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Analytic method for the construction of the fundamental mode
of a resonator in the form of a Gaussian beam

with complex astigmatism

A.B. Plachenov, V.N. Kudashev, A.M. Radin

Abstract. Explicit formulas are obtained for a resonator with
the fundamental mode in the form of a Gaussian beam with
complex astigmatism. The formulas describe the parameters
of the beam directly in terms of the ray matrix without using
the procedure of finding its eigenvectors. An example is
considered.

Keywords: Gaussian beam, astigmatism, fundamental resonator
mode.

1. The propagation of a light field in resonators, in which a
Gaussian beam with complex astigmatism is formed, was
considered in many papers (see, for example, [1, 2]). In this
case, the function describing the transverse distribution of
the fundamental mode field has the form

u(r) = cexp(ikr'Hr/2),

where

= ()= (e )

is the quadratic matrix. The matrix A is symmetric and has
the positive definite imaginary part for a beam concentrated
in the vicinity of the resonator axis. This matrix satisfies the
matrix equation [2]

H=(C+ DH)(A+ BH)™", (1)

where 4, B, C, and D are the real 2 x 2 matrices (for a
passive resonator without losses). These matrices form the
4 x4 ray matrix of the round trip in the resonator
(monodromy matrix [1])

T= (g g)
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The matrix 7 is symplectic [1, 2], which is equivalent to
the fulfilment of the condition

D' -B'
(S ) @)

The resonator is stable if all the eigenvalues of the matrix
T are modulo unity and they have no associated vectors [1].
In this case, Eqn (1) has a symmetric solution with the
positive imaginary part. Such a solution is usually con-
structed by using the components of the eigenvectors of the
monodromy matrix. In this paper, we propose the alter-
native method for solving Eqn (1) in which the matrix H is
expressed directly in terms of matrices 4, B, C, and D. In
this case, there is no need to seek the eigenvectors of the
matrix 7.

Note that this method can be applied, along with ring
resonators, to linear two-mirror resonators with elliptic
(hyperbolic) mirrors and (for the three-dimensional mani-
fold) to the problem of a Gaussian beam concentrated in the
vicinity of the closed geodesic considered in [1].

2. Let the matrix H — the symmetric solution of Eqn (1)
with the positive definite imaginary part, be related to a
matrix H' by the expression

H=(C+DH')(A+BH')™", 3)

where A, B, C, and D are the blocks of a real symplectic
matrix 7. Then, H' is also a symmetric matrix with the
positive definite imaginary part, and it in turn satisfies the
equation

H/:(C,+D,H,)(A,+BIH,)_1, (4)

which is similar to (1), where A’, B’, C', and D’ are the
blocks of the symplectic matrix T’ related to the matrix T
by the similarity transformation

T'=T7'TT. )

The further strategy of solving Eqn (1) involves the
selection of the sequence of transformations of type (5)
reducing the general case to matrices T of the special form
for which Eqn (4) can be solved directly. Figure 1 presents
the block diagram of the algorithm for solving the problem.
This algorithm can be used both for analytic and numerical
solution of the problem.

3. The characteristic polynomial of the symplectic matrix
is reciprocal, i.e. if / is an eigenvalue of 7, then 2~ is also an
eigenvalue of this matrix. Then,
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and satisfies the equation
3
vibpy+g=0, (7
where
B=B'
t
yes p:_tr(A;—D);
_det(4+D") + (b — by)(c1a — ¢21)
q= 2 :
yes
no We represent the roots of Eqn (7) in the form v, =
cos 0 5, where 0, , are some numbers; then the eigenvalues
4 of the matrix T can be represented in the form e, j = 1,2.
These numbers are modulo unity if both of the roots of
i Eqn (7) are real and their moduli do not exceed unity, then
5 the values of 0,, are real.
When the values of v; and v, coincide (v; = v, = v), the
v eigenvalues prove to be multiple, and to verify the stability,
it is necessary to make sure that the matrix 7 has no
6 associated vectors. For v =41, the multiplicity of the
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Figure 1. Logical scheme of the algorithm for solving the problem.
Numbers in rectangles correspond to sections 3—15 where the corres-
ponding constructions are described.

