
Abstract. We analyse the possibilities of simultaneous
measuring three optical parameters of scattering media,
namely, the scattering and absorption coefécients and the
scattering anisotropy parameter by the intensity proéle of
backscattered radiation by using the neural network inversion
method and the method of adaptive-network-based fuzzy
inference system. The measurement errors of the absorption
and scattering coefécients and the scattering anisotropy
parameter are 20%, 5%, and 10%, respectively.

Keywords: optical parameters of scattering media, intensity proéles
of backscattered radiation, Monte-Carlo method, neural networks,
hybrid systems.

1. Introduction

The problem of measuring the scattering coefécient ms,
absorption coefécient ma, and scattering anisotropy parame-
ter g (the average cosine of the scattering angle) in strongly
scattering media is of current interest because these
parameters, along with the refractive index n, allow a
complete description of the optical (laser) radiation
intensity scattered and absorbed in a medium. Interest in
this problem is related to a great extent to the development
of optics of biological media and tissues [1 ë 5] and to wide
applications of low-intensity laser radiation in medicine
both for diagnostics and therapy. From the point of view of
medicine, of special interest is the development of non-
invasive (nondestructive) methods for in vivo diagnostics of
the state of biological systems. The methods for determin-
ing optical parameters from the spatial characteristics of
backscattered radiation can be used for such diagnostics.

We proposed, theoretically substantiated and experimen-
tally veriéed in [6 ë 8] the method for simultaneous
measurements of the scattering and absorption coefécients
and scattering anisotropy parameter from the intensity
proéle of backscattered radiation. Optical parameters are
determined in real time by comparing the experimental
intensity proéles of backscattered radiation with model

proéles obtained by the Monte-Carlo method in a broad
range of optical parameters. The experimental intensity
proéles were obtained by using optical ébres for delivering
and receiving radiation; a radiation source was a He ëNe
laser. The use of continuous-wave radiation sources in
diagnostic devices is convenient because such devices are
quite simple and do not require the employment of fast
radiation detectors and high-frequency devices for signal
processing. Optical parameters were determined from the
intensity proéle of backscattered radiation by two inde-
pendent methods of full enumeration and regularity (see
details in [8]). As a result, the optical properties of media
with albedo ms=(ma � ms)4 0:98 were determined with a high
accuracy (about 10%). However, for media with a higher
albedo, the acceptable accuracy was not achieved. Accord-
ing to the data presented in [1, 2], some biological tissues
(for example, blood, uterus, skin derma, grey and white
brain substance, etc.) are characterised by a high albedo
(above 0.98) in the visible and near-IR regions.

In this paper, we analyse the possibility of determining
optical parameters from the intensity proéle of backscat-
tered radiation by the method of neural network inversion
and the method of adaptive-network-based fuzzy inference
system (ANFIS). The main task was to improve the
measurement accuracy of optical parameter (in particular,
for albedo exceeding 0.98) and to select the most simple and
convenient mathematical algorithm. Note that, although
neural networks are widely used in optics of biological
media, for example, for determining the absorption coefé-
cient and transport scattering coefécient [9, 10] or
parameters (average radius, refractive indices) of individual
particles [11], the aim of our study was to demonstrate the
possibility of using the neural network inversion and ANFIS
methods for simultaneous measuring all the three optical
parameters: the scattering and absorption coefécients and
scattering anisotropy parameter. The knowledge of these
parameters is important for dosimetry (when information
on the light-éeld distribution near biological tissues is
needed) and for diagnostic applications of medical devices
in which the distance between the transport and receiving
ébres is equal to one-two photon mean free paths
lfr � 1=(ma � ms) [12], as well as devices with a limited
receiving aperture [8].

2. Creation of the model data base
by the Monte-Carlo method

As mentioned above, optical parameters were determined
by comparing the experimental intensity proéle of back-
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scattered radiation with model proéles constructed for a
broad range of optical parameters. Model proéles were
constructed by the Monte-Carlo method based on the
numerical simulation of propagation of photons in a
medium. The random walk of photons inside a biological
tissue sample is simulated with a computer by using a
random number generator and is monitored from the point
of incidence of a photon on a sample until its absorption or
escape from the sample through the tissue boundary. A
photon experiences random collisions with inhomogeneities
inside the sample in which, depending on the absorption
and scattering coefécients, it is either absorbed or randomly
changes (in accordance with the scattering phase function)
its propagation direction [1]. We performed simulations for
the experimental setup shown schematically in Fig. 1 [6].

