between waves and the excitation conditions of a
ébre, which allows the efécient control of the radiation
dynamics, for example, the duration and velocity of the
envelope maximum of wave packets. In this case, it is
possible in principle to compress linearly a pulse of
arbitrarily low power in the region of normal material
dispersion in the absence of the initial frequency modulation
[10, 11]. In addition, the velocity of the envelope maximum

considerably exceeding the speed of light in vacuum can be
achieved. Such a pulse dynamics is not related to energy
transfer with the superluminal velocity but is caused by the
change in the pulse shape due to the predominant amplié-
cation of its leading edge during propagation [12 ë 19].

In most papers devoted to the discussion of the
possibilities of obtaining superluminal velocities, exponen-
tial pulses with a sloping leading edge are considered. Such a
pulse was experimentally observed for the érst time in a
laser ampliéer [20]. The velocity of the envelope maximum
of this pulse was a few times higher than the speed of light in
vacuum. However, superluminal velocities can be also
achieved for pulses of a Gaussian shape having steep leading
and trailing edges. In this case, superluminal regimes can be
obtained if the pulse has the quadratic initial rate of
frequency modulation (FM) and propagates in a medium
with the dispersion of the gain increment [21, 22].

The dynamics of wave packets formed by two interacting
modes was studied, as a rule, for the case of real dispersion
parameters and identical gain increments characterising the
mode-propagation channels. At the same time, a number of
possible dynamic effects can be related to the complex
nature of these parameters and their difference. In this
paper, we consider the dynamics of a two-mode wave packet
propagating in a system of two optically coupled channels
(one of which at least is amplifying) with substantially
different material parameters. The possibility of obtaining
the regimes of propagation of the envelope maximum of a
wave packet at the superluminal speed in such systems is
investigated.

2. Dynamic equations and their general solutions

The éeld of a wave packet propagating in a system of two
active linearly coupled ébres (channels) can be written in
the form

E�t; r� � 1

2

X
j�1;2

�
ejRj�x; y�Bj�t; z� exp

�
i�o0tÿb 0j z�

�
+c.c.

�
, (1)

where ej are polarisation unit vectors; Rj are proéle
functions; Bj are time envelopes of the mode components
of the wave packet; o0 is the carrier frequency of the wave
packet; and b 0j is the real part of the propagation constant
bj � b 0j ÿ ib 00j .

Taking into account the érst- and second-order dis-
persion effects under the conditions of a considerable
detuning from phase matching, the wave-packet dynamics
can be described by the system of equations for the time
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envelopes of the mode components of the wave packet in
each of the ébres:

qB1

qz
� 1

u1

qB1

qt
ÿ id1

2

q 2B1

qt 2
� isB2 exp�idz� � a1B1,

(2)

qB2

qz
� 1

u2

qB2

qt
ÿ id2

2

q 2B2

qt 2
� is �B1 exp�ÿidz� � a2B2.

Here, dj is the group velocity dispersion for the corre-
sponding modes in each of the coupled ébres; uj �
(qb 0j =qo)

ÿ1
o�o0

are the group velocities of modes in each
of the coupled ébres; d � b 01 ÿ b 02 is the detuning of the real
components of propagation constants; s is the linear
intermode coupling coefécient; and aj � ÿb 00j are the
mode gains.

By making the change of variables Bj � Aj exp (ajz� and
passing to the running coordinate system t � tÿ z=u, we
obtain the system of equations

qA1

qz
ÿ 1

v
qA1

qt
ÿ id1

2

q 2A1

qt 2
� isA2 exp�iDz�,

(3)

qA2

qz
� 1

v
qA2

qt
ÿ id2

2

q 2A2

qt 2
� is �A1 exp�ÿiDz�,

where u � 2u1u2=(u1 � u2); v � 2u1u2=(u1 ÿ u2); D � dÿ
i�a2 ÿ a1).

