
Abstract. The optical properties of an atom located near a
cluster of two arbitrarily arranged nanospheres of an
arbitrary composition are studied. Changes in the sponta-
neous decay rates of excited states and emission frequency
shifts are considered for different orientations of the dipole
moment and different positions of the atom with respect to
the cluster. It is shown that a two-nanosphere cluster can be
used to control eféciently the spontaneous decay rates of
excited states of the atom by changing the distance between
spheres. It is found that spontaneous decay rates of the
excited states of an atom located between silver nanospheres
and having the dipole moment directed along the axis
connecting the centres of spheres can increase by a factor
of 105 and more when nanospheres are brought closer
together.

Keywords: nanooptics, nanoplasmonics, spectroscopy, nanopartic-
les.

1. Introduction

Recently a great number of papers devoted to investigations
of the spectroscopic parameters of a dipole source (atom,
molecule) in the presence of meso- and nanostructures
appeared. From the theoretical point of view, this problem
is quite challenging because an atom interacts with optical
éelds that are strongly inhomogeneous at the nanometre
scale. In the case of plasmon ë polariton [1, 2] and pho-
non ë polariton [3] resonances, the local éeld increases very
strongly. Some possible applications based on this effect
were considered. Applications in which strong local éelds
near irregular surfaces are used to increase Raman
scattering cross section are most developed at present [4].
Changes in the properties of emitting atoms located near
nanobodies of different shapes and different compositions
are used in nanobiosensors [5 ë 7], nanolasers [8], micro-
scopes for the observation of individual molecules [9],
devices for decoding the DNA structure [10], chemical
sensors [11 ë 13], and many other devices [14]. At present
the optical properties of atoms located near individual
nanospheres, nanowires, and nanospheroids are studied in
detail [15 ë 18]. Note also paper [19] devoted to the study of
the radiative decay rate of the excited state of an atom
located near a three-axial ellipsoid, which can be used for
the development of new types of artiécial êuorophores.
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consisting of two and more metal nanoparticles are espe-
cially promising because a change in the cluster geometry
allows the efécient control of the plasmon (phonon) spect-
rum. The optical properties of clusters consisting of two
nanoparticles were studied in a number of theoretical
[20 ë 32] and experimental [33 ë 36] papers. The case of
nearly touching nanoparticles is the most interesting
because the local éeld especially strongly increases in the
gap between the nanoparticles, and at the same time this
case is the most complicated. The interaction of an atom
with a cluster of nanoparticles results in the excitation of
special plasmon oscillations [21], which are strongly loca-
lised between spheres and vanish at large distances.

The aim of this paper is to study the optical properties of
an atom (or a molecule) near a cluster of two arbitrarily
arranged spherical nanoparticles of an arbitrary size
(Fig. 1). In section 2, we discuss brieêy the speciéc features
of the theory of spontaneous emission of an atom located
near nanobodies. In section 3, the solution of the quasi-
static problem is obtained for an electric éeld produced by
the atom near the cluster. The analytic solution is presented
for the case of ideally conducting nanospheres. In section 4,
the resonance properties of a cluster of two metal nano-
spheres, or more exactly, two spheres made of a material
with the dielectric constant e < 0 are considered. Section 5 is
devoted to the study of the spontaneous decay rate of the
excited state of an atom located near a cluster. General
equations are obtained for arbitrarily arranged spheres of an
arbitrary composition. Asymptotic expressions for the
spontaneous decay rate are studied at large and small
distances between nanospheres. At the end of section 5,
graphic results are presented and discussed. In section 6, the
frequency shift of the atomic emission in the presence of a
cluster is studied, asymptotic expressions for the frequency
shift are considered at small and large distances between
spheres, and the results are graphically illustrated and
discussed.

2. Elements of the theory of spontaneous
emission of an atom in the presence
of nanobodies

In the case of a weak interaction between an atom and a
nanobody, i.e. when the spontaneous decay is exponential,
the width ga of the excited level a of the atom located at
point r � r 0 (hereafter, primed coordinates denote the posi-
tion of an atom) is described by the expression [37]

ga � g0a �
2

�h

X
n

d
�an�
0a d

�na�
0b ImGab�r 0; r 0;ona�Y�oan�, (1)

where g0a is the level width in a free space in the absence of
a nanobody; d

�an�
0a is the matrix element of the dipole

momentum operator between the states a and n; ona �
(Wn ÿWa)=�h is the frequency of transition between the
states n and a; Gab is the reêected part of the Green
function of the classical problem, which is related to the
reêected éeld E r

a by the expression

E r
a(r) � Gab�r; r 0;ona�d �na�0b ; (2)

a, b � x, y, z (hereafter, summation is assumed over
repeated indices); and Y is the Heaviside function. We
will study below the emission linewidth by considering only
one of the excited-state decay channels, for example, the
e! g transition. To take into account the possible decay to
different states, it is only necessary to sum the partial
linewidths of all possible transitions. The expression for the
relative linewidth, i.e. the linewidth normalised to the
linewidth in a free space obtained in the classical (Lorentz)
theory of an atom [38, 39] coincides with corresponding
quantum-mechanical expression (1).

The expression for the energy level shift dWa for an
arbitrary state a of an atom has the form [40]

dWa � dW cl
a � dW vdW

a , (3)

where

dW cl
a � ÿ

X
n

d
�an�
0a d

�na�
0b ReGab�r 0; r 0;ona�Y�oan�;

(4)

dW vdW
a � ÿ �h

2p

�1
0

dxGab�r 0; r 0;o � ix�P �a�ab �o � ix�;

and

P �a�ab �o� �
2

�h

X
n

onad
�an�
0a d

�na�
0b

o2
na ÿ �o� i0��2 (5)

is the polarisability of the state a. Note that expressions (1)
and (3) were obtained by using the most general assump-
tions and therefore the éeld of their applications is very
broad.

Thus, the problem of determining the spectral param-
eters of an atom near any body is reduced to the calculation
of the reêected éeld or the Green function and analysis of
expressions (1) and (4).

In the case of nanobodies, the perturbation theory over a
small parameter 2pb=l5 1 can be often used, where b is the
characteristic size of a nanobody and l is the emission
wavelength (Rayleigh theory). In this case, the Green
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Figure 1. Geometry of the problem.
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function of the reêected éeld can be expanded as a power
series in the wave number k:

Gab�r; r 0;o� � G
�0�
ab �r; r 0� � kG

�1�
ab �r; r 0�

� k 2G
�2�
ab �r; r 0� � ik 3G

�3�
ab �r; r 0� � . . . , (6)

where G
� j �
ab ( j � 0, 1, 2, . . .) are coefécients, which can be

found by solving the corresponding quasi-static problems
[41], and k � o=c. Note that the dependence e(o) should
not be taken into account in expansion (6). The érst three
terms in (6) describe near éelds, while the higher-order
terms describe emission éelds. By substituting expansion (6)
into (1), we obtain the total rate of spontaneous transition
from the state e to the state g near a nanobody

g � 2

�h
d
�eg�
0a d

�ge�
0b Im

�
G
�0�
ab �r 0; r 0� � . . .

�
|�����������������������������{z�����������������������������}

nonradiative losses

� g0 �
2

�h
d
�eg�
0a d

�ge�
0b Re

�
k 3
0G
�3�
ab �r 0; r 0� � . . .

�
|�������������������������������������{z�������������������������������������}, (7)

radiative losses

where k0 � oeg=c; g0 is the transition linewidth in the
absence of a nanobody. The érst term in (7) is nonzero only
for absorbing media and describes nonradiative losses,
while the rest of the terms are nonzero in the absence of
absorption as well. These terms describe mainly radiative
losses. Therefore, to énd the leading terms of nonradiative
and radiative losses, it is necessary to calculate G

�0�
ab (r

0, r 0)
and G

�3�
ab (r

0, r 0), respectively.
To énd the term describing nonradiative losses, it is

sufécient to solve the quasi-static electrodynamic problem
with a dipole source. The direct determination of radiative
losses described by the third-order terms in k is a compli-
cated problem. However, if an atom is located close to a
nanobody, emission has the dipole nature, and the total
dipole moment of the atom + nanobody system can be
again found from the analysis of the function G

�0�
ab (r; r 0) at

large distances from the system. Thus, the radiative width of
the e! g transition line in the presence of nanobodies is
described by the expression�

g
g0

�rad
� jdtotj

2

d 2
0

, (8)

where dtot � d0 � dd is the total dipole moment of the
atom + nanobody system; d0 is the vector of the transition
dipole moment; and dd is the induced dipole moment. It
can be shown that expression (8) is valid within the
framework of the quantum-mechanical approach [17].

Similarly, by substituting expansion (6) into expression
(3) for the level shift in any state a, we can obtain the
relation

dWa � ÿ
1

2
hajd0ad0bjaiRe

�
G
�0�
ab �r 0; r 0�

�
ÿ 1

2

X
n

d
�an�
0a d

�na�
0b Im

�
G
�0�
ab �r; r 0�

� oan

joanj
� . . . . (9)

In the case of a substance with low losses, the second term
in (9) can be always neglected compared to the érst one.

Then, the frequency shift of the e! g transition in an atom
located near a nanobody has the form

Do � ÿ 1

2�h
�hejd0ad0bjeiÿhgjd0ad0bjgi�Re

�
G
�0�
ab �r 0; r 0�

�� . . . .

(10)

As a result, to énd a change in the spontaneous decay rate
and frequency shifts in the presence of any nanoobject with
low losses (e 005 e 0, e � e 0 � ie 00) whose dimensions are
small compared to the emission wavelength, it is sufécient
to solve the quasi-static problem for a dipole located near
this nanoobject and énd the function G

�0�
ab (r; r

0). According
to (10) and (7), the value of this function for coinciding
arguments will give the frequency shift and nonradiative
component of the transition rate, respectively, while the
dipole moment, found from the asymptotic of this function
at inénity, will give, according to (8), the radiative decay
rate.

3. Quasi-static problem for a dipole
near a two-nanosphere cluster

To énd the leading terms of asymptotic expressions for the
spontaneous decay rate and the frequency shift of emission
of an atom in the presence of an arbitrary nanobody, it is
sufécient to solve the quasi-static problem for the potential
F of an atom located near a nanobody:

E � ÿHF,
(11)

DF � 4p exp�ÿiot��d0H 0�d�rÿ r 0�,
where H, H 0 are gradients along the coordinates r and r 0,
respectively, and D is the Laplace operator. We will further
omit the exponential factor exp (ÿ iot).