V_Hﬁ
2
is an eigenvalue of the matrix
- 1 4, _1(/4+D" B-B'

eigenvalue is four. In this case, if the matrix 7 has no
associated vectors, it obviously coincides with +F, (E4 is the
4 x 4 unit matrix). In the case v # +1, the eigenvalues of the
matrix 7 are doubly degenerate, but for the matrix = (6) v is
the fourfold degenerate eigenvalue, so that in this case the
fulfilment of the relation Z = vEj is necessary (and suffi-
cient, as can be shown) for stability. This means that B and
C are symmetric and the matrix

_A+D!

G
2

®)

coincides accurate to the factor v with the 2 x 2 unit matrix
E: G =vE. Another case of the multiple eigenvalues of 7,
when one or both values of v; become +1 but do not
coincide with each other, is more complicated and requires
a special consideration.

Note that if the matrix B or C proves to be symmetric,
the solution of Eqn (1) is substantially simplified. In
particular, the roots of Eqn (7) coincide with the eigenvalues
of the matrix G (8). The eigenvectors of G in this case can be
obviously chosen real.

4. Consider the general case when B# B', C#C"'
(otherwise we pass to section 6 or 5, respectively). To
simplify the equation, we first symmetrise the block C.
We seek the matrix 7 in the special form

~ E O
r= (zq§ E>’

where & = @' is a symmetric real 2 x 2 matrix; O is the
2 x 2 zero matrix; and z is the real factor to be determined.
Then,

T A+ zB® B
“\C+z(D®— ®A) —z°®Bd D —zPB )’
and

H=H'+:0. )

The condition of the matrix symmetry
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C'=C+z2(DP — PA) — z>*PBP

gives the equation for z
(c12 = ¢a1) + [=(an + do)$yy + (a1 — axn +diy — dyy) by

+ (a2 + di) o)z — (bry — by ) (det @)z* = 0;

the choice of the matrix @ should provide its solvability. In
particular, when the signs of det @ and (b;, — by;)(cja — ¢21)
coincide, the discriminant of this equation will be certainly
positive and the roots — real. Each of these roots allows
one, by making substitution (9), to pass to Eqn (4) with the
symmetric block C'. For example, in the case (b, — by;)
X(c1p—¢) >0, we can set @ =F, and if (b;, — by)
X (612 - CZI) < 0, then

1 0 0 1
?= (o —1) o (1 0)'
Of interest is also the case when @ is the degenerate
symmetric matrix which has the form accurate to a factor

cos® ¢

o — ( sincpcosgo)
(ﬂ - .
sin @ cos ¢

sin” ¢
1 ( 1 + cos(2¢) (10)

sin(2¢) )
=30 sinCe) :

1 —cos(2¢)

In this case, the equation for z proves to be linear and has
the only solution if the coefficient at z in nonzero. It can be
always achieved by a proper choice of ¢ (in particular, ¢ =
0, m/2 or m/4) except the case

ay +dyp = ap+dy =ay —ayp+dy —dp =0,

when the antisymmetric part of the matrix AP — &D
vanishes for any symmetric matrix @, so that the equation
for z does not contain a linear term.

The choice of the matrix @ is in fact the only informal
moment in our paper and it determines the level of
complexity and awkwardness of further calculations, espe-
cially if we seeking the solution analytically rather than
numerically. However, this choice will not affect the final
result if only the equation for z has real roots.

5. The next step is the transformation of the matrix with
the symmetric block C to the matrix with the symmetric
block B. By selecting

. (0 E
(% 0)

we obtain
I D _C
r=(5% )
and
H=—(H")"
Note that such a transition for a Gaussian beam

corresponds to the Fourier transform over transverse
coordinates.