The system of equations (3) should be solved together
with the initial condition for amplitudes Aj(t; z). We assume
that a frequency-modulated pulse is incident on the ébre
input. The pulse amplitude is Aj(t; 0) � Aj0y(t), where Aj0

are the amplitudes of pulses coupled to each of the ébres,
and the function y(t) determines the shape of a wave packet
introduced to the ébre. We will consider below a Gaussian
frequency-modulated pulse, for which this function has the
form

y�t� � exp

�
ÿ
ÿ
1� ia0t

2
0

�
t 2

2t 20

�
, (4)

where t0 and a0 are the duration and velocity of the
frequency modulation of the pulse at the input to the ébre,
which are assumed identical for both mode components of
the wave packet.

The solution of system (3) in the general form can be
represented as a superposition of two partial pulses with
envelopes a1 and a2 for each of the ébres:

A1�z; t� �
�
a1�z; t� exp�iqz� � a2�z; t� exp�ÿiqz�

�
� exp

��a2 � a1 � id�z=2�,
(5)

A2�z; t� �
�
Ka1�z; t� exp�iqz� ÿ �1=K ��a2�z; t� exp�ÿiqz�

�
� exp

��a2 � a1 ÿ id�z=2�,
where the parameters K � �(2q� D)cÿ 2s ���(2qÿ D)ÿ
2sc�ÿ1 and q � (jsj2 � D 2=4)1=2 are introduced, and the
parameter c determines the excitation type of the ébre:
A2 � cA1. For c � �1, symmetric or antisymmetric

excitation takes place, and for c � 0 ë single-mode
excitation. According to (3) and (5), the time envelopes
of the corresponding partial pulses are determined by the
equation

qaf
qz
ÿ �ÿ1� fK qaf

qt
ÿ i

Df

2

q 2af

qt 2
� 0, (6)

where f � 1, 2. Here, the effective parameters are also
introduced: the érst dispersion parameter K � D=2qv and
the group velocity dispersion (GVD) of partial pulses

Df � d� �ÿ1�
f

q

� jsj2
q 2v 2

� D�d1 ÿ d2�
4

�
, (7)

where d � (d1 � d2)=2. The initial conditions (for z � 0) for
each of the pulses, taking (4) into account, can be written in
the form

af�t; 0� �
1

2

�
A10 � �ÿ1� f

�
D
2q

A10 �
s
q
A20

��
y�t�. (8)

The dispersion parameters introduced above, which
determine, énally, the dynamics of the wave-packet pro-
duced by two coupled modes, depend both on the
parameters of each of the waveguide channels and the
parameters of incident radiation. If even all the dispersion
parameters in initial system (2) are real quantities (which is
the case when qaj=qo ' 0, i.e. aj � const in the frequency
range under study), but a1 6� a2, then the parameters D and
q, as well as the érst- and second-order effective dispersion
parameters are complex quantities. If, however, a2 � a1 � a
and qa=qo ' 0 near the carrier frequency, then all the
dispersion parameters are real. Thus, in the case of different
gains in OCFs, the effective dispersion parameters of partial
pulses are complex. However, it is the presence of the
imaginary components of these parameters that leads to a
number of interesting and important effects: the time comp-
ression of arbitrarily-low-power pulses without the initial
frequency modulation, the appearance of pulses with the
superluminal speed of the envelope maximum, and the shift
of the carrier frequency of the wave packet [22, 23].

3. Dynamics of partial pulses

The solution of Eqn (6) taking into account the boundary
conditions (8) for the complex amplitudes of the corre-
sponding partial pulses can be written in the form

af�t; z� � rf�t; z� exp
�
iff�t; z�

�
, (9)

where the amplitude of the time envelope of a partial pulse
af (t; z) is determined by the expression

rf�t; z� � af 0

�
t0
td f

�1=2
exp

� �1� S 2
f �K 00 2z 2 ÿ t 2s f
2t 2d f

�
, (10)

and af 0 � af (t; 0)=y(t). We do not present here the
expression for the phase ff of the time envelope of a
partial pulse, which is not signiécant for our analysis. The
pulse duration introduced in (10) is

td f � t 20

� �1ÿ w1 f�2 � w 2
2 f

t 20 �D 00f �1� a 2
0 t

4
0 �z
�1=2

, (11)
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and w1 f � (a0D
0
f ÿD 00f t