It is convenient to solve Eqn (11) in the case of two
nanospheres in the bispherical coordinate system (Fig. 2).
The coordinates of the bispherical system ÿ1 < Z <1,
0 < x4 p, and 04j < 2p are related to the Cartesian
coordinates by expressions [42, 43]

x � f
sin x cosj

cosh Zÿ cos x
, y � f

sin x sinj
cosh Zÿ cos x

,

(12)

z � f
sinh Z

cosh Zÿ cos x
.

x � x 0

Z � Z2

Z � Z 0

Z � Z1

ÿf f
R1

R2

Atom

Figure 2. Bispherical coordinates.
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The relation Z � Z1 < 0 speciées a sphere of radius R1 �
f=j sinh Z1j in the Cartesian coordinate system. Its centre is
located at the point with coordinates x1 � y1 � 0, z1 � f�
coth Z1. The second sphere can be speciéed similarly by the
expression Z � Z2 > 0. The radius of this sphere is
R2 � f= sinh Z2 and its centre is located at the point with
coordinates x2 � y2 � 0, z2 � f coth Z2. The dimensional
constant f is half the distance between the poles of the
bispherical coordinate system. It is deéned by the positive
root of the equation R12 � (R 2

1 � f 2)1=2 � (R 2
2 � f 2)1=2,

where R12 � z2 ÿ z1 is the distance between the centres
of the érst and second spheres, which, as the radii of
spheres, is deéned arbitrarily (R12 5R1 � R2).

Equation (11) for the potential F � (d0H
0)~F can be

written in the more convenient form

D~F � 4pd�rÿ r 0�. (13)

The solution of Eqn (13) has the form

~F � ~F r � G0, (14)

where ~F r is the potential of the reêected éeld produced by
the point unit charge, and G0 is the Green function of the
point unit charge in a free space. The expression for G0 in
the bispherical coordinate system can be represented in the
form [42, 43]

G0�r; r 0� �
1

jrÿ r 0j �
1

f
�cosh Zÿ cos x�1=2

�
X1
n�0

Xn
m�0

exp

�
ÿ
�
n� 1

2

�
jZÿ Z 0j

�
Pm
n �cos x�

� �cmn cosmj� dmn sinmj�, (15)

where

cmn

dmn

� �
� �2ÿ d�m; 0�� �nÿm�!

�n�m�!
ÿ
cosh Z 0 ÿ cos x 0

�1=2
�Pm

n �cos x 0� cosmj 0

sinmj 0

� �
; (16)

Pm
n are the associated Legendre functions and d(m, 0) is the

Kronecker delta.
We will seek the induced potential ~F r outside spheres

(Z1 < Z < Z2) in the form

~F r � 1

f
�cosh Zÿ cos x�1=2

X1
n�0

Xn
m�0

Pm
n �cos x�

(17)

�
��

amn cosh

��
n� 1

2

�
Z
�
� gmn sinh

��
n� 1

2

�
Z
��

cosmj

�
�
bmn cosh

��
n� 1

2

�
Z
�
� dmn sinh

��
n� 1

2

�
Z
��

sinmj
�
.

Potentials inside the érst (Z < Z1 < 0) and second
(Z > Z2 > 0) spheres can be written in the form

~F �1� � 1

f
�cosh Zÿ cos x�1=2

X1
n�0

Xn
m�0

exp

��
n� 1

2

�
Z
�
�

�Pm
n �cos x�

�
a �1�mn cosmj� b �1�mn sinmj

�
,

(18)

~F �2� � 1

f
�cosh Zÿ cos x�1=2

X1
n�0

Xn
m�0

exp

�
ÿ
�
n� 1

2

�
Z
�

�Pm
n �cos x�

�
a �2�mn cosmj� b �2�mn sinmj

�
.

In expressions (17) and (18), amn, bmn, gmn, dmn and a �1�mn ,
b �1�mn , a

�2�
mn , b

�2�
mn are unknown coefécients to be determined.

3.1 System of recurrent equations
in the case of arbitrary spheres

Equations for unknown coefécients can be obtained with
the help of usual boundary conditions on the surface of
spheres. Potentials (18) and the total potential ~F r � G0 on
the surface of each of the nanospheres coincide, which gives
the following equations

a �1�mn exp

��
n� 1

2

�
Z1

�
� amn cosh

��
n� 1

2

�
Z1

�

� gmn sinh

��
n� 1

2

�
Z1

�
� cmn exp

�
ÿ
�
n� 1

2

���Z1 ÿ Z 0
���,

a �2�mn exp

�
ÿ
�
n� 1

2

�
Z2

�
� amn cosh

��
n� 1

2

�
Z2

� (19)

� gmn sinh

��
n� 1

2

�
Z2

�
� cmn exp

�
ÿ
�
n� 1

2

���Z2 ÿ Z 0
���.

Equations for the coefécients b �1�mn and b �2�mn can be obtained
from (19) by the substitutions a �1�mn ! b �1�mn , a

�2�
mn ! b �2�mn , and

cmn ! dmn. To simplify further calculations without loss of
generality, we consider an atom located in the half-space
z 05 0 outside the second sphere (Z2 > Z 0 > 0).

Let the érst (Z � Z1) and second (Z � Z2) spheres have
the dielectric constants e1 and e2, respectively; the dielectric
constant of a medium to which the spheres are embedded is
set equal to unity. By using the boundary conditions for the
normal derivatives of potentials on the surface of each of the
spheres, we obtain two more equations for unknown
coefécients. By excluding then the coefécients a �1�mn and
a �2�mn from these equations with the help of (19), we énd
equations for the coefécients amn and gmn:

�nÿm� cosh
��

nÿ 1

2

�
Z1

��
e1 ÿ tanh

��
nÿ 1

2

�
Z1

��
am nÿ1

ÿ�2n� 1� cosh Z1 cosh
��

n� 1

2

�
Z1

�

�
�
e1 ÿ tanh

��
n� 1

2

�
Z1

�
� �e1 ÿ 1� tanh Z1

2n� 1

�
amn

��n�m� 1� cosh
��

n� 3

2

�
Z1

�

�
�
e1 ÿ tanh

��
n� 3

2

�
Z1

��
am n�1 � �nÿm�

� sinh

��
nÿ 1

2

�
Z1

��
e1 ÿ coth

��
nÿ 1

2

�
Z1

��
gm nÿ1ÿ
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ÿ�2n� 1� cosh Z1 sinh
��

n� 1

2

�
Z1

�

�
�
e1 ÿ coth

��
n� 1

2

�
Z1

�
� �e1 ÿ 1� tanh Z1

2n� 1

�
gmn

��n�m� 1� sinh
��

n� 3

2

�
Z1

�

�
�
e1 ÿ coth

��
n� 3

2

�
Z1

��
gm n�1 � ÿ�e1 ÿ 1��nÿm�

� exp

��
nÿ 1

2

�ÿ
Z1 ÿ Z 0

��
cm nÿ1 � �e1 ÿ 1��2n� 1�

� cosh Z1

�
1� tanh Z1

2n� 1

�
exp

��
n� 1

2

�ÿ
Z1 ÿ Z 0

��
cmn

ÿ�e1 ÿ 1��n�m� 1� exp
��

n� 3

2

�ÿ
Z1 ÿ Z 0

��
cm n�1 (20)

and

�nÿm� cosh
��

nÿ 1

2

�
Z2

��
e2 � tanh

��
nÿ 1

2

�
Z2

��
am nÿ1

ÿ�2n� 1� cosh Z2 cosh
��

n� 1

2

�
Z2

�

�
�
e2 � tanh

��
n� 1

2

�
Z2

�
ÿ �e2 ÿ 1� tanh Z2

2n� 1

�
amn

��n�m� 1� cosh
��

n� 3

2

�
Z2

�

�
�
e2 � tanh

��
n� 3

2

�
Z2

��
am n�1

��nÿm� sinh
��

nÿ 1

2

�
Z2

��
e2 � coth

��
nÿ 1

2

�
Z2

��
gm nÿ1

ÿ�2n� 1� cosh Z2 sinh
��

n� 1

2

�
Z2

�

�
�
e2 � coth

��
n� 1

2

�
Z2

�
ÿ �e2 ÿ 1� tanh Z2

2n� 1

�
gmn

��n�m� 1� sinh
��

n� 3

2

�
Z2

�

�
�
e2 � coth

��
n� 3

2

�
Z2

��
gm n�1 � ÿ�e2 ÿ 1��nÿm�

� exp

�
ÿ
�
nÿ 1

2

�ÿ
Z2 ÿ Z 0

��
cm nÿ1 � �e2 ÿ 1��2n� 1�

� cosh Z2

�
1ÿ tanh Z2

2n� 1

�
exp

�
ÿ
�
n� 1

2

�ÿ
Z2 ÿ Z 0

��
cmn

ÿ�e2 ÿ 1��n�m� 1� exp
�
ÿ
�
n� 3

2

�ÿ
Z2 ÿ Z 0

��
cm n�1. (21)

Equations for the coefécients bmn and dmn can be
obtained from (20) and (21) by making the substitutions
amn ! bmn, gmn ! dmn, and cmn ! dmn.

Recurrent equations (20) and (21) are constructed so
that for the speciéed index m � m 0 the inénite system of
equation appears with n5m 0 for unknown coefécients. It
follows from the structure of Eqns (20) and (21) that for the
large values of the index n4 1, the coefécients amn and gmn

will tend to zero. This allows the replacement of the inénite
system of equations by a énite system with m4 n4N,
where N is chosen in accordance with the speciéed accuracy.