6. We reduced the problem to a particular case of the
matrix with the symmetric block B (recall that the matrix B
relates the transverse projection of the unit vector directed
along the axial beam emerging from the origin of coor-
dinates and the radius vector of the point through which this
beam will pass after the round trip in the resonator). The
condition of the matrix symmetry means that the matrix B
has two real mutually orthogonal eigenvectors. Note that
some problems can have this property initially, in particular,
the problem of a linear resonator with elliptic mirrors if the
monodromy matrix is considered for the cross section
adjacent to one of the mirrors; in this case, the directions
of eigenvectors B coincide with the principal directions of
the curvature of the opposite mirror S, (Fig. 2). Indeed, if
the transverse projection of the wave vector is directed along
one of these eigenvectors, the initial and singly reflected
beams will remain in the plane formed by this vector and the
optical axis, so that the radius vector of the point of
intersection of the reflected beam with the initial plane
will be collinear to it. The properties of another mirror S| do
not affect the matrix B: reflection from it will determine the
propagation direction of the beam but will not affect the
position of the point considered.

Figure 2. Two-mirror resonator with elliptic mirrors. The dashed
straight lines show the beams located in the mutually orthogonal planes.
Each of these planes contains the optical axis and one of the eigenvectors
of the symmetric matrix B.

Our further operations depend on the rank of the matrix
B. Consider first the main case when the matrix B = B' is
nondegenerate (the cases det B=0, B# O and B= O are
considered in sections 13 and 15, respectively). The solution
for this case was obtained in paper [3]. Let us formulate the
results of this paper by changing somewhat the line of the
solution in accordance with the method used here.

7. The next step is the passage to the matrix in which the
block D is obtained from A by transposition (the case
A = D" is considered in section 8). Consider the symplectic
matrix

I= ((DB—l —EB‘lA)/z g)

and perform the transformation of type (5). The resulting
matrix will have the form
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T G B
“\¢B'¢G-B"" G')

the matrix G will be determined by relation (8), while the
expression for C’ follows from condition (2) for the
symplectic matrix (note here that the block C’ proves to
be symmetric). Matrices H and H', being the solutions of
the initial and transformed problems, are related by
transformation (3), which takes the form

_ DB'-B'4

H'
) +

H

in this case. By running ahead, note that except for one
special case, the term C separated by us coincides with the
real part ReH of the matrix H determining the wavefront
shape. Correspondingly, the matrix H' proves to be purely
imaginary and is responsible for the decay of the field with
distance from the resonator axis.

8. Consider now the solution of the problem in the case
when B = B' is the nondegenerate symmetric matrix,
A=D"'=G, and |v5| <1 (we will show below that in
this case the strict inequality should be fulfilled). Then,

T G B
“\G@'B'¢-B"' G')

and Eqn (1) takes the form

HBH + HG — G'H-G'B~'G+ B! = 0. (11)

Equation (11) gives two equations
HBH-G'B'G+B'=0, HG-G'H=0

for symmetric and antisymmetric parts, which after multi-
plying from the left by B, taking condition (2) into account,
takes the form

(BH)’ —G*+E=0, (12)

BHG — GBH = 0. (13)

It follows from Eqn (12) that, when one or both
eigenvalues of the matrix G become =1, the matrix
(BH)* and, therefore, H proves to be degenerate. Therefore,
in this case, to provide the stability of the resonator, both
moduli of v;, should be strictly smaller than unity (unlike
the case of the degenerate matrix B, which will be considered
below).

9. First we solve the system of equations (12), (13) in the
case of G # vE, v| # v, (the opposite case is considered in
section 12). It follows from (13) that the matrices BH and G
commute and, therefore, BH has the same eigenvectors as G
and can be represented as a linear combination of G and the
unit matrix, while the matrix A — as a linear combination of
B~'G and B~'. Therefore, our task is to find the coefficients
of this linear combination.

10. Let us assume that trG # 0, v; # —v, (otherwise see
section 11) and G* # v*E. Then, it follows from (21) that
tr(BH) # 0. In addition, it also follows from this equation
that —(BH)® is the matrix with positive eigenvalues equal to
1 - v%,z. Taking into account that the eigenvectors of this

matrix are real, BH is a purely imaginary matrix and
therefore,

H=ilH|,

where |H| is the positive definite real matrix. Equation (12)
takes the form
(B|H|)* = E - G*. (14)

This means, by the way, that if Eqn (1) has form (11)
initially but is not reduced to this form by similarity
transformations, then for v; # +v, it characterises the
transverse distribution of the filed in the cross section where
a Gaussian beam has the waist and the wave front is plane.
Taking into account that an arbitrary 2 x 2 matrix M
satisfies its characteristic equation
M? —trtM x M +det M x E = O, (15)

and applying (15) to the matrices B|H| and G in Eqn (14),
we obtain

tr(B|H|) x B|H| = (det(B|H|) + detG+ 1)E — trG x G, (16)
and because tr(BH) # 0 in the case under study, to obtain
the required expression for |H|, we should find only
det (B|H|) and tr(B|H]).