ÿ2
0 )z, w2 f � (a0D

00
f �D 0f t

ÿ2
0 )z, and

ts f � t� (ÿ 1) f(K 0 � SfK
00)z,

Sf � ÿ
�a 2

0 t
2
0 � tÿ20 �D 0f zÿ a0t

2
0

1� �a 2
0 t

2
0 � tÿ20 �D 00f z

.

As follows from the above relations, each of the partial
pulses spreads or is compressed during its propagation,
depending on the relation between parameters t0, a0, D

0
f ,

D 00f , and also acquires the additional phase modulation. The
condition under which the time compression regime is
realised in the ébre is written in the general form as
qtd f=qz < 0, and in the case of complex dispersion parame-
ters, is determined by the inequality

2a0t
2
0D

0
f � �a 2

0 t
4
0 ÿ 1�D 00f > 0. (12)

It follows from (12) that for a0 � 0, the pulse compres-
sion regime is possible when D 00f < 0, and for D 00f � 0 the
classical situation takes place in which the condition
a0D

0
f > 0 corresponds to the pulse compression. In this

case, the pulse compression occurs due to the change in the
shape of the initial spectrum, when the predominant
increase in the intensity of the parts of the spectrum
removed from its maximum is observed. Such a time
compression is not the classical pulse compression because
the compressed pulse in this case is frequency-modulated
with a(z) 6� 0. However, by using dispersion elements of
different types placed directly behind the system, the pulse
chirp can be eliminated, thereby obtaining the classical pulse
compression and simultaneously a(z) � 0 [22].

The dynamics of each of the partial pulses is determined
to a great extent by the values of the real and imaginary
parts of dispersion parameters, which can be considerably
different for different pulses. In this case, the situation is
possible when one of the pulses is compressed, while the
other rapidly spreads.

The distance at which the duration of the corresponding
partial pulse become minimal is determined by the expres-
sion

zm f �
L0 f

1� a 2
0 t

4
0

���� jD 0f � a0t
2
0D

00
f j

jDf j
ÿ 1

����, (13)

where the characteristic length is L0 f � t 20 =jD 00f j. In this
case, the minimal pulse duration is determined by the
relation

tm f � t0

� jDfj
jD 0f � a0t 20D

00
f j
�
�1ÿ w1 f zm f�2 � w 2

2 f z
2
m f

��1=2

. (14)

When D 00f > 0, the pulse achieves the minimum duration at
the point tm f and z � zm f then begins to broaden, and its
broadening is described by the expression z4 zm f for
td f ' jDf j(z=D 00f )1=2. When D 00f < 0, the pulse achieves the
minimal duration and then rapidly broadens when z tends
to the value L0 f=(1� a 2

0 t
4
0 ), by experiencing a strong

frequency modulation.

4. Optically coupled ébres
with identical gain increments

Consider the simplest and important situation of identical
gain increments in adjacent waveguide channels, i.e.

a1 � a2 � a. In this case, D 00f � 0, K 00 � 0, D � d, and
the solution of system (3) can be written in the form

jAjj2 � jgja10j2
t0
td1

exp

�
ÿ t 2s1
t 2d1
� 2az

�

�
���� a20g �j

����2 t0
td2

exp

�
ÿ t 2s2
t 2d2
� 2az

�
ÿ �ÿ1� jsign�a10a20�

(15)