3.2 Solution in the case of a cluster
of two ideally conducting nanospheres

In the case of ideally conducting spheres, we can obtain the
following explicit expressions for the coefécients amn, bmn,
and gmn, dmn [27]

a ic
mn

b ic
mn

 !
� ÿ cmn

dmn

� ��
exp

��
n� 1

2

�ÿ
Z1 ÿ Z 0

��

� sinh

��
n� 1

2

�
Z2

�
ÿ exp

�
ÿ
�
n� 1

2

�ÿ
Z2 ÿ Z 0

��

� sinh

��
n� 1

2

�
Z1

���
sinh

��
n� 1

2

�
�Z2 ÿ Z1�

��ÿ1

ÿ d�m; 0� 1
0

� ��
A1 exp

��
n� 1

2

�
Z1

�
sinh

��
n� 1

2

�
Z2

�

ÿA2 exp

�
ÿ
�
n� 1

2

�
Z2

�
sinh

��
n� 1

2

�
Z1

��

�
�
sinh

��
n� 1

2

�
�Z2 ÿ Z1�

��ÿ1
, (22)

and

g icmn

d ic
mn

 !
� cmn

dmn

� ��
exp

��
n� 1

2

�ÿ
Z1 ÿ Z 0

��

� cosh

��
n� 1

2

�
Z2

�
ÿ exp

�
ÿ
�
n� 1

2

�ÿ
Z2 ÿ Z 0

��

� cosh

��
n� 1

2

�
Z1

���
sinh

��
n� 1

2

�
�Z2 ÿ Z1�

��ÿ1

� d�m; 0� 1
0

� ��
A1 exp

��
n� 1

2

�
Z1

�
cosh

��
n� 1

2

�
Z2

�

ÿA2 exp

�
ÿ
�
n� 1

2

�
Z2

�
cosh

��
n� 1

2

�
Z1

��

�
�
sinh

��
n� 1

2

�
�Z2 ÿ Z1�

��ÿ1
, (23)

where

A1 � ÿ
�C22 � C21�B1 � C12B2

C12C22 � C21C11 � C11C22

;
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A2 � ÿ
C21B1 � �C11 � C12�B2

C12C22 � C21C11 � C11C22

;

(24)

B1 � 2
X1
n�0

c0n

�
sinh

��
n� 1

2

�ÿ
Z2 ÿ Z 0

��

�
�
sinh

��
n� 1

2

�
�Z2 ÿ Z1�

��ÿ1�
exp

��
n� 1

2

�
Z1

�
;

B2 � 2
X1
n�0

c0n

�
sinh

��
n� 1

2

�ÿ
Z 0 ÿ Z1

��

�
�
sinh

��
n� 1

2

�
�Z2 ÿ Z1�

��ÿ1�
exp

�
ÿ
�
n� 1

2

�
Z2

�
;

C11 � 2
X1
n�0

�
sinh

��
n� 1

2

�
Z2

�

�
�
sinh

��
n� 1

2

�
�Z2 ÿ Z1�

��ÿ1�
exp

��
n� 1

2

�
Z1

�
;

C12 � C21 �
X1
n�0

exp

�
ÿ
�
n� 1

2

�
�Z2 ÿ Z1�

�

�
�
sinh

��
n� 1

2

�
�Z2 ÿ Z1�

��ÿ1
; (25)

C22 � ÿ2
X1
n�0

�
sinh

��
n� 1

2

�
Z1

�

�
�
sinh

��
n� 1

2

�
�Z2 ÿ Z1�

��ÿ1�
exp

�
ÿ
�
n� 1

2

�
Z2

�
.

The results of analysis of expressions (22) ë (25) will be
presented below.

4. Natural oscillations
in a two-nanosphere cluster

To study the inêuence of a cluster on the optical properties
of atoms and molecules, it is necessary to know the
properties of its natural oscillations. The natural oscil-
lations of a cluster (and generally speaking, of any system)
are possible only for some (negative) values of the dielectric
constant of the cluster material. To énd the resonance
values of the dielectric constant, it is necessary to solve the
homogeneous variant of the system of equations (20), (21)
with cmn � 0, by considering the dielectric constant as the
eigenvalue. In the case of a cluster of two identical spheres
(R1 � R2 � R0, ÿZ1 � Z2 � Z0), the system of recurrent
equations (20) and (21) can be represented in the form
of two independent system of equations for each of the
coefécients amn (bmn) and gmn (dmn). We will call the modes
excited by a homogeneous electric éeld directed along the
symmetry axis of the cluster (longitudinal modes) the L
modes. The modes observed upon excitation by a
homogeneous éeld directed perpendicular to the axis
(transverse modes) will be called the T modes. The
resonance values of the dielectric constant and the
corresponding frequencies of the L and T modes can be

found, for example, within the framework of the method of
hybridisation of plasmon oscillations of individual spheres
[20]. A two-nanosphere cluster can also exhibit the M
modes [21], which are not eféciently excited by a plane wave
and have a noticeably smaller effective volume than the L
and T modes.

Figure 3 presents the dependences of the resonance
dielectric constant emn on the distance between identical
nanospheres for m � 0 and 1. One can see that, as the
distance between nanospheres is increased, the resonance
dielectric constants corresponding to the T and L modes
tends to the well-known values ÿ(n� 1)=n (n � 1, 2, 3, . . . )
[23, 24], which correspond to the modes of different multi-
polarities excited in a sphere. As for the M modes, they can
exist only under the condition R12(2R0)

ÿ1 4 1:2. These
modes appear due to the formation of the bound two-
plasmon state, as upon formation of molecules from atoms
approaching each other.

Figure 3 also shows that the behaviour of the spectra in
the region of almost touching spheres becomes very com-
plex. Nevertheless, in this case the asymptotic solutions can
be found for the resonance dielectric constant emn. We have
for the M modes

eMmn � ÿ�n�m� dm�Z0 � . . . , (26)

where n � 1, 2, 3, . . . ; m � 0, 1, 2, . . . ; d0 � 1=2, d1 �
ÿ0:086, . . . . The analytic solution for the L modes has
the form

eLmn � ÿ�n�mÿ 1=2�ÿ1Zÿ10 � . . . , (27)

e0n
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eM12

eM13

eL11
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eT13

eT11

b
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e1n
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Figure 3. Resonance dielectric constant emn for the L, T and M modes as
a function of the normalised distance R12=(2R0) between two identical
nanospheres for m � 0 (a) and 1 (b).
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where n � 1, 2, 3, . . . ; m � 0, 1, 2, 3. In the case of the T
modes, we failed to obtain the analytic solution. Let us
present several érst values of the resonance dielectric con-
stant:

eT01 � ÿ1:696, eT02 � ÿ1:355, eT03 � ÿ1:237,
(28)

eT11 � ÿ1:799, eT12 � ÿ1:386, eT13 � ÿ1:182.
The eigenvectors of the M and L modes corresponding to
the resonance dielectric constants (26) and (27) can be
calculated analytically in the limit of closely spaced spheres:

aM
0n �

ÿ 1

m cosh��n� 1=2�Z0�
; n4mÿ 1;

1

cosh��m� 1=2�Z0�
; n �m;

0; n >m;

8>>>>><>>>>>:

gLmn �
d�nÿm� 1;l�

sinh��l�mÿ 1=2�Z0�
,

(29)

where m and l are the numbers of the M and L modes;
m, l � 1, 2, 3, . . . ; m, n � 0, 1, 2, . . . . Note that the
similar expression for dL

mn coincides with expression (29) for
dL
mn, while b

M
0n � 0. To these vectors, the expressions for the

eigenfunctions of the potential correspond, which are
obtained by substituting (29) into (17) and (18). The
eigenfunctions of the axially symmetric M mode (m � 0) in
the space between spheres have the form

~F0mjZ0!0 � ÿ
1

mf
�cosh Zÿ cos x�1=2

�
Xmÿ1
n�0

cosh��n� 1=2�Z�
cosh��n� 1=2�Z0�

Pn�cos x� �
1

f
�cosh Zÿ cos x�1=2

� cosh��m� 1=2�Z�
cosh��m� 1=2�Z0�

Pm�cos x�. (30)

The eigenfunctions inside the érst sphere are described by
the expression

~F �1�0m

��
Z0!0

� ÿ 1

mf
�cosh Zÿ cos x�1=2

�
Xmÿ1
n�0

exp

��
n� 1

2

�
�Z� Z0�

�
Pn�cos x� (31)

� 1

f
�cosh Zÿ cos x�1=2 exp

��
m� 1

2

�
�Z� Z0�

�
Pm�cos x�.

The eigenfunctions inside the second sphere are described
by a similar expression.

The eigenfunctions of the L mode in the space between
spheres and inside the érst sphere are described by the
expressions

~Fml

��
Z0!0

� 1

f
�cosh Zÿ cos x�1=2

� sinh��l�mÿ 1=2�Z�
sinh��l�mÿ 1=2�Z0�

Pm
l�mÿ1�cos x� cosmj, (32)

~F �1�ml

��
Z0!0

� ÿ 1

f
�cosh Zÿ cos x�1=2

� exp

��
l�mÿ 1

2

�
�Z� Z0�

�
Pm
l�mÿ1�cos x� cosmj, (33)

respectively. The eigenfunctions inside the second sphere
are described by similar expressions.

5. Spontaneous decay rate of the excited state
of an atom near a two-nanosphere cluster

As follows from the general theory presented in section 2,
the spontaneous decay rate near a nanobody has the
radiative and nonradiative components [see expression (7)].
In this section, we will discuss separately both the radiative
and nonradiative components of the decay rate.

5.1 General expression for the radiative component
of the spontaneous decay rate

It follows from (8) that to énd the radiative component of
the spontaneous decay rate, it is necessary to calculate the
total dipole moment of the atom + two nanospheres
system. To énd the dipole moment, we obtain the
asymptotics of potential (17) at large distances between
an atom and a cluster and compare it with the known
expression for the potential of a dipole at large distances
(dtotR)=R

3.
Let R, W, and j be the coordinates of the spherical

system. Then, with an accuracy to the terms of the second-
order smallness (R!1), the expressions for the coordi-
nates of the bispherical system will take the form
Z � 2( f=R) cos W and x � 2( f=R) sin W. By substituting these
expressions into (17), expanding the obtained expression in
a small parameter f=R ( f=R5 1), and comparing it with the
potential of a dipole at large distances, we énd the relations
for the induced dipole moment of the two-nanosphere
cluster:

ddx � ÿ
���
2
p

f �d0H 0�
X1
n�1

n�n� 1�a1n,

ddy � ÿ
���
2
p

f �d0H 0�
X1
n�1

n�n� 1�b1n, (34)

ddz � 2
���
2
p

f �d0H 0�
X1
n�0
�n� 1=2�g0n.

Thus, it follows from (34) that to énd the induced dipole
moment, it is necessary to calculate the corresponding
derivatives from coefécients a1n, b1n, and g0n. By knowing
these derivatives, we énd from (8) the radiative component
of the spontaneous decay rate of the excited state of an atom
located near a cluster of two nanospheres made of an
arbitrary material and having different radii.

5.2 General expression for the nonradiative component
of the spontaneous decay rate

By using expression (7), we can énd the principal term in
the expression for the nonradiative component of the
spontaneous decay rate of the excited state of an atom near
a two-nanosphere cluster, which is determined by the
contribution of the reêected éeld in the quasi-static
approximation. For this purpose, it is necessary to differ-
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entiate properly (17). As a result, we obtain the following
expressions for the nonradiative component of the decay
rate of the excited state of the atom near the two-
nanosphere cluster for the characteristic directions of the
dipole moment of the atom (j 0 � 0).