Let us find the determinants of matrices in the left- and
right-hand sides of Eqn (14):

det?(B|H|) = det(E — G?) = (1 + det G)* — tr’G;
then

det(B|H|) = [det(E — G?)]"*sign detB.

Let us now calculate trace (16):

tr?(B|H|) = 2(det(B|H|) + det G + 1) — tr’G,
which gives

|tr(B|H|)| = {2(det(B|H]|) + det G + 1) — tr>G}"/%.

Then, the final expression for the matrix A has the form

i . N
H=———HsigntrH,
|tre(B|H])|

where
H = [det(B|H|) +detG+ 1] x B~ —trG x B~'G.

11. Consider now a particular case when G is a traceless
matrix: v = —v, =v =+ —detG, trG = 0. Then,

G?=VvE=—detGx E
and Eqn (12) is transformed to
—(BH)* = (1 = V)E. (17)

After the substitution
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H=ihVT—2, (18)

where £ is the symmetric matrix with the positive definite
real part, Eqn (12) is transformed to

(Bh)* = E. (19)
It follows from Eqn (19) that the eigenvalues of the matrix
Bh are equal to +1, and if the eigenvalues coincide, the
associated vectors should be absent. This means that either
Bh coincides with +F or it is a traceless matrix with the
determinant equal to —1. Which of these two possibilities is
realised depends on the sign of det B. Consider two cases.

(1) Let the matrix B be of fixed sign, det B> 0. The
matrix Re/ is positive definite (det Re 4 > 0) and, therefore,
det Re(Bh) > 0. Then, the signs of the eigenvalues of Re(Bh)
coincide and trRe(Bh) # 0, i.e. Bh is not a traceless matrix.
In this case,

Bh = +E,
and (20)
h=+B""

is a purely real matrix whose sign is determined from the
condition of its positive definition and coincides with the
sign of trB. For the matrix H, we have finally

H=1iV1—v?B 'signtrB. 21

(i1) Let now the matrix B not be of fixed sign, det B < 0.
Then, (20) is no longer the required solution because it is
also not a matrix of fixed sign. Therefore, in this case, Bh is
the matrix with the eigenvalues +1 and —1, the zero trace,
and the determinant equal to —1. Because, according to
(13), this matrix commutes with G, it should coincide with G
accurate to a factor. The final expression for the matrix H
has the form

v

i

H=i B 'Gsigntr(B7'G).

In both cases, the matrix H again proves to be purely
imaginary.

12. Consider now the case when v = v; = v,. In this case,
as pointed out above, the condition of the resonator stability
is the equality G = vE. Then, Eqn (13) is fulfilled automati-
cally and (12) again takes form (17). By following section 11,
we again obtain expression (21) for det B > 0, while the case
det B < 0, Bh again proves to be a matrix with the zero trace
and the determinant equal to —1. However, now we have no
additional information on the form of this matrix, and the
solution of this problem is certainly ambiguous.

To describe a family of the corresponding matrices, we
represent B as a linear combination of the unit matrix E and
the traceless matrix ¢ with the determinant equal to —1:

trB
B=hyE+bo, by—=——

5o b= +d)'",

N
_C ’

where ¢ and s are some numbers and ¢ + s = 1. Consider
also the matrix

d=|det B| = —det B, o= (g

(22
g = .
—c -5
Then, the required family of solutions of Eqn (19) has the
form

(14 (*)(bE — byo) 4 2(\/do'

"= (1-2)d

; (22)

where ( is a complex parameter. Matrix (22) has the
positive definite real part for |{| < 1; correspondingly,
matrix H (18) has the positive definite imaginary part for
the same (.