� 2ja10a20j
�

t 20
td1td2

�1=2

exp

�
ÿ t 2s1
2t 2d1
ÿ t 2s2
2t 2d2
� 2az

�

� cos�j1 ÿ j2 � 2qz�,

where g1 � 1 and g2 � K. In the case of phase matching
(d � 0) and symmetric or antisymmetric excitation of the
ébre, the parameter K � �1 and the degenerate single-
partial regime takes place, in which jA1j2 � jA2j2, according
to (15). Figure 1 shows the dependences of the square of the
modulus jafj2 of the envelope of partial pulses and the wave
packet jAj2 � jA1j2 � jA2j2 on the distance propagated by
the pulse in the ébre obtained in the absence of the phase
mismatch of the mode components of the wave packet
(d � 0) for the antisymmetric (c � ÿ1) and symmetric
(c � 1) excitations of the ébre. The ébre parameters
(s � 100 mÿ1, d1 � d2 � 10ÿ26 s2 mÿ1, a1 � a2 �
10ÿ3 mÿ1) were chosen so that the effective GVD of the
érst nonzero partial pulse for c � ÿ1 (see Fig. 1a) was
zero: D1 � 0. In this case, the dynamics of the partial pulse
during its propagation remains invariable, and a single
wave packet is formed by two modes with identical
envelopes, i.e. jA1j � jA2j. The intensity of the wave packet
increases during its propagation, while its duration does not
change. In the case of symmetric excitation of the ébre
(c � 1, see Fig. 1b), the second pulse is nonzero; in this
case, D2 > 0, which determines a strong spreading of the
pulse and the wave packet as a whole.

For d 6� 0, the degeneracy is possible, when the wave
packet is represented only by one partial pulse. This occurs
when the condition

c � ÿ D
2s
ÿ �ÿ1� f q

s
(16)

is fulélled.
In the degenerate case, the dynamics of the whole wave

packet is determined by the dispersion parameters of one
pulse only. From the point of view of controlling the pulse
behaviour, the degenerate situation is of most practical
interest. Figure 2 presents the dependences of jaf j2 and jAj 2
on the coordinate z for three types of excitation of the ébre
(c � ÿ1, 0, 0.5) and d � 10; other parameters are as in
Fig. 1. One can see that in the case of antisymmetric
excitation of the ébre (c � ÿ1), the single-partial regime
is realised with a1 6� 0 and jA1j � jA2j. Because the effective
GVD for these parameters in this case is very small (D1 �
3� 10ÿ29 s2 mÿ1), the partial pulse in the wave packet as a
whole are not virtually distorted during propagation and
only shift to positive t, which is caused by the presence of
the phase mismatch d. Upon single-mode excitation of the
ébre (c � 0), the two-partial regime with ja10j � ja20j is
realised, and then the pulse a2, for which
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D2 � 1:9� 10ÿ26 s2 mÿ1, spreads rapidly, while the pulse a1
broadens insigniécantly because D1 5D2. In this case, the
pulses move away from each other due to their phase
mismatch. The total wave packet is also divided into two
pulses moving away from each other; one of the pulses
almost does not spread and is ampliéed, while the other
strongly spreads. When the ébre is excited with c � 0:5, two
partial pulses with different amplitudes appear, which move
away from each other during propagation. The wave-packet
dynamics in this case is similar to the pulse dynamics.

5. Superluminal coupled waves

Consider now the possibility of propagation of the wave-
packet envelope maximum at the velocity exceeding the
speed of light in vacuum. The general expression for the
velocity of the envelope maximum of the corresponding
partial pulse in a ébre with different gains in individual
channels obtained from expression (10) for the amplitude rf
has the form

uf �
u

1ÿ �ÿ1� fu�SfK
00 � K 0� . (17)

According to (17), the situation when uf > c is realised for
one of the pulses if the inequality (ÿ 1) fu(SfK

00 � K 0) > 0 is
fulélled. For simplicity, we will analyse the case when the
dispersion parameters of the second and higher orders can
be neglected. Such a situation is realised for pulses with

td 5 10ÿ9 s. In this case, we can assume with high accuracy
that S1 � S2 � a0t

2
0 . Let us also assume that d ' 0 (i.e.