A scattering medium with the scattering coefécient ms,
absorption coefécient ma, the anisotropy parameter (the
average cosine of the scattering angle) g and the refractive
index n � 1:4 was restricted by the cell size
(49� 77� 26:5 mm). The medium was illuminated by a
beam from a 0.63-mm, 4-mW GN-4P He ëNe laser through
a supply ébre with the core diameter of 400 mm and the
aperture angle 358. The intensity proéle R(r) of back-
scattered radiation (where r is the distance from the supply
ébre centre to the receiving ébre centre) was measured with
the help of the receiving ébre éxed on a platform of a step
motor. The receiving ébre had the same parameters as the
supply ébre. The four-dimensional data base R( r; ma; ms; g)
was simulated in a broad range of optical parameters
corresponding to the optical parameters of biological
tissues: 0.01 mmÿ1 4ma 4 0:15 mmÿ1 with the step
Dma � 0:014 mmÿ1; 2 mmÿ1 4ms 4 20 mmÿ1 with the
step Dms � 1:8 mmÿ1; 0:84 g4 0:98 with the step
Dg � 0:018; and 04r4 5:6 mm with the step Dr � 0:4
mm. The Henyey ëGreenstein scattering phase function

p�y� � 1

4p
1ÿ g 2

�1� g 2 ÿ 2g cos y�3=2

was used, where y is the scattering angle. Each of the
dependences was constructed by using 105 photons. Note
that the function R( r; ma; ms; g) has no local extrema in the
region of values of r, ma, ms, and g under study; the proéles
R( r) rapidly decrease at small distances between ébres

(�1 mm), and then the dependence on r becomes
exponential.

3. Determination of optical parameters
by the method of neural network inversion

The problem of determining optical parameters from the
characteristics of forward and backward scattered radiation
is often called the inverse problem [1 ë 3]. The neural
network method is one of the universal methods used for
solving inverse problems. The neural network allows one to
simulate complex nonlinear relations between input and
output parameters, similarly to the `black box' model, i.e.
the internal structure of the problem is not described by a
set of mathematical equations but is created during
training. There exist many neural networks, which have
different properties [13 ë 15]. We have selected a single-layer
perceptron (Fig. 2) ë a feed-forward network. Neurons in
such a network are located in several layers. Signals are
transmitted only in one direction from the input to output
layer. The network in the problem under study consists of
the input layer containing three neurons (with optical
parameters ma, ms, g), the hidden layer containing 20
neurons, and the output layer containing 15 neurons [the
intensity R(r) is speciéed at 15 points]. The input and
output layers are linear, and neurons in the hidden layer
perform nonlinear transformations with the help of the
activation function (hyperbolic tangent). The nonlinear
function of this type was chosen because it provides simple
calculations. Note that the network conéguration and its
type, the number of layers and the number of neurons in
hidden layers are determined experimentally. The more
complex is the network, the greater are its possibilities;
however, the training time increases considerably in this
case. In addition, the single-layer perceptron is used for
solving not very complicated problems.

The network training was performed as follows. Let the
input signal xi be a set of optical parameters (ma; ms; g) and
the output signal yl � R(rl) be a set of intensity values at 15
points, N be the number of neurons in the hidden layer, and
s(z) � tanh z be a nonlinear activation function of a neuron.
Let us denote the weights of neural couplings in the hidden
layer by wh

ij (i is the number of the input signal component, j
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Figure 1. Scheme of the experimental setup: ( 1 ) laser; ( 2 ) objective; ( 3 )
supply ébre; ( 4 ) receiving ébre; ( 5 ) photodiode; ( 6 ) photocurrent ë
voltage transducer; ( 7 ) step motor; ( 8 ) voltmeter; ( 9 ) cell with a model
medium; ( 10 ) computer.
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Figure 2. Scheme of a single-layer perceptron.
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is the neuron number in the hidden layer), the weights of
output couplings by w out