The simplest example of a resonator in which such an
ambiguous solution is realised is the three-mirror resonator
[4] with two plane and one elliptic mirror with radii of
curvature selected so that to provide the coincidence of the
eigenvalues of the monodromy matrix.

The consideration of cases for which B is
degenerate symmetric matrix is now completed.

13. Let now B = B' be a degenerate symmetric nonzero
matrix. In this case, it can be represented in the form

a non-

B=trBx ®,,

where @, is the matrix of type (10), trB#0, and ¢ =
arctan (by,/by;) (or ¢ = n/2 for by, = by =0).

The degeneracy of the matrix B means physically that
geometric optical rays propagate along one of the directions
in the focusing cross section under study. In particular, the
matrix B is degenerate in the above-mentioned problem of a
two-mirror resonator if one of the radii of curvature of the
opposite mirror is equal to the distance between the mirrors.
In this case, the beams for which the transverse projection of
the ray vector is parallel to the corresponding principal
direction of the curvature will return after reflection to the
origin of coordinates.

Let us diagonalise the matrix B by rotating the coor-
dinate axes through angle ¢ (we assume that ¢ # 0; other-
wise see section 14). For this purpose, we consider the
symplectic matrix

- (U, O
(5 )

where
<cos @ —sing )
U, =
sing  cos¢@
is the matrix of rotation through angle ¢, and perform the

transformation of type (5). The resulting matrix will have
the form

(23)

_ (U,WAUw U,((,BUq,,).
v_,CU, U.,DU,

It is easy to verify that

trB 0
B'=U_,BU, = ( 0 0).

The matrices H and H', being the solutions of the initial
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and transformed problems, are related by transformation
(3), which takes in this case the form

H=U,H'U_,.

14. The problem with the degenerate nonzero matrix
B = B'is reduced to the case when the only matrix element
byy 1s nonzero. In this case, it follows from the condition
that the matrix T is symplectic that, in particular,

ay =dpp =0, apdy —bycy =apd,;=1. (24
The matrix G (8) proves to be upper triangular, so that the
roots of Eqn (7) coincide with its diagonal elements, i.e.,
v, = (a; + d;;)/2, i=1,2. In addition, it follows from the
structure (24) of the matrix 7 that the matrix elements ay,
and d,, are its eigenvalues, while the other two eigenvalues
of T are the eigenvalues of the matrix

(011 by )
o din )

Let us formulate the conditions providing the resonator
stability. First of all the values of a,, and d,, should be equal
to =1 and coincide: @y, = dy, = v, = %1 (unlike the case of
the nondegenerate matrix B = B'). Thus, one of the

eigenvalues of 7 is doubly degenerate. The condition of
the absence of associated vectors has the form

2(vy = vp)ex = appcyy + dacpa.

At the same time, the modulus of v; =cosf should be
strictly smaller than unity because when the eigenvalues
become +1, the nonzero value of by, results in the
appearance of associated vectors. (Note that for a two-
mirror resonator it follows from the stability conditions, in
particular, that one of the principal radii of curvature for
the second mirror should be also equal to the distance
between the mirrors).

Let the stability conditions be fulfilled. By rewriting
matrix equation (1) in the form of the system of algebraic
equations for elements of the matrix H, we can find that the
two of them are quadratic equations (one for h;; and
another for A, = h,;), while the other two contain both
these elements and allow one to express linearly one of the
elements in terms of another. The system of equations is
compatible when the symplectic and stability conditions are
fulfilled and it has two solutions differing in the signs of
imaginary parts. Let us write one of the solutions:

I, :bi“ (@Hsine),
(25)

h12 =

1 [dZI — i G dy sin 9}
by 2 2(vi —vy) '
By selecting the sign of 6 in expressions (25) coinciding with
that of by, we obtain Im/k;; > 0, which is necessary for
Im H to be positive definite.

Equation (1) in the case under study imposes no
restrictions on /,,, so that expressions (25) for all possible
values of this element determine one of the two families of

solutions of this equation. In this case, Im H is positive
definite if

(a2 +dn)’

5 sin 0.