K 0 � 0) and a1 6� a2. Then, expression (17) for the minimal
pulse velocity will take the form

um f � u

�
1� �ÿ1� f u2 ÿ u1

u2 � u1

�a2 ÿ a1�a0t 20�
4jsj2 ÿ �a2 ÿ a1�2

�1=2�ÿ1, (18)

which means that the superluminal propagation of one of
the pulses is possible if (ÿ 1) fa0(u2 ÿ u1)(a2 ÿ a1) < 0. As a
rule, for aj > a3ÿj, the inequality uj < u3ÿj takes place, and
we can assume that (u2 ÿ u1)(a2 ÿ a1) < 0. Therefore, the
condition of the superluminal regime in most cases is the
inequality (ÿ 1) fa0 > 0, i.e. this regime can be realised for
the envelope maximum on the érst partial pulse when
a0 < 0 and for the second pulse when a0 > 0.

For the parameters of the ébre and wave packet a1 ' 0,
a2 ' 1 mÿ1, jsj ' 100 mÿ1, u1 ' 0:9c, u2 ' 0:8c, t0 ' 10ÿ9 s,
the superluminal regime for the érst pulse is possible if
a0 < 0 and lies in the interval 5:2� 1020 sÿ2 4
ja0j4 3:4� 1021 sÿ2. If a0 > 0, then under the same
conditions the superluminal propagation regime can be
realised for the second pulse. It is interesting that, when
ja0jt 20 5 3400, the velocity of the envelope maximum for one
of the pulses can become negative (for the érst pulse if
a0 < 0, and for the second pulse if a0 > 0). The superluminal
velocity of the envelope maximum of a partial pulse in active
media does not contradict to the conclusion of the theory of
relativity about the limiting velocity of signal propagation
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because it is not related to energy transfer at this velocity
but occurs due to the change in the wave-packet shape
caused by a stronger ampliécation of its leading edge [12].

When condition (16) is fulélled, only one pulse prop-
agates in the system of coupled ébres under study; therefore,
the situation can be realised in which only a superluminal
pulse will propagate in one of the channels. The velocity of
the envelope maximum of a partial pulse or of the whole
mode (in the degenerate regime) can also become negative
(um f < 0). In this case, the wave-packet maximum is formed
at the very beginning of the pulse and shifts oppositely to
the propagation direction. Such a situation for an active
medium was experimentally observed in [24].

It is interesting that for a1 � a2 and d 6� 0, according to
(17), the velocities of the pulse envelope maxima are
described by the expression

um f � 2u1u2

�
u1 � u2 � �ÿ1� f

d�u2 ÿ u1�
�4jsj2 � d 2�1=2

�ÿ1
. (19)

It follows from (19) that the velocity of any of the partial
pulses in this case cannot exceed the speed of light in
vacuum or be negative. In this case, velocities um f are no
longer dependent of the initial frequency modulation and
remain different for each of the pulses.

Our analysis has shown that a wave packet propagating
in active ébres with the asymmetric gain in channels is
decomposed into autonomous pulses with dispersion param-
eters dependent both on the parameters of each of the
coupled ébres and on the conditions of radiation coupling in
them. Therefore, by changing the excitation conditions of
the ébre, we can eféciently control the dispersion param-
eters of the pulses and, hence, the dynamics (duration, the
envelope maximum velocity, frequency modulation, etc.) of
the wave packet as a whole.

References
1. Maier A.A. Usp. Fiz. Nauk, 165, 1037 (1995).
2. Abdullaev F.Kh. Zh. Tekh. Fiz., 68, 1 (1998).

0

10

0

1

2

jaf j2
�
mW

t
�
ps

ÿ10

ja2j2

ja1j2

0

10

0

2

4

jaf j2
�
mW

t
�
ps

ÿ10

ja2j2

ja1j2

100

150

z
�
m

0

10

0

5

10

ja1j2
�
mW

t
�
ps

0

10

0

10

20

jA�z; t�j2�mW

t
�
ps

a

0

10

0

5

10

jA�z; t�j2�mW

t
�
ps

ÿ10

c

50

0

10

0

5

10

jA�z; t�j2�mW

t
�
ps

ÿ10

b

0

150

100

z
�
m

50

0

150

100

z
�
m

50

0

150

100

z
�
m

50

0

150

100

z
�
m

50

0

150

100

z
�
m

50

0

Figure 2. Dynamics of partial pulses and a wave packet in the case of detuning from phase matching (d � 10) and different excitation types c � ÿ1
(a), 0 (b), and 0.5 (c).