jl ( j is the neuron number, l is the
number of the output signal component, i.e. of the intensity
at the lth point). Then, if the signal xi is fed to the
perceptron input, the `activation' signal

zj �
Xp
i�1

wh
ij xi

will appear on neurons of the hidden layer (where p � 3 is
the number of components of the input signal; j � 1, ... ,N),
which is transformed by the neuron to the function s(zj).
The output signal component yl is formed by adding all
neurons of the hidden layer:

yl �
XN
j�1

w out
jl s�zj�,

where l � 1, ... ,15.
Thus, we obtain the intensity values at 15 points at the

output. Then, the intensity measurement error was found
by comparing the results of measurements with model data,
i.e. the intensity values obtained by the Monte-Carlo
method. The weights of neurons of the output and hidden
layers were corrected by the method of error backpropa-
gation:

w out
jl  w out

jl � as�zj�el,

w h
ij  wh

ij � axis
0�zj�

X
l

wout
jl el,

where a is the training rate constant; el is the difference
between the true and obtained l components of the output
signal; and s 0(z) is the derivative of the activation function.

Such a single calculation is called an `epoch'. After some
number of epochs (as a rule, 500 ë 1000), the error becomes
acceptable. Usually, it amounts to 2.5%ë 10% because in
the case of smaller errors a threat of the network `retraining'
appears, when the network is well trained by using one data
set and poorly reproduces another data set. Note that,
except the root-mean-square error after each iteration cycle
(epoch), the program realisation allowed us to select the
number of neurons in the hidden layer (from 20 to 30), the
training rate, the number of iterations (from 100 to 1000),
and different algorithms for searching the minimum of the
error function: the érst-order gradient and the second-order
Levenberg ëMarquardt algorithms [16]. To avoid the trans-
fer of neurons to the saturation states described by the tails
of the function tanh x, all the data were normalised to the
range [ÿ1, 1].

As a result, the trained neutral network `stores' the
model in the numerical coefécients called neuron weights.
Now, if the input signal is fed, the network produces the
output signal, which differs from the model signal by the
value not exceeding the training error. In addition, the
trained network has approximating and predicting proper-
ties and allows one to obtain the intensity values for any
optical parameters in the range under study. Thus, the
network performs the nonlinear mapping R( r; xi). Note
that in this case, the neural network was used in fact to solve
the problem of approximation of a multidimensional non-
linear function. At the second stage of the problem, the
input optical parameters were determined from the known
values of R( r) by using the trained network. Now, the
network should operate in the inverse order: we assume that
the neuron weights are éxed, the input signal will be 15
intensity values, and the étting parameters will be the `input'
parameters, i.e. ma, ms, g. This solution method is called the
neural network inversion [17]. The network can be trained at
once to solve the inverse problem, i.e. to specify R(r) and to
obtain ma, ms, and g; but the results will be much worse in
this case. This is explained by the `poor' properties of the
inverse transformation (because the problem is ill-posed)

Thus, calculations with the use of the neural network
included the following stages:

1. The input of data normalised to the range [ÿ1, 1].
2. The choice of the number of neurons in the hidden

layer (20 ë 30).
3. The choice of the training rate (0.1, 0.01, 0.001).
4. The choice of the number of iterations (100 ë 1000).
5. The choice of the training method.
6. The determination of the root-mean-square error after

each iteration cycle (epoch). If the error is considered
acceptable, the training process is stopped, if not ë the
training is continued.

7. The veriécation of several test sets to make sure that
the network is not `retrained'.

8. The éxation of neuron weights.
9. The data input for solving the inverse problem (from

the éle or Monte-Carlo data base).
10. The neural network inversion.
Table 1 presents some results of our numerical experi-

ments on determining optical parameters. The neural
network was trained on the entire data base. The training
rate was set equal to 0.001, the number of hidden neurons
was 30, and the number of epochs was 500. The network
training was stopped when the root-mean-square error was
less than 10% (9.3%). Optical parameters were determined
from the proéle R( r).