The dipole moment of the atom is oriented along the x axis
(d0 � d0ex):�

g
g0

�nrad
x

� ÿ 3�cosh Z 0 ÿ cos x 0�1=2
2�k0 f �3

� Im

�
1

2
sinh Z 0 cosh Z 0 sin 2 x 0

�
X1
n�0

Xn
m�0

�
qamn

qZ 0
cosh

��
n� 1

2

�
Z 0
�

� qgmn

qZ 0
sinh

��
n� 1

2

�
Z 0
��

Pm
n �cos x 0�

ÿ 1

2
cosh Z 0 sin x 0�cosh Z 0 cos x 0 ÿ 1�

�
X1
n�0

Xn
m�0

�
qamn

qx 0
cosh

��
n� 1

2

�
Z 0
�

� qgmn

qZ 0
sinh

��
n� 1

2

�
Z 0
��

Pm
n �cos x 0� � sinh 2 Z 0 sin 2 x 0

�
X1
n�0

Xn
m�0

�
n� 1

2

��
qamn

qZ 0
sinh

��
n� 1

2

�
Z 0
�

� qgmn

qZ 0
cosh

��
n� 1

2

�
Z 0
��

Pm
n �cos x 0�

ÿ sinh Z 0 sin x 0�cosh Z 0 cos x 0 ÿ 1�

�
X1
n�0

Xn
m�0

�
n� 1

2

��
qamn

qx 0
sinh

��
n� 1

2

�
Z 0
�

� qgmn

qx 0
cosh

��
n� 1

2

�
Z 0
��

Pm
n �cos x 0�

ÿ sinh Z 0 sin x 0�cosh Z 0 cos x 0 ÿ 1�

�
X1
n�0

Xn
m�0

�
qamn

qZ 0
cosh

��
n� 1

2

�
Z 0
�

� qgmn

qZ 0
sinh

��
n� 1

2

�
Z 0
��

qPm
n �cos x 0�
qx 0

� �cosh Z 0 cos x 0 ÿ 1�2
X1
n�0

Xn
m�0

�
qamn

qx 0
cosh

��
n� 1

2

�
Z 0
�

� qgmn

qx 0
sinh

��
n� 1

2

�
Z 0
��

qPm
n �cos x 0�
qx 0

�
. (35)

The dipole moment of the atom is oriented along the y axis
(d0 � d0ey):

�
g
g0

�nrad
y

� ÿ 3

2�k0 f �3
�cosh Z 0 ÿ cos x 0�5=2

sin 2 x 0

� Im

�X1
n�1

Xn
m�1

m

�
qbmn

qj 0

����
j 0�0

cosh

��
n� 1

2

�
Z 0
�
� qdmn

qj 0

����
j 0�0

� sinh

��
n� 1

2

�
Z 0
��

Pm
n �cos x 0�

�
. (36)

The dipole moment of the atom is oriented along the z axis
(d0 � d0ez):�

g
g0

�nrad
z

� ÿ 3�cosh Z 0 ÿ cos x 0�1=2
2�k0 f �3

� Im

�
1

2
sinh Z 0 cos x 0�cosh Z 0 cos x 0 ÿ 1�

�
X1
n�0

Xn
m�0

�
qamn

qZ 0
cosh

��
n� 1

2

�
Z 0
�

� qgmn

qZ 0
sinh

��
n� 1

2

�
Z 0
��

Pm
n �cos x 0�

� 1

2
sinh 2 Z 0 sin x 0 cos x 0

�
X1
n�0

Xn
m�0

�
qamn

qx 0
cosh

��
n� 1

2

�
Z 0
�

� qgmn

qx 0
sinh

��
n� 1

2

�
Z 0
��

Pm
n �cos x 0���cosh Z 0 cos x 0ÿ 1�2

�
X1
n�0

Xn
m�0

�
n� 1

2

��
qamn

qZ 0
sinh

��
n� 1

2

�
Z 0
�

� qgmn

qZ 0
cosh

��
n� 1

2

�
Z 0
��

Pm
n �cos x 0�

� sinh Z 0 sin x 0�cosh Z 0 cos x 0 ÿ 1�

�
X1
n�0

Xn
m�0

�
n� 1

2

��
qamn

qx 0
sinh

��
n� 1

2

�
Z 0
�

� qgmn

qx 0
cosh

��
n� 1

2

�
Z 0
��

Pm
n �cos x 0�

� sinh Z 0 sin x 0�cosh Z 0 cos x 0 ÿ 1�

�
X1
n�0

Xn
m�0

�
qamn

qZ 0
cosh

��
n� 1

2

�
Z 0
�

� qgmn

qZ 0
sinh

��
n� 1

2

�
Z 0
��

qPm
n �cos x 0�
qx 0

� sinh 2 Z 0 sin 2 x 0

�
X1
n�0

Xn
m�0

�
qamn

qx 0
cosh

��
n� 1

2

�
Z 0
�
�
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� qgmn

qx 0
sinh

��
n� 1

2

�
Z 0
��

qPm
n �cos x 0�
qx 0

�
. (37)

As follows from expressions (35) ë (37), to énd the
nonradiative component of the spontaneous decay rate of
the excited state of the atom near the two-nanosphere
cluster, it is necessary to calculate the corresponding
derivatives from the coefécients anm, bnm, and gnm, dnm
by solving the system of equations obtained by differ-
entiating (20) and (21) with respect to the corresponding
coordinate. In this case, both indices m and n take all the
values from 0 to N, which results in a considerable increase
in the number of systems to be solved compared to the
number of systems of equations for the radiative component
of the spontaneous decay rate, where equations only with
two indices m � 0 and 1 are used. Nevertheless, because the
required coefécients vanish for n < m, the number of
equations in the systems to be solved with the speciéed
accuracy and the speciéed position of an atom decreases
with increasing m, which provides a comparatively short
time of computer calculations. Note also that, when an
atom is located on the polar axis (x 0 � 0 or p), the
derivatives from coefécients can be calculated by solving
only two systems of equations with indices m � 0 and 1
because Legendre function and their derivatives used in
expressions (35) ë (37) vanish at the axis for all m > 1.

However, to achieve the required accuracy of calcu-
lations when an atom approaches the surface of one of the
nanospheres, it is necessary to solve systems with the
increasing number N of equations. Therefore, when the
atom is located close to the surface, there is no point in using
expressions (35) ë (37) for determining the nonradiative
component of the decay rate (and the frequency shift).
On the other hand, for small distances of the atom from the
nanosphere surface, it can be well approximated by a plane.
This approximation allows us to énd the principal terms in
expressions describing contributions to the nonradiative
component of the spontaneous decay rate of the excited
state of the atom. Let the atom be located in a medium with
the dielectric constant equal to unity near a plane interface
with a medium with the dielectric constant e. In this case, the
solution for the nonradiative component of the decay rate is
well known and has the form�

g
g0

�nrad
tang

� 3

16�k0D�3
Im

eÿ 1

e� 1
,

(38)�
g
g0

�nrad
norm

� 2

�
g
g0

�nrad
tang

for the tangential and radial (normal) orientations of the
dipole moment of the atom, respectively, where D is the
distance from the interface to the atom. Expression (38) is
valid for an atom located outside the cluster. If an atom is
located between spheres, the principal term of the
contribution to the nonradiative component of the decay
rate is calculated similarly by replacing spherical surfaces by
planes. In the given case, an atom will be located in the
medium with the dielectric constant e � 1 between two
semi-inénite media with dielectric constants e1 and e2. The
nonradiative component of the decay rate for such an atom
is described by the following expressions:

The dipole moment of the atom is oriented tangentially
with respect to the sphere surface:

�
g
g0

�nrad
tang

� 3

128k 3
0

Im

�
b2
X1
n�0
�b1b2�n

�
�

8

�2�n� 1=2�z0 ÿ z 0 �3 ÿ
b1

�n� 1�3z 30

��
� 3

128k 3
0

(39)

� Im

�
b1
X1
n�0
�b1b2�n

�
8

�2�n� 1=2�z0 � z 0 �3 ÿ
b2

�n� 1�3z 30

��
.

The dipole moment of the atom is oriented normally to the
sphere surface:�

g
g0

�nrad
norm

� 3

64k 3
0

Im

�
b2
X1
n�0
�b1b2�n

�
�

8

�2�n� 1=2�z0 ÿ z 0 �3 �
b1

�n� 1�3z 30

��
� 3

64k 3
0

(40)

� Im

�
b1
X1
n�0
�b1b2�n

�
8

�2�n� 1=2�z0 � z 0 �3 �
b2

�n� 1�3z 30

��
.

In expressions (39) and (40)

b1 �
e1 ÿ 1

e1 � 1
; b2 �

e2 ÿ 1

e2 � 1
;

z 0 is the coordinate of the atom measured from the gap
middle; and 2z0 is the distance between the boundaries of
media.

5.3 Spontaneous decay rate in the case
of ideally conducting nanospheres

Although the quasi-static problem in this case has the
explicit solution, the general expressions for the decay rate
are too cumbersome. Therefore, we consider below a
particular case of two identical ideally conducting nano-
spheres (ÿZ1 � Z2 � Z0).

5.3.1 General expressions for the spontaneous decay rate of the
excited state of an atom near a cluster of two identical ideally
conducting nanospheres
In the case of ideally conducting nanospheres, we can use
expressions (22) and (23) and obtain from (34) explicit
expressions for the induced dipole moment

ddx � 2
���
2
p

f �d0H 0�
X1
n�1

n�n� 1�c1n

� cosh��n� 1=2�Z 0 �
exp��2n� 1�Z0� � 1

,

ddy � 2
���
2
p

f �d0H 0�
X1
n�1

n�n� 1�d1n

� cosh��n� 1=2�Z 0 �
exp��2n� 1�Z0� � 1

, (41)

ddz � ÿ4
���
2
p

f �d0H 0�
X1
n�0
�n� 1=2�c0n

� sinh��n� 1=2�Z 0 �
exp��2n� 1�Z0� ÿ 1

� 2
���
2
p

f �d0H 0��A1 ÿ A2��
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�
X1
n�0

n� 1=2

exp��2n� 1�Z0� ÿ 1
,

where

A1 ÿ A2 �
4

2C12 � C11

X1
n�0

c0n
sinh��n� 1=2�Z 0 �
exp��2n� 1�Z0� ÿ 1

; (42)

C11 �
X1
n�0

2

exp��2n� 1�Z0� � 1
;

(43)

C12 �
X1
n�0

2

exp�2�2n� 1�Z0� ÿ 1
.

Then, by using expression (8), we énd the explicit
expression for the spontaneous decay rate (nonradiative
decay in the case of ideally conducting nanobodies is
absent).

5.3.2 Asymptotic expressions for the spontaneous decay rate
at small distances between spheres
Despite the explicit form of expressions for the induced
dipole moment (41), their study is a separate problem.
Nevertheless, in the most interesting case of closely spaced
nanospheres, it is possible to énd simple asymptotic
expressions for the induced dipole moment and decay rate.

Atom is located at the cluster centre

Of special interest is a symmetric problem, i.e. the case
when an atom is located midway between two identical
spheres (Z 0 � 0 and x 0 � p). Without loss of generality, we
can assume that j 0 � 0 and consider two cases of the
orientation of the dipole momentum of the atom.