Il’l’lh22 >
Vi — V)

15. Consider now the case B = B' = O. In this case, all
the beams emerging from the origin of coordinates are
focused to one point after the round trip in the resonator. In
the problem of a two-mirror resonator, this corresponds to
the situation when the opposite mirror is spherical and its
radius is equal to the distance between mirrors. Because the
matrix T is symplectic, we have AD'=E, A'C = C'A.
Equation (1) takes the form

HA—-DH=C. (26)

The eigenvalues of 7 in this case are the eigenvalues of
matrices 4 and D and are equal to unity for the stable
matrix. It follows from this, in particular, that the deter-
minants of these matrices are equal to 41 or —1. In the first
case, the eigenvalues are ei'e, and A and D are unimodular
matrices with the trace 2cosf. In the second case, their
eigenvalues are +1 and —1, while matrices 4 and D are
traceless. Consider these situations separately.

In the first case, the eigenvalues are fourfold (6 = 0, ) or
doubly degenerate. In the case of the fourfold degeneracy,
the conditions 4 = D = £E, C = O should be fulfilled to
provide the matrix stability, and then an arbitrary sym-
metric matrix H with the positive definite imaginary part
will satisfy Eqn (26). It is this situation that is realised in a
two-mirror resonator in which the second mirror also
should be spherical with the same radius of curvature
(confocal resonator). Such a resonator was considered in [5].

Consider now the case 0 # 0, 7. In this case, it follows
from the condition of the absence of associated vectors,
which simultaneously provides the solvability of Eqn (26)
that the matrix C should be symmetric; taking the symmetry
of A'C into account, this means that either C =0 or
det C < 0. Taking into account that the matrix is symplectic,
the solution of the system of linear equations following from
(26) can be written in the form

AC—-CD
H= 2 P 2
(a1 —axn)” + 2(aj, + az)
—2ay, an — azz)
. 27
C<011 —dan 2ay, @7

Expression (27) at different values of the complex
parameter { determines a family of the solutions of
Eqn (26). The imaginary part of H is positive definite
when the sign of Im { coincides with that of a;; — a,; (here,
this value does not vanish).

Note that because the matrix C is symmetric in this case,
the transformation considered in section 5 allows us to
reduce the problem to the problem considered earlier (if
C+#0).

Consider now the second case when the determinants of
matrices 4 and D are equal to —1. The eigenvalues of these
matrices are equal to £1, the eigenvalues of the matrix T are
also equal to +1 and doubly degenerate. In this case,
D= A", and it follows from the absence of associated
vectors, which provides the resonator stability and solv-
ability of Eqn (26), that the matrix C should be already
antisymmetric. The solution of Eqn (26) has the form
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H:%+61(E+DA)+C2(A+D). (28)

Expression (28) for different values of complex parameters
{; and {, determines the two-parametric family of solutions
of Eqn (26). The imaginary part of H is positive definite
when Im{; > [Im{,| > 0.

16. It follows from the above analysis that for stable
matrices 7" with the symmetric block B there exists the
relation between the rank of the block and the eigenvalues
of T: for the nondegenerate matrix B, both values |v;,| are
smaller than unity (and 6 # 0, n); for the degenerate nonzero
matrix, one of the values of |v| is equal to unity, while
another is smaller than unity; finally, for B = O, either
Vi =vy;=v#=%l, or |v]=1. It also follows from this
observation that, if the matrix 7 with the antisymmetric
block is initially unstable, we can predict from the values of
vi» the rank of the symmetric matrix B’ after trans-
formation (5) despite the fact that this transformation is
certainly not the only one. The uncertainty remains only in
the case v; = v, # £1, when the resulting matrix B’ proves
to be either nondegenerate or zero. Of course, the same can
be said about the rank of the block C upon its symmetrisa-
tion.

Note also that in all the cases transforming to the
problem with the degenerate symmetric block B, in partic-
ular, each time when at least one of the values of v is modulo
unity, the solution of the problem proves to be not the only
one (when the stability conditions are fulfilled). The family
of solutions can also appear in the case of the nondegenerate
block B = B' when the values of v , coincide for det B < 0.