Analysis of numerical experiments showed that the

Table 1. Measurement accuracy of optical parameters in the model experiment.

ms=�ms � ma�
True values Obtained values Measurement errors (%)

ms
�
mmÿ1 ma

�
mmÿ1 g ms

�
mmÿ1 ma

�
mmÿ1 g Dms=ms Dma=ma Dg=g

0:996 9.0 0.04 0.91 8.5 0.03 0.87 5.5 25 4

0.996 11 0.04 0.91 9.7 0.03 0.87 13 25 4

0.995 20.0 0.10 0.80 17.1 0.04 0.92 14.5 60 15

0.993 11.0 0.08 0.89 10.2 0.05 0.91 7 50 2

0.993 9.0 0.06 0.91 8.1 0.04 0.90 10 33 1

0.992 9.2 0.07 0.89 9.23 0.04 0.91 < 1 43 2

0.98 5.0 0.10 0.85 5.8 0.06 0.91 16 40 7

0.93 2.0 0.15 0.80 1.2 0.12 0.85 40 20 6

24 S.P. Kotova, I.V. Mayorov, A.M. Mayorova



method of neural network inversion allows one to determine
the scattering coefécient ms and the scattering anisotropy
parameter g with an error of �10% even for high albedo
(above 0.99); however, the measurement error for the
absorption coefécient ma is 20%ë60%. Such a large error
is explained by the fact that the intensity proéles (especially
for high albedo) are weakly sensitive to variations in the
absorption coefécient. In addition, the measurement error
of optical parameters considerably increases when the true
values of ms, ma, and g coincide with the boundaries of the
range of optical parameters for which the model data base
was constructed (the third line in Table 1: ms � 20 mmÿ1,
the eighth line: ms � 2 mmÿ1, ma � 0:15 mmÿ1).

Note that, as in the method of full enumeration with
averaging and the regularity method, the accuracy of optical
parameter measurement by the method of neural network
inversion depends considerably on the step of parameter
speciécation in the model network. We constructed the
additional model data base R( r; ma; ms; g) in which the
scattering coefécient ms was varied from 1.5 to 6.5 mmÿ1

with the step Dms � 0:5 mmÿ1, the anisotropy parameter
was varied from 0.7 to 0.9 with the step Dg � 0:02, and the
absorption coefécient ma and coordinate r were varied
within the same range and with the same step as in the
main model data base. The neural network was trained on
this additional model data base. The training rate was set
equal to 0.01, the number of hidden neurons was 20, and the
number of epochs was 100. The network training was
stopped when the root-mean-square error achieved 5%.
Then, optical parameters were determined from the proéle
R( r). The accuracy of their measurements increased con-
siderably. For example, for a proéle with the true values of
optical parameters ma � 0:1 mmÿ1, ms � 5 mmÿ1, and
g � 0:85 (seventh line in Table 1), the error decreased to
1%, 5%, and 3% for ms, ma, g, respectively. For a proéle
with ma � 0:15 mmÿ1, ms � 2 mmÿ1, and g � 0:8 (eighth
line), errors were 14%, 6%, and 12.5% for ma, ms, and g,
respectively.

Nevertheless, we consider that the method of neural
network inversion did not improve in fact the measurement
accuracy of optical parameters compared to the methods of
full enumeration and regularity [8]. The substantial dis-
advantages of the neural network method are the diféculty
of its realisation at the training stage: time-consuming
computer calculations requiring high memory capacities,
a considerable arbitrariness in the choice of the geometry of
the system (the necessity to perform experiments with
various networks and even in one network with different
numbers of layers and different numbers of neurons in
them) and also the possibility of the neural network
`retraining'.

4. Solution of the inverse problem by using
an adaptive-network-based fuzzy inference
system

Due to considerable progress in the theory of fuzzy sets and
experiments on combining the advantages of fuzzy logic
and neural networks, hybrid systems in which the geometry
of a neural network depends on the number of the so-called
rules have gained acceptance beginning from the mid-1990s.
Hybrid systems, namely, ANFIS [18] operate as follows: the
data are fed to the system input and are replaced in the
system by fuzzy distributions (fuzziécation), and the system

of rules is constructed. Then, the fuzzy distribution of the
output parameter values is transformed to the region of real
numbers (defuzziécation), and the neural network `corrects'
the parameters of the rules during training. The trained
ANFIS operates externally as the neural network does;
however, its internal mechanism is related to the adjustment
of the system of fuzzy rules rather than to the étting of the
weights of the neural network. We emphasise that fuzzy sets
are used inside the system, while the input and output data
are usual quantities. To simplify algorithms, we simulated
fuzzy sets by Gaussian functions. Usually, a broad system
of functions from linear to bell-shaped is employed, but this
leads to more complicated processing algorithms.