The dipole moment is oriented along the x axis (d0 �
d0 ex). The induced dipole moment can be found from
expressions (41). By using the Watson transformation of a
slowly converging series (Z0 ! 0) to a rapidly converging
series, we obtain the expression (ddy � ddz � 0) [27]:

ddx
d0
� ÿ1� p

Z0

X1
k�0

�
1� p 2

Z 2
0

�2k� 1�2
�

�
�
cosh

�
p 2

2Z 2
0

�2k� 1�
��ÿ1

. (44)

By retaining several érst terms in (44), we obtain good
asymptotics in the region of small Z0

ddx
d0
� ÿ1� 2p 3

Z 3
0

exp

�
ÿ p 2

2Z0

�
� . . . . (45)

Thus, when the distance between nanospheres is small
enough, the spontaneous decay rate of an atom located
between them, which has the dipole moment directed per-
pendicular to the axis connecting the centres of spheres, is
close to zero because the dipole moment induced on spheres
compensates completely for the dipole moment of the atom.

The dipole moment is oriented along the z axis (d0 �
d0ez). In this case, by using the Watson transformation, we
obtain from (41) the expression (ddx � ddy � 0) [27]

ddz
d0
� ÿ1� 8p 3

Z 3
0

X1
k�1

k 2

cosh�p 2k=Z0�
�

� 2
���
2
p

f

d0
�d0H 0��A1 ÿ A2�

X1
n�0

n� 1=2

exp��2n� 1�Z0� ÿ 1
, (46)

where

�d0H 0��A1 ÿ A2� �
8
���
2
p

d0
�C11 � 2C12� f

�
X1
n�0
�ÿ1�n n� 1=2

exp��2n� 1�Z0� ÿ 1
.

Series remaining in (46) can be summed in the case of small
Z0 by using the Mellin transformation; the application of
this transformation for calculating the asymptotics of series
is described in detail in [42]. As a result, we obtain the
asymptotics (Z0 ! 0):

ddz
d0
� ÿ1� 16p 3

Z 3
0

�
exp

�
ÿ p 2

Z0

�
� 4 exp

�
ÿ 2p 2

Z0

�
� . . .

�

� 2z�2�
�gE � ln�2=Z0��Z 2

0

ÿ 1

6�gE � ln�2=Z0��

�
�
1� z�2� � z�2�

6�gE � ln�2=Z0��
�
� 1

gE � ln�2=Z0�

�
�

1

72
�z�2� ÿ 1� � 1

gE � ln�2=Z0�
(47)

�
�

1

432
� 43

21600
z�2� � z�2�

2592�gE � ln�2=Z0��
��

Z 2
0 � . . . .

Here, z is the Riemann zeta function; gE � 0:577216 is the
Euler constant. Thus, the spontaneous decay rate of an
atom, located exactly between spheres and having the
dipole moment directed along the line connecting the
centres of spheres, inénitely increases as nanospheres come
closer together.

Atom is located on the surface of one of the nanospheres

The case of the tangential orientation of the dipole moment
with respect to the surface is trivial: the decay rates of the
excited state of the atom vanish due to the boundary
conditions. This is explained by the fact that the dipole
moment induced on spheres is equal to the dipole moment
of the atom.

The case of the normal orientation of the dipole with
respect to the sphere surface (d0 � d0ez) is more complex,
and we consider only situations when the atom is located at
the surface points remotest from (x 0 ! 0) or closest to
(x 0 � p) the system centre. Without loss of generality, we
assume that j 0 � 0.

The induced dipole moment of an atom located at the
sphere-surface point remotest from the centre (x 0 ! 0) has
the form

ddz
d0
� 2� cosh Z0 � 16 sinh 3

�
Z0
2

�X1
n�0

�
n� 1

2

�2

� exp�ÿ�n� 1=2�Z0�
exp��2n� 1�Z0� ÿ 1

� 2
���
2
p

f

d0
�d0H 0��A1 ÿ A2�

�
X1
n�0

n� 1=2

exp��2n� 1�Z0� ÿ 1
, (48)
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where

�d0H 0��A1 ÿ A2� � ÿ
���
2
p

d0
�C11 � 2C12� f

�
�
sinh Z0 � 8 sinh 3

�
Z0
2

�

�
X1
n�0

�
n� 1

2

�
exp�ÿ�n� 1=2�Z0�
exp��2n� 1�Z0� ÿ 1

�
.

The induced dipole moment of an atom located at the
sphere-surface point closest to the centre (x 0 � p) obtained
by using the Watson transformation has the form [27]

ddz
d0
� ÿ1� 8p 3

Z 3
0

cosh 3

�
Z0
2

�X1
k�1
�ÿ1�k k 2

cosh�p 2k=Z0�

� 2
���
2
p

f

d0
�d0H 0��A1 ÿ A2�

X1
n�0

n� 1=2

exp��2n� 1�Z0� ÿ 1
, (49)

where

�d0H 0��A1 ÿ A2� �
8
���
2
p

d0
�C11 � 2C12� f

cosh 3

�
Z0
2

�

�
X1
n�0
�ÿ1�n

�
n� 1

2

�
exp��n� 1=2�Z0�

exp��2n� 1�Z0� ÿ 1
.

Due to the symmetry, the rest of the components of the
dipole moment are zero in both cases: ddx � ddy � 0.

By summing series (48) and (49) with the help of the
Mellin transformation, we obtain rather simple expressions
for the induced dipole moment in an important particular
case of two closely spaced nanospheres:

ddz
d0
� ÿ1� 7

2
z�3� ÿ 3z 2�2�

4�gE � ln�2=Z0��

� 1

16

�
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gE � ln�2=Z0�

�
�
1ÿ 3

2
z�2� � z�2�

6�gE � ln�2=Z0��
��

Z 2
0 � . . . �x 0 ! 0�, (50)
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Z 2
0 � . . . �x 0 � p�. (51)

Thus, if the atom has the dipole moment directed along
the line connecting two ideally conducting spheres and is
located on this line on the surface of one of the spheres, the
spontaneous decay rate of the atom can either inénitely
increase as spheres come closer to each other (if the atom is
located on the inner surface of one of the nanospheres) or
take énite values (if the atom is located on the outer surface
of a nanosphere). In the latter case, the spontaneous decay
rate increases by a factor of (7z(3)=2)2 � 17:7 compared to
the case of an atom located in a free space, which is almost
twice as large as the ninefold increase in the spontaneous
decay rate of the excited state of an atom located on the
surface of a single sphere [15, 16].

5.4 Optical properties of an atom
for large distances between spheres

In this case, expressions for the spontaneous decay rate can
be obtained without the use of bispherical coordinates. The
method is based on the replacement of spheres by point
dipoles with polarisabilities equal to those of the corre-
sponding spheres in a homogeneous éeld. This replacement
is correct because in the case of large distances between
spheres, the electric éeld near spheres is almost homoge-
neous. This approximation allows one to énd self-
consistently the dipole moments induced on spheres and
reêected éelds related to them. Then, by using relations (7),
(8), and (10), we can obtain the expressions for the radiative
and nonradiative components of the spontaneous decay
rates.

We will derive the self-consistent system of equations by
assuming that an atom is located at the point r 0 (r 0 � r0)
and has the dipole moment d0. Let us denote the dipole
moments of nanospheres by d1 and d2, respectively. For
convenience, we will use the z axis as the polar axis. Let us
assume that the centres of the érst and second spheres are
located at points with coordinates z1 and z2. In this case, the
self-consistent system of equations for dipole moments will
have the form

d1 � a1�E2�r1� � E0�r1��,

d2 � a2�E1�r2� � E0�r2��, (52)

Ej�r� � ÿ
dj

jrÿ rjj3
� 3
�dj�rÿ rj���rÿ rj�

jrÿ rjj5
� j � 0; 1; 2�,

where

a1 �
�
e1 ÿ 1

e1 � 2

�
R 3

1 , a2 �
�
e2 ÿ 1

e2 � 2

�
R 3

2

are the polarisabilities of spheres.
The system can be solved in the general form, but this

solution is rather cumbersome. In some characteristic cases,
the expressions for induced dipole moments take a com-
paratively simple form. By assuming that y 0 � 0, we obtain
the following expressions for different orientations of the
dipole moment.

The dipole moment is oriented along the x axis (d0 �
d0ex):

d1x � d0
��a1a2�ÿ1 ÿ Rÿ612

�ÿ1�
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(53)

d2x � d0
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�ÿ1� z 0 ÿ z2
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R 3

12r
5
1

�
x 0.

The dipole moment is oriented along the y axis (d0 �
d0ey):

d1y � d0
��a1a2�ÿ1 ÿ Rÿ612
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12r
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�
.

The dipole moment is oriented along the z axis (d0 �
d0ez):
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(57)

d2z � d0
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��
.

In (53) ë (57), r1;2 � �x 0 2 � (z 0 ÿ z1;2)
2 �1=2 and all other

components of the induced dipole moment are zero.
A remarkable feature of expressions (53) ë (57) is that

they are valid for any location of the atom with respect to
spheres, in particular, on their surfaces. This is explained by
the fact that the dipole moment of a nanosphere in the
quasi-static regime is always equal to the product of the
polarisability by the dipole (atom) éeld at the sphere centre.
The total dipole moment of the system dtot � d0 � d1 � d2
can be found from expressions (53) ë (57), and the sponta-
neous decay rate ë from (8).

The knowledge of the induced dipole moments of
nanospheres allows us to énd the excited or reêected
éeld and then the nonradiative decay rate ë from (7). In
the case of y 0 � 0, we have the following expressions.

The dipole moment of an atom is oriented along the x axis
(d0 � d0ex):

�
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�nrad
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. (58)

The dipole moment of an atom is oriented along the y axis
(d0 � d0ey):�

g
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�nrad
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The dipole moment of an atom is oriented along the z axis
(d0 � d0ez):�
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�nrad
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. (60)

Because expressions (58) ë (60) were obtained in the
dipole interaction approximation, they will coincide only
with the principal terms of asymptotic expressions, which
can be obtained from (17) by solving directly recurrent
equations (20) and (21) within two small spheres (R1,
R2 5R12). A more accurate asymptotic expression should
take into account higher-order multipole terms (quadrupole,
octupole, etc.) present in the emission éeld of a two-
nanosphere cluster, as follows from general expressions
(35) ë (37). In this case, the asymptotic expressions for
the nonradiative component of the decay rate will be invalid
when an atom is located close to one of the nanospheres.
These parameters for an atom located close to a nanobody
can inénitely increase [see expressions (35) ë (37)], whereas
they values obtained from the models of three dipoles
always remain énite. The total dipole of the atom and
nanosphere is calculated in the dipole interaction approx-
imation irrespective of the atom position and the sphere
material. Thus, asymptotic expressions (35) ë (37) and,
hence, expressions for the radiative component of the
spontaneous decay rate are also valid for an atom located
on the surface of one of the nanospheres.