17. Let us illustrate the above discussion by a model
example. Consider a multi-mirror ring resonator with the
nonplanar axial contour providing the spatial rotation of an
image through the angle ¢ (see, for example, [2, 6]). We
assume that the number of mirrors is even and one of them
is spherical (or elliptic), the one of the principal direction of
the curvature lying in the plane of incidence of the beam; the
rest of the mirrors are plane. Let the length of the axial
contour be L. For the contour passing along the edges of a
tetrahedron in Fig. 3, the angle ¢ is equal to the sum of
dihedral angles between the faces intersecting along these
edges. The propagation along the contour is described by
the matrix

E LE
TL - <0 E >o
the rotation through the angle ¢ — by the matrix
u, O
— ?
n=(6 )

where U, is matrix (23), and reflection from the elliptic
mirror is described by the matrix

E O
Tow = (—w E)

where

_ (Y1 0 __
lP_(Ol 1//2)’ lﬁl_Rlcosoc’ V2=

o is the angle of incidence and R;, are the radii of
curvature. The monodromy matrix for the cross section
located at a distance of L/2 from the mirror is calculated by
the expression

T=T,nTrpTowT Ty

U, + 01 £[(*/+1)U@+51
=, 2 . (29)
7o =1nu, +o1 U, + 01
where
o W +v)L o Wo—Y)L . (1 0
p=l=m =T =g )

Figure 3. Scheme of the ray contour of the resonator. The arrows show
the direction of the round trip. Spherical (elliptic) mirror is located at the
point A.

The sufficient conditions for the stability of the matrix 7
have the form

6] < |Iy| = [cos @], 6° > (y* —1)sin’ @, [y] < (30)

|cos |’
For ¢ = /3, set (30) is shown in Fig. 4. The cases when
inequalities in (30) are transformed to equalities correspond
to the appearance of multiple eigenvalues and require a
separate study. We will not do it in this paper and intend to
investigate this problem in detail is a separate paper. Here,
we restrict ourselves to the simplest case when (b, — byy)
X (cjp —¢y1) >0, ie. |y >1. For definiteness, we also
assume that the values of y, d, cos ¢ and sin ¢ are positive.

We start the transformation of matrix (29) from the
unnecessary but useful scaling procedure resulting in the
simplification of the matrix. Let

Then, Ty = Ty ' TT, is the matrix with blocks
A():D():'))l]4)—|-(317 B(]:Ao-f-Uq,, C:():Ao—l](ﬂ7

and
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Figure 4. Stability region of the resonator in the plane of parameters ¢
and y for ¢ = /3 (square and two curvilinear triangles).

2
H = —Ho.
L

The next stage is the symmetrisation of the block C (see
section 4). We select

- E O
n= (zE E)

the value of z is determined from the Con~diti0n~of the
symmetry of the block C of the matrix 7y = Ty ! T, T,. This
condition leads to the relations

v 1\ /2

z== </— ,
y+1

in this case, Hy = zE + H,. Let us select for definiteness the

positive direction of z and write the blocks of the matrix 77:

1=z

AI:(1+z)<1U“’

—Z

4l

20,
+6I 5 Bl :1_22

U,
C, = (1-2z%dl, 1)1:(1—2)<1+‘” +51>.
zZ

Then, we pass to the matrix 75, in which already the
block B is symmetric: A, =D, B, =-C;, C,=—By,
Dy, =A; and H|, = —H{l (see section 5).

Finally, we perform the last transformation in this series
by passing to the matrix 75 with blocks 4; = G, D; = G',
By =B,, C; =G'By'G — By ' (see section 7), where

Ay + Dj
G=—"-—"2
2
_ ycos @ (P =1D"sing | | s,
= 2 1/2 +of;
—(y=1)""sing —yCcos @
_ y+1
By'l=—-1"1
: 26

(here, it is convenient to pass again from z to y). In this

case, the real part is separated in the matrix H,: H, =
Re H, + H;, where

DyBy' —By'Ay, _ y+1
2 20

RCHZ =

7y sin @

« (y2 - 1)1/2cosq)
~(7*=1)"cos g

-0
ysin @ '

2

and Hj is the purely imaginary matrix with the positive
imaginary part (see section 10) satisfying Eqn (14).