The typical fuzzy rule has the form

if x1 in A1k, x2 in A2k, ..., xn in Ank,

then yk � ak1x1� ...� aknxn,

where x1, x2, ..., xn are input parameters; yk is the output
parameter; Ank are fuzzy sets; akn are the coefécients of the
Takagi ë Sugeno model [19]; and k is the rule number.
Defuzziécation is performed by taking simultaneously into
account the action of all the rules:

y�xi� �
XK
k

gk�xi�
XM
i

akixi,

where gk(xi) is the so-called activation degree of the kth
rule; K is the number of rules; and M is the number of input
signal components.

In practice in the ANFIS the Takagi ë Sugeno model [19]
is used, as a rule. The described model is the multiple
inputs ë single output (MISO) model. However, we need to
use the MIMO model [multiple inputs (three optical
parameters) ë multiple outputs (intensity values at 15
points). The MIMO model can be obtained from several
independent MISO models. The input signal for each of the
MISO models is three optical parameters, and the output
signal is the intensity at one point. After training 15 MISO
models, the inverse problem was solved by the neural
network inversion method, which was considered earlier.

Let us list all the successive steps used in the ANFIS for
solving the inverse problem:

1. The input of the data base, its normalisation to the
range [ÿ1, 1] and thinning out to �1=15 of the entire
volume.

2. The choice of the number of the fuzzy rules (3, 5,
7, ...).

3. The choice of the number of iterations (100 ë 500) and
the training rate (0.1 ë 0.01).

4. Control of the root-mean-square error (�5%).
5. The input of data for solving the inverse problem (the

input intensity signal is speciéed from the Monte-Carlo data
base).

6. The solution of the inverse problem by the network
inversion method.

Note only that, due to a large volume of the data base
R( r; ma; ms; g) (15� 10� 10� 10) obtained in Monte-Carlo
simulations, we could not train the ANFIS on all data or on
an arbitrary part of the data, as is usually done. Unlike the
neural network, in which we successively speciéed each pair
(xi; yl), where xi is the input signal and yl is the output
signal, and étted neuron weights at each step, we used in the
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ANFIS the so-called batch correction, i.e. a large set of
(xi; yl) pairs. The batch correction is less sensitive to the
local minima of the error function and gives better results;
however, it requires much greater memory resources for
matrix storage. Due to stricter requirements for computa-
tional resources, we could use only the érst-order
optimisation algorithms (gradient method), whereas in
the previous problem the Levenberg ëMarquardt algorithms
could be also employed.

As for the data base, taking into account the restricted
memory resources and providing the acceptable training
time (no longer than 1 h by using a 1600-MHz, 512-Mb
Pentium IV processor), we selected all 15 elements over r
from this data base and by four elements for ma, ms, and g
(instead of 10). This reduced data base is approximately 15
times smaller than the entire model data base.

Numerical experiments showed that the inverse problem
was solved by using the ANFIS with better accuracy than
with the help of the single-layer perceptron. We found that
ma is determined with an error of 15%ë20%, and ms and g
with an error of less than 10%. Note that the values of ma
and ms were often determined ambiguously [i.e. the speciéed
proéles R( r) were coincident, whereas the true and obtained
values of ms and ma were different]. This is explained by the
fact that the inverse problem is ill-posed and by the use of a
small amount (less than 10%) of initial data for the
numerical experiment.

5. Conclusions

We have solved the problem of simultaneous measuring
three optical parameters of strongly scattering media from
the intensity proéle of backscattered radiation by using four
mathematical algorithms: the method of full enumeration
with averaging, the regularity method [6 ë 8], and the
methods of neural network inversion (single-layer percep-
tron) and Takagi ë Sugeno