Note also that in the case of a cluster of ideally
conducting nanospheres, the asymptotic expressions for
the spontaneous decay rate can be obtained from (53) ë
(57) by using (8) and assuming that e1 � e2 ! ÿ1 (a1 � R 3

1 ,
a2 � R 3

2 ).

5.5 Graphic illustrations and discussion of results

Figure 4 presents the wavelength dependence of the radi-
ative component of the spontaneous decay rate of the
excited state of an atom located at the centre of a cluster of
two identical silver spheres. The dielectric constants of
silver at different wavelengths [44] were interpolated in a
standard way to provide smooth dependences. One can see
that the radiative decay rate increases considerably mainly
for the atom with the dipole moment directed along the z
axis (Fig. 4b). When the dipole moment is directed
perpendicular to the z axis, the decay rate also increases
(Fig. 4a); however, unlike the atom with the longitudinal
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orientation of the dipole moment, this dependence has a
different type. If spheres are located close enough to each
other, the transversely oriented dipole located between
spheres almost does not exhibit the radiative decay. As
spheres are removed from each other, the radiative
component of the decay rate érst increases and then slowly
varies down to unity, i.e. to the value corresponding to the
relative decay rate in a free space. In addition, there exist
certain wavelengths at which the radiative decay rate
increases considerably. This increase is caused by excitation
of plasmon oscillations in the cluster, whose properties are
determined by the distance between nanospheres [21]. By
specifying the distance between nanoparticles, we can
separate the wavelength at which the radiative component
of the decay rate will increase considerably. This property
can be used, for example, for the development of a new type
of nanosensors based on nanoparticle pairs, which can
detect individual atoms.

Figure 5 presents the dependences of the radiative
component of the spontaneous decay rate of an atom
located near a cluster of two silver nanospheres (e �
ÿ7:06� i0:213 for silver at l � 450:8 nm [44]) on the
distance between the atom and cluster. One can see that,
as the atom moves away from the cluster, the radiative
component of the spontaneous decay rate tends to the value
corresponding to the decay rate in a free space. Note that
the dependences are nonmonotonic and exhibit dips in some
regions of x 0. The dips are observed for an atom with the

transverse orientation of the dipole moment and correspond
to a decrease in the radiative component of the spontaneous
decay rate. For an atom with the longitudinal orientation of
the dipole moment moving away from the nanosphere
surface along the z axis (Fig. 5b), the dependence of the
radiative component of the spontaneous decay rate is
monotonic, as in the case of ideally conducting spheres.

Figure 6 shows the dependences of the nonradiative
component of the decay rate on the emission wavelength.
One can see that for an atom located at the centre of the
cluster of silver nanospheres and having the transverse
orientation of the dipole moment, the nonradiative decay
will dominate, as follows from comparison with Fig. 4a. By
comparing the wavelength dependences of the radiative and
nonradiative components of the spontaneous decay rate of
the excited state of the atom with the longitudinal ori-
entation of the dipole moment (Figs 4b and 6b), we see that
the nonradiative decay dominated at a small distance
between spheres mainly in the short-wavelength (UV)
spectral region. For the two resonances at wavelengths
� 396 and � 493 nm for the distance between the centres
of spheres equal to 101 nm, the radiative decay dominates.
These two wavelengths correspond to the modes for which
the charge is predominantly accumulated on the inner
surface of nanospheres in the cluster [21].

Figure 7 shows the behaviour of the nonradiative
component of the spontaneous decay rate of the excited
state of an atom moving away from a cluster of two silver
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Figure 4. Wavelength dependences of the radiative component of the
spontaneous decay rate for an atom located near a cluster of two silver
nanospheres [44]. The atom is located at the cluster centre and has the
dipole moment directed perpendicular (a) and parallel (b) to the polar
axis. The radii of spheres are 50 nm and distances between their centres
are R12 � 101 ( 1 ), 102 ( 2 ), and 103 nm ( 3 ).
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Figure 5. Dependences of the radiative component of the spontaneous
decay rate on the distance from an atom to a cluster of two silver
nanospheres (solid curves). The radii of spheres are 50 nm and the
distance between their centres is R12 � 101 nm. The atom moves away
along the x axis (a) and the z axis (b). The dipole moments of the atom
are directed along axes x, y, and z. The dashed curves correspond to a
cluster of two ideally conducting nanospheres.
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nanospheres with e � ÿ7:06� i0:213 (l � 450:8 nm [44]).
One can see that the nonradiative component decreases
monotonically. As the atom moves away along the z axis
(polar axis) from the surface of one of the spheres (Fig. 7b),
the nonradiative losses can be neglected already at a
distance of � 0:1R0 from the sphere surface because the
radiative component of the spontaneous decay rate for the
atom with the longitudinally oriented dipole moment in this
case (cf. Fig. 5b) is almost an order of magnitude greater
than the nonradiative component. For the atom with the
transversely oriented dipole moment (Figs 5b and 7b), the
nonradiative component of the decay rate should be taken
into account because the radiative component of the decay
rate considerably decreases in some region of the curve in
Fig. 5b. The nonradiative component of the decay rate can
be neglected already at distances � 0:4R0 from the sphere
surface. In the case of an atom with the longitudinally
oriented dipole moment moving away from the cluster
centre along the x axis (Fig. 7a), both the radiative and
nonradiative components of the decay rate increase in the
space between spheres, and the distance beginning from
which the nonradiative component can be neglected is
� 1:6R0. For an atom with the transversely oriented dipole
moment, this distance is approximately the same.

Although silver has a comparatively weak absorption,
the structure of plasmon resonances in a cluster of two silver
nanospheres is only roughly consistent with the spectra
shown in Fig. 3. To demonstrate the spectra more clearly, a
metal with a weaker absorption should be used. Figure 8

presents the wavelength dependences of the radiative
component of the spontaneous decay rate for an atom
located at the centre of a cluster of two identical nano-
spheres made of a hypothetical material with e � e 0 � ie 00=30
(where e 0 and e 00 are the real and imaginary parts of the
dielectric constant of silver) and located in a medium with
the dielectric constant equal to unity [44]. The éne structure
of resonances (Fig. 4) for a cluster of silver nanospheres is
demonstrated in Fig. 8. If the dipole moment of the atom is
oriented perpendicular to the polar axis, the spectrum of the
radiative component of the decay rate exhibits the T and M
modes (Fig. 8a), while the L modes are not excited. It is
obvious that excitation of the T and M modes is explained
by the symmetry of the charge induced on the surface of
spheres with respect to the plane z � 0 [21]. If the dipole
moment of the atom is directed along the polar axis
(Fig. 8b), the situation changes to the opposite, and only
the L modes are excited, which is in turn also explained by
the symmetry of the excitation source ë the charge dis-
tribution on spheres should be antisymmetric with respect to
the plane z � 0. Note also that, as the wavelength decreases
(in passing through the point corresponding to e 0 � ÿ1), the
T modes for an atom with the transversely oriented dipole
moment are changed by the M modes (Fig. 8a). In the case
of excitation of an atom with the dipole moment directed
along the z axis (Fig. 8b), no resonances are observed upon
similar passing through the point corresponding to e 0 � ÿ1
and only a characteristic dip in the dependence is observed
for e 0 � 0. Note also that, if the distance between nano-
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spheres is large enough [R12=(2R0)5 1:2], the radiative
decay of the excited state of an atom with the transversely
oriented dipole moment located at the centre of a cluster will
occur only in the T modes, as follows from the correspond-
ing dependences for the resonance dielectric constant of the
M modes (Fig. 3).

Figure 9 presents the dependences of the nonradiative
component of the decay rate for an atom located at the
centre of a cluster of two spherical nanoparticles made of a
hypothetical material of the silver type. One can see that the
nonradiative decay occurs only in the M modes (Fig. 9a)
and L modes (Fig. 9b). For an atom with the transversely
oriented dipole moment, a slowly decaying envelope appears
with increasing the wavelength (Fig. 9a) and no decay in the
T modes is observed in passing through the point corre-
sponding to e 0 � ÿ1. A speciéc feature of the T modes is
that at small distances between nanospheres, the charge
corresponding to the given mode is mainly concentrated on
the external surface of nanospheres [21], whereas the charge
is absent in fact on the internal surface (which is closest to
the atom position). For this reason, the nonradiative decay
in the T modes is absent (Fig. 9a).

Note that, as in the case of the radiative decay, the
distribution of the surface charge with respect to the plane
z � 0 is related to the symmetry of the source position,
which results in excitation of only the M and T modes or

only the L modes depending on the orientation of the dipole
moment of the atom. Note also that, if the atom is displaced
from the axis, one can expect that modes of all possible
types will be excited both upon the radiative and non-
radiative spontaneous decay of the excited state of the atom
due to the change in the symmetry of the source position.

Figure 10 presents the decay rates for an atom located at
the characteristic points of the system as functions of the
distance between ideally conducting spheres and their
asymptotics. One can see that the decay rate of an atom
with the dipole moment directed along the z axis and located
inside the cluster considerably increases with decreasing R12

(Figs 10a, b). It also follows from Fig. 10 that asymptotic
expressions (47), (50) and (51) together with (53) ë (60)
describe the entire range of variation in the spontaneous
decay rate for an atom located near two spheres.

Figure 11a presents the radiative component of the
spontaneous decay rate for an atom located near a two-
nanosphere cluster as a function of e for a large distance
between nanospheres. One can see that asymptotic expres-
sions (53) ë (57) for the induced dipole moment obtained in
the three-dipole model (52) well describe the radiative
component of the decay rate already at distances R12 '
4R0 (for identical spheres) at which nanospheres can be
treated as point dipoles.

In the case of the nonradiative component of the
spontaneous decay rate (Fig. 11b), asymptotic expressions
(58) ë (60), obtained with the help of the three-dipole model
and, hence, taking into account only the dipole contribu-
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atom is oriented perpendicular (a) and parallel (b) to the polar axis. The
radii of spheres are 50 nm and the distance between their centres is
R12 � 101 nm. The resonances corresponding to excitation of the cor-
responding L, M, and T modes are indicated.
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and the distance between their centres is R12 � 101 nm.
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tion, differ from the solution obtained from recurrent
equations. One can see that dipole contributions almost
completely correspond to the dipole terms of the exact
solution already at distances R12 5 8R0. The resonances in
the dependences corresponding to e 0 � ÿ3=2, ÿ4=3, . . . , are
determined by the contributions from quadrupole, octupole,
and other multipole terms. They cannot be taken into
account within the framework of the three-dipole model.