Let us find H; by using expressions from section 10. For
this purpose, we write several auxiliary quantities and
matrices:

_ y+1 y coS
B31G:f _ ((y2/ ®

(3 =1)"sing
—1)"sing

—ycos @

trG = 2y cos @,

det G = y% — % —sin ¢,
det(B;|H;|) = —|det(B;|H;])|

= {7 +cosg)’ = ][(y — cos p)’ — 5*}*
(the sign in front of the root coincides with that of det B3),
|tr(Bs|Hs|)| = {2[2y cos p(1 — ycos ) + [(7 — cos p)* — &
—{[(y+cos @)’ = &[(y — cos 9)* — ]}
= {2[{det’(Bs|H3|) + 477 cos® p[0° — (> — 1) sin” ]} /2

—| det(Bs| H3)) 1}

radicands are positive in the region of parameters under
study. The matrix H has the form

2 det(B3|Hs|)| +&* —y* — cos® cos
f (s f LB+ 8 = 0, 150
20 Fy
2 12 .
) cOs y =1 sin
X<( 2_))1 I/;p. Y B ) (p) +ycos<pE},
y )/“sine Y COS @

and finally,

i .
Hy =7 H;
|tr(Bs|H;))|

the sign in the last expression is
trH = 2(y+ 1)ycos o > 0.

The expression for the matrix H, being the solution of
the initial problem, has the form

2 'J)—l 1/2 |
He2 ("= " (Rer, + Hy)
LKV‘”) (Re H + Hs)

positive because

in the region of values of parameters under study.
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By substituting matrices Re H, and Hj into this expres-
sion, we obtain, after quite cumbersome computer-aided
transformations, the expression

1

H—
2L[(y + 1)(y + cos? ¢) — 5]

X w(wE+vl)+2sin(pu<? é)},
7

where

bV (129 cos’ o — 6% — det(Bs| Hs|)
B cos @ '

(7 + D = cos’ ¢ + det(Bs|Hy|)] — (y — 1)¢”
5 .

This matrix is one of the four symmetric solutions of
Eqn (1). Obviously, the second solution is obtained from it
by complex conjugation. The rest of the two solutions can
be obtained for the opposite sign of det (B;|Hj;|) (including
|tr (B3| H3])|); the fulfilment of (1) is verified directly. Thus,
the solution obtained for one of the subregions of set (30)
allowed us to find all the solutions of (1), and the choice of
the requires solution for other subregions of (30) was
determined from the conditions that the diagonal matrix
ImH is positive definite, i.e. its elements are positive.

Note also without the proof that for the points 6 = 0 and
|y| = |cos @| # 0 dividing the subregions, the problem is
reduced to the case detB=0, B= B'+# O considered in
sections 13 and 14, and for the point 6 =y =cos¢ =0 —to
the case B= 0, det4 = detD = —1 considered in section
15. The expressions for solutions in these cases contain one
or two complex parameters, respectively.

18. Let us summarise the results of the paper. We have
proposed a new method for constructing the fundamental
mode of a resonator in the form of a Gaussian beam with
complex astigmatism. Unlike the traditional method, in
which the beam parameters are expressed in terms of the
eigenvectors of the 4 x 4 monodromy matrix, our procedure
does not require the determination of these vectors. Another
advantage of the method is, in our opinion, that it allows
one to obtain explicit analytic expressions for the beam in
terms of the elements of the initial matrix, thereby revealing
the dependence of its properties on the parameters of the
problem. At the same time, the algorithm proposed in the
paper can be also used in numerical calculations.

The procedure proposed in our paper involves the
successive simplification of the problem with the help of
similarity transformations and its final reduction to one of
the basic variants admitting the explicit solution, in the form
of a family of functions in a number of cases. The stability
condition has been found for each of these variants. The
correspondence between these variants and spectral param-
eters of the initial monodromy matrix has been established.

The possibilities of the method have been illustrated for
a resonator with the nonplanar contour performing the
spatial rotation of the image.
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