Dynamics of pulses in optically coupled active optical ébres 191



3. Usievich B.A., Sychugov V.A., Nurligareev D.Kh., et al.
Kvantovaya Elektron., 34, 371 (2004) [Quantum Electron., 34, 371
(2004)].

4. Nurligareev D.Kh., Golant K.M., Sychugov V.A., Usievich B.A.
Kvantovaya Elektron., 35, 917 (2005) [Quantum Electron., 35, 917
(2005)]; Usievich B.A., Nurligareev D.Kh., Sychugov V.A.,
Golant K.M. Kvantovaya Elektron., 35, 554 (2005) [Quantum
Electron., 35, 554 (2005)].

5. Avrutskii I.A., Dianov E.M., Zvonkov B.M., et al.
Kvantovaya Elektron., 24, 123 (1997) [Quantum Electron., 27, 118
(1997)].

6. Vasil'ev S.A., Medvedkov O.I., Korolev I.G., et al.
Kvantovaya Elektron., 35, 1085 (2005) [Quantum Electron., 35,
1085 (2005)].

7. Ivanov O.V., Nikitov S.A., Gulyaev Yu.V. Usp. Fiz. Nauk, 176,
175 (2006).

8. Biswas A. Opt. Quantum Electron., 35, 221 (2003).
9. Kivshar Yu.S., Agraval G.P. Optical Solitons: From Fibres to

Photonic Crystals (New York: Acad. Press, 2003; Moscow:
Fizmatlit, 2005).

10. Zolotovskii I.O., Sementsov D.I. Opt. Spektrosk., 86, 737 (1999).
11. Zolotovskii I.O., Sementsov D.I. Kvantovaya Elektron., 27, 273

(1999) [Quantum Electron., 29, 550 (1999)].
12. Oraevsky A.N. Usp. Fiz. Nauk, 168, 1311 (1998).
13. Kuritski G., Kozhekin A.E., Kofman A.G., Balubor M. Opt.

Spektrosk., 87, 551 (1999).
14. Zamboni M., Fontana F., Recami E. Phys. Rev. E, 67 (3),

036620 (2003).
15. Kuzmich A., Dogariu A., Wang L.J., Milonni P.W., Chiao R.Y.

Phys. Rev. Lett., 86, 3925 (2001).
16. Sazonov S.V. Usp. Fiz. Nauk, 171, 663 (2001).
17. Brunner N., Scarani V., Wegmuller M., Legre M., Gisin N. Phys.

Rev. Lett., 93 (20), 203902 (2004).
18. Sahrai M., Tajalli H., Kapale K., Suhail Zubairy M. Phys. Rev.

A, 70 (2), 023813 (2004).
19. Rozanov N. Usp. Fiz. Nauk, 175, 163 (2005).
20. Kryukov P.G., Letokhov V.S. Usp. Fiz. Nauk, 99, 169 (1969).
21. Vainshtein L.A. Usp. Fiz. Nauk, 118, 339 (1976).
22. Zolotovskii I.O., Sementsov D.I. Kvantovaya Elektron., 34, 852

(2004) [Quantum Electron., 34, 852 (2004)].
23. Zolotov A.V., Zolotovskii A.V., Sementsov D.I. Pis'ma Zh. Tekh.

Fiz., 27, 22 (2001).
24. Akul'shin A.M., Chimmino A., Opat D.I. Kvantovaya Elektron.,

32, 567 (2002) [Quantum Electron., 32, 567 (2002)].

192 I.O. Zolotovskii, D.I. Sementsov