So far we have considered the spontaneous decay rate by
assuming that the nanoparticle radius is small compared to
the emission wavelength. It is obvious that a consideration
of a énite size of nanoparticles will change the form of
dependences under study. Let us demonstrate this by a
particular example. Figure 12 presents the radiative compo-

nent of the spontaneous decay rate calculated based on the
model used in our paper (solid curves) and by solving
numerically the total system of Maxwell's equations (dashed
curves) [26]. As an example, a cluster of two nanospheres of
radii 50 nm was considered, i.e. the total size of the cluster
was � 200 nm, which is not very small compared to the
emission wavelength. It is easy to see that the consideration
of a énite size of nanoparticles results in a change in the
resonance amplitude and shift of the resonance wavelength.
The érst change is explained by the consideration of
contributions from small imaginary corrections in the
wave number to the resonance dielectric constant of the
cluster. The shift of the resonance is determined by the
contribution of real corrections.
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Figure 10. Dependences of the spontaneous decay rate of the excited state of an atom on the distance between two ideally conducting nanospheres
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internal (b) or external (c) surface of one of the spheres. The atom with the dipole moment directed along the x axis is located at the cluster centre (d).
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We demonstrated the complicated structure of plasmon
resonances by using a hypothetical material of the silver
type because we could not énd a proper metal with small
losses in the visible spectral region. However, in the IR
region SiC has proper parameters due to the existence of
phonon ë polariton resonances [3]. Figure 13 presents the
radiative component of the spontaneous decay rate for an
atom located between two SiC nanospheres (the dielectric

constant is taken from [45]). One can see that resonances
excited in SiC and a hypothetical material (see Fig. 8)
coincide qualitatively.

6. Emission frequency shift for an atom located
near a two-nanosphere cluster

6.1 Frequency shift in the general case of weakly
absorbing nanospheres

In this case, the imaginary part of the Green function can
be neglected compared to its real part, and according to
(10), it is necessary to calculate the average dipole moment
of transition between the levels under study. In the case of
one-electron (hydrogen-like atoms), the expressions for
averages can be obtained in the general form. Consider, for
example, the transition from the P state with the wave
function jPi to the S state with the wave function jSi.

The S state is spherically symmetric, and we can easily
obtain the expression

hSjd0ad0bjSi � e 2r 20 dab, (61)

where dab is the Kronecker delta; r0 � �h 2=(mee
2Z) is the

characteristic atomic state; e and me are the electron charge
and mass, respectively; and Z is the nucleus number in the
periodic table.

The P state is triply degenerate in the projection M of the
orbital quantum number, for example, on the z axis.
Consider the linear combinations of the wave functions
of these states in order to describe the state of an atom with
a certain orientation of the dipole moment of transitions
along different axes:

jP; xi � jP;M � 1i � jP;M � ÿ1i���
2
p ,

jP; yi � jP;M � 1i ÿ jP;M � ÿ1i
i
���
2
p , (62)

jP; zi � jP;M � 0i.

For these states,

hP; xjd0ad0bjP; xi � 6e 2r 20

3 0 0
0 1 0
0 0 1

24 35, (63)

hP; yjd0ad0bjP; yi � 6e 2r 20

1 0 0
0 3 0
0 0 1

24 35, (64)

hP; zjd0ad0bjP; zi � 6e 2r 20

1 0 0
0 1 0
0 0 3

24 35. (65)

Thus, only diagonal terms of the Green function G
�0�
ab (r

0, r 0)
(a � b) will contribute to the P! S transition. Therefore,
according to (10), the emission frequency shift for different
orientations of the dipole moment will be described by the
expressions

Dox � ÿ
1

2�h
e 2r 20 Re

�
17G �0�xx � 5G �0�yy � 5G �0�zz

�
,

2

1

�g=g0�rad

500 600 700 800 900 l
�
nm

103

104

3� 103

3� 104

105

3� 105

Figure 12. Wavelength dependences of the radiative component of the
spontaneous decay rate for an atom located at the centre of a cluster of
two gold nanospheres [44] and having the dipole moment directed along
the polar axis. The dashed curves are taken from [26]. The radii of
spheres are 50 nm and the distance between their centres is R12 � 101 ( 1 )
and 102 nm ( 2 ).
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Figure 13. Wavelength dependences of the radiative component of the
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are 50 nm and the distance between their centres is R12 � 101 nm. The
resonances corresponding to excitation of the corresponding L, M, and T
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Doy � ÿ
1

2�h
e 2r 20 Re

�
5G �0�xx � 17G �0�yy � 5G �0�zz

�
, (66)

Doz � ÿ
1

2�h
e 2r 20Re

�
5G �0�xx � 5G �0�yy � 17G �0�zz

�
.

In the case of a classical (Lorentzian) atom, the emission
frequency shift with respect to the central axis o0 is
described by the expression [38]

oÿ o0

g0
� ÿ 3

4k 3
0 d

2
0

Re�d0ad0bG �0�ab �r 0; r 0� � . . .
�
. (67)

For particular cases of the orientation of the transition
dipole moment, we have the expressions

Dox � ÿ
3g0
4k 3

0

ReG �0�xx ,

Doy � ÿ
3g0
4k 3

0

ReG �0�yy , (68)

Doz � ÿ
3g0
4k 3

0

ReG �0�zz .

By comparing (66) and (68), we can easily see that, knowing
classical frequency shifts (68), it is easy to énd their
quantum-mechanical analogues (66). Therefore, without
loss of generality, we will consider below classical expres-
sion (67) for the frequency shift.

By comparing expression (7) for the nonradiative com-
ponent of the decay rate with expression (67) for the
frequency shift, we see that to énd the principal term in
(67), which is determined by the quasi-static contribution of
the éeld in expressions (35) ë (37), it is necessary to replace
factors Imf. . .g by factors Ref. . .g and multiply the
obtained expressions by ÿ1=2. Therefore, we will not
present these expressions here.

6.2 Frequency shift of spontaneous emission
in the case of ideally conducting nanospheres

In the case of ideally conducting nanospheres, we can
obtain from (67) the explicit expressions of the frequency
shift. For this purpose, it is necessary to determine the
reêected éeld at the atom location point. In the general case
of nanospheres of different radii, these expressions prove to
be extremely cumbersome; therefore, it is reasonable to
consider a particular case of two identical nanospheres. In
this particular case, we obtain the following expressions
(j 0 � 0) [28].

The dipole moment of an atom is oriented along the x axis
(d0 � d0ex):

(a) the atom is located on the x axis (Z 0 � 0):

oÿ o0

g0
� ÿ 3

4k 3
0

ReG �0�xx �x 0; x 0� � ÿ
3�1ÿ cos x 0�

4�k0 f �3

�
�
1

2
sin 2 x 0

X1
n�0

Xn
m�0
�2ÿ d�m; 0�� �nÿm�!

�n�m�!
�Pm

n �cos x 0��2
exp��2n� 1�Z0� � 1

��1ÿ cos x 0� sin x 0
X1
n�0

Xn
m�0
�2ÿ d�m; 0�� �nÿm�!

�n�m�! �

� 1

exp��2n� 1�Z0� � 1

q�Pm
n �cos x 0��2
qx 0

� 2�1ÿ cos x 0�2

�
X1
n�0

Xn
m�0
�2ÿ d�m; 0�� �nÿm�!

�n�m�!
1

exp��2n� 1�Z0� � 1

�
�
qPm

n �cos x 0�
qx 0

�2�
� 3�1ÿ cos x 0�

C11�k0 f �3

�
�
1

2
sin x 0

X1
n�0

Pn�cos x 0�
exp��2n� 1�Z0� � 1

� �1ÿ cos x 0�

�
X1
n�0

1

exp��2n� 1�Z0� � 1

qPn�cos x 0�
qx 0

�2

; (69)

(b) the atom is located on the z axis:

oÿ o0

g0
� ÿ 3

4k 3
0

ReG �0�xx �z 0; z 0� � ÿ
3�cosh Z 0 � 1�3

4�k0 f �3 (70)

�
X1
n�1

n�n� 1�
�

cosh 2��n� 1=2�Z 0�
exp��2n� 1�Z0� � 1

� sinh 2��n� 1=2�Z 0�
exp��2n� 1�Z0� ÿ 1

�
,

where the upper sign corresponds to the atom located
between spheres (x 0 � p) and the lower sign ë to the atom
located behind one of the spheres (x 0 ! 0).

The dipole moment of an atom is oriented along the y axis
(d0 � d0ey) :

the atom is located on the x axis (Z 0 � 0):

oÿ o0

g0
� ÿ 3

4k 3
0

ReG �0�yy �x 0; x 0� � ÿ
3�1ÿ cos x 0�3
�k0 f �3 sin 2 x 0

�
X1
n�1

Xn
m�1

m 2 �nÿm�!
�n�m�!

�Pm
n �cos x 0��2

exp��2n� 1�Z0� � 1
. (71)

The cases when the atom is located on the z axis between
spheres and behind one of the spheres are identical to cases
described by expression (70).

The dipole moment of an atom is oriented along the z axis
(d0 � d0ez):

(a) the atom is located on the x axis (Z 0 � 0):

oÿ o0

g0
� ÿ 3

4k 3
0

ReG �0�zz �x 0; x 0� � ÿ
3�1ÿ cos x 0�3

2�k0 f �3 (72)

�
X1
n�0

Xn
m�0
�2ÿ d�m; 0�� �nÿm�!

�n�m�!
�
n� 1

2

�2 �Pm
n �cos x 0��2

exp��2n� 1�Z0� ÿ 1

� 3�1ÿ cos x 0�3
�k0 f �3�2C12 � C11�

�X1
n�0

�
n� 1

2

�
Pn�cos x 0�

exp��2n� 1�Z0� ÿ 1

�2

;

(b) the atom is located on the z axis:

oÿ o0

g0
� ÿ 3

4k 3
0

ReG �0�zz �z 0; z 0� � ÿ
3�cosh Z 0 � 1�

2�k0 f �3

�ÿ ~A1
~B1 � ~A2

~B2

�ÿ 3�cosh Z 0 � 1�
4�k0 f �3

�
�
1

2
sinh 2 Z 0

X1
n�0

�
cosh 2��n� 1=2�Z 0�
exp��2n� 1�Z0� � 1

�
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� sinh 2��n� 1=2�Z 0�
exp��2n� 1�Z0� ÿ 1

�
� sinh Z 0�cosh Z 0 � 1�

X1
n�0

�
n� 1

2

�

� sinh��2n� 1�Z 0�
�

1

exp��2n� 1�Z0� � 1

� 1

exp��2n� 1�Z0� ÿ 1

�
� 2�cosh Z 0 � 1�2

X1
n�0

�
n� 1

2

�2

�
�

sinh 2��n� 1=2�Z 0�
exp��2n� 1�Z0� � 1

� cosh 2��n� 1=2�Z 0�
exp��2n� 1�Z0� ÿ 1

��
, (73)

where

~A1 � ÿ
C11

~B1 � C12

ÿ
~B1 � ~B2

�
�2C12 � C11�C11

;

(74)

~A2 � ÿ
C12

ÿ
~B1 � ~B2

�� C11
~B2

�2C12 � C11�C11

;

the expressions for C11 and C12 are presented in (43);

~B1 �
1

2
sinh Z 0

X1
n�0
�ÿ1�n

�
cosh��n� 1=2�Z 0 �
exp��2n� 1�Z0� � 1

ÿ sinh��n� 1=2�Z 0 �
exp��2n� 1�Z0� ÿ 1

�
� �cosh Z 0 � 1�

X1
n�0
�ÿ1�n

�
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�

�
�

sinh��n� 1=2�Z 0 �
exp��2n� 1�Z0� � 1

ÿ cosh��n� 1=2�Z 0 �
exp��2n� 1�Z0� ÿ 1

�
; (75)

~B2 �
1

2
sinh Z 0

X1
n�0
�ÿ1�n

�
cosh��n� 1=2�Z 0 �
exp��2n� 1�Z0� � 1

� sinh��n� 1=2�Z 0 �
exp��2n� 1�Z0� ÿ 1

�
� �cosh Z 0 � 1�

X1
n�0
�ÿ1�n

�
n� 1

2

�

�
�

sinh��n� 1=2�Z 0 �
exp��2n� 1�Z0� � 1

� cosh��n� 1=2�Z 0 �
exp��2n� 1�Z0� ÿ 1

�
. (76)

The upper sign in expressions (73), (75), and (76) cor-
responds to the atom located between spheres (x 0 � p) and
the lower sign ë to the atom located behind one of the
spheres (x 0 ! 0).

6.2.1 Asymptotic expressions at small distances
between spheres
In the case of small distances between spheres, it is possible
to obtain simple asymptotic expressions for the frequency
shift not using general expressions (69) ë (73). Nevertheless,
the summation of series appearing in calculations is not
always possible. Consider a particular case, when an atom
is located midway between spheres coming closer together.
By using, for example, expressions (71) and (72), we obtain
the following relations (j 0 � 0).

The dipole moment of an atom is oriented perpendicular to
the polar axis :

oÿ o0

g0
� ÿ 6

�k0 f �3
X1
n�0

n�n� 1�
exp��2n� 1�Z0� � 1

. (77)

The dipole moment of an atom is oriented parallel to the
polar axis :

oÿ o0

g0
� ÿ 12

�k0 f �3
X1
n�0

�n� 1=2�2
exp��2n� 1�Z0� ÿ 1 (78)

� 24

�2C12 � C11��k0 f �3
�X1

n�0
�ÿ1�n n� 1=2

exp��2n� 1�Z0� ÿ 1

�2

.

In the case of two spheres approaching each other (Z0 ! 0),
expressions (77) and (78) can be summed by using the
Mellin transformation. As a result, we obtain the following
expressions [28].

The dipole moment of an atom is oriented perpendicular to
the polar axis :

oÿ o0

g0
� ÿ 1

�k0R0�3
�
9z�3�
8Z 6

0

ÿ 3

16Z 4
0

�3z�3� � 4 ln 2�

� 1

320Z 2
0

�51z�3� � 120 ln 2� 17�

ÿ 1

160

�
457

84
z�3� � 17 ln 2� 1685

504

�
� . . .

�
. (79)

The dipole moment of an atom is oriented parallel to the
polar axis :

oÿ o0

g0
� ÿ 1

�k0R0�3

�
�
3z�3�
Z 6
0

ÿ 1

2Z 4
0

�
3z�3� � 3

gE � ln�2=Z0�
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�
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480Z 2
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�
�
204z�3� � 10

gE � ln�2=Z0�
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30� 1
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�
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604800

�
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�
103320 (80)

� 1

gE � ln�2=Z0�
�
5103� 175

gE � ln�2=Z0�
��
ÿ 46940

�
� . . .

�
.

One can see from expressions (79) and (80) that the
frequency shift of spontaneous emission of an atom located
between two nanospheres approaching each other increases
inénitely according to a power law. In this case, if the
distance between spheres is small enough, the frequency
shift for an atom with the dipole moment directed along the
polar axis occurs 8=3 � 2:7 times faster than for an atom
with the dipole moment directed perpendicular to this axis.
This can be explained by the fact that the normal
component of the reêected éeld near a nanosphere at the
dipole location point is greater than the tangential
component.

Note that the principal terms of asymptotic expressions
(78) and (79) correspond to the solution of the problem
about the emission frequency shift for an atom located
between two ideally conducting parallel planes. Indeed, by
multiplying expressions (39) and (40) by ÿ1=2 and replacing
in them the factors Imf. . .g by factors Ref. . .g, we obtain
the principal terms of expressions (79) and (80), respectively,
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in a particular case of and atom located midway (z 0 � 0)
between two ideally conducting planes (b1 � b2 � 1).

6.2.2 Asymptotic expressions at large distances
between spheres
Asymptotic expressions for the frequency shift at large
distances between spheres can be obtained from expressions
(58) ë (60) by replacing in them the factors Imf. . .g by
factors Ref. . .g and multiplying the obtained expressions by
ÿ1=2. Therefore, we will not present these expressions here.
6.3 Graphic illustrations and discussion

Figure 14 presents the wavelength dependences of the
spontaneous-emission frequency shift of an atom located
near a cluster of two identical silver nanospheres [44]. One
can see that the frequency shift can be both positive and
negative, and at some wavelengths for the distance between
the centres of nanospheres equal to 101 nm it can be zero.
The latter circumstance can be important in the design of
nanosensors based on clusters of spherical silver nano-
particles.

Figure 15 shows the emission frequency shift for an
atom as a function of the distance from the atom to a cluster
of two silver nanospheres. Also, the dependences for ideally
conducting spheres are presented (dashed curves). One can
see that frequency shifts for the atom moving away along
the x axis (Fig. 15a) in the cases of silver or ideally
conducting nanospheres almost coincide. This is explained

by the fact that the real part of the dielectric constant of
silver at a wavelength of 450.8 nm is rather large compared
to the imaginary part. This relation changes for other
wavelengths, resulting in the change in the frequency shift,
which can be negative, positive or close to zero. Note also
that, as for a cluster of ideally conducting spheres, in the
case of a cluster of metal spheres, the frequency shift for the
atom with the longitudinally oriented dipole moment occurs
faster than for the atom with the transversely oriented
dipole moment.

Figure 16 presents the wavelength dependences of the
spontaneous-emission frequency shift for the atom located
at the centre of a cluster of two spherical nanoparticles made
of a hypothetical material with the dielectric constant
e � e 0 � ie 00=30 (e 0 and e 00 are the real and imaginary parts
of the dielectric constant of silver [44]). One can see that, as
for the nonradiative component of the spontaneous decay
rate (Fig. 9), only resonances corresponding to the M
(Fig. 16a) and L modes (Fig. 16b) are excited and no decay
at the T modes is observed.

Figure 17 shows the dependences of the emission fre-
quency shift for an atom located at the centre of a cluster
with the dipole moment directed perpendicular (Fig. 17a)
and parallel (Fig. 17b) to the polar axis on the distance
between ideally conducting spheres. Also, the corresponding
asymptotics are presented for small [(79) and (80)] and large
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Figure 14. Wavelength dependences of the spontaneous-emission fre-
quency shift for an atom located near a cluster of two silver nanospheres
[44]. The atom is located at the cluster centre and has the dipole moment
directed perpendicular (a) and parallel (b) to the polar axis. The radii of
spheres are 50 nm and distances between their centres are R12 � 101 ( 1 )
and 102 nm ( 2 ).
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Figure 15. Dependences of the spontaneous-emission frequency shift of
an atom on the distance between the atom and a cluster of two silver
nanospheres (solid curves). The radii of spheres are 50 nm and the
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along the x (a) and z (b) axes. The dipole moment of the atom is directed
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[(58) ë (60)] distances between spheres. One can see that, as
for the spontaneous decay rate, the use of asymptotic
expressions allows one to describe the entire range of the
emission frequency shift of the atom.

7. Conclusions

We have studied in the quasi-static approximation the
spontaneous decay rates of the excited state of an atom
(molecule) located near a cluster of two arbitrarily arranged
nanospheres of an arbitrary composition. The theory
developed in the paper gives the decay rates for different
orientations of the dipole moment and different arrange-
ments of the atomic dipole with respect to the cluster. It is
shown that the decay rate considerably increases at the
resonance frequencies corresponding to the plasmon
frequencies of the cluster, which are determined by the
mutual arrangement of nanospheres. The maximum
increase in the spontaneous decay rate takes place for an
atom located at the cluster centre at small distances between
nanospheres. It has been found that, by varying the
distance between nanospheres in the cluster, it is possible
to control eféciently the spontaneous decay rate for the
atom located between spheres. This can be used for the
development of a new type of nanosensors based on
nanoparticles pairs, which can be applied for detecting

individual atoms (molecules) with a high signal-to-noise
ratio because nanosensors of this type will be low-sensitive
to homogeneous external éelds. We have investigated the
emission frequency shift for an atom located at an arbitrary
point and having in the general case the dipole moment
arbitrarily oriented with respect to the cluster. The
asymptotic expressions for the spontaneous decay rate
and frequency shift have been considered. It has been
shown that already for distances between the centres of
identical nanospheres exceeding eight nanosphere radii, the
principal contributions to the parameters under study can
be calculated by using the model in which spheres are
replaced by point dipoles with polarisabilities equal to the
polarisability of each of the spheres in a homogeneous éeld.

As a whole, the results obtained in the paper allow us to
estimate promptly the optical properties of a two-nano-
sphere cluster and their inêuence on the optical properties of
atoms and molecules.
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Figure 16. Wavelength dependences of the spontaneous-emission fre-
quency shift of an atom located at the centre of a cluster of two
nanospheres made of a hypothetical material of the silver type (see
Fig. 8 caption). The dipole moment of the atom is oriented perpendicu-
lar (a) and parallel (b) to the polar axis. The radii of spheres are 50 nm
and the distance between their centres is R12 � 101 nm. The resonance
wavelength corresponding to excitation of the L and M modes are
indicated.
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Figure 17. Dependences of the spontaneous-emission frequency shift for
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heres of the cluster (solid curves). The radii of spheres are 50 nm and
k0R0 � 0:1. The dipole moment of the atom located at the cluster centre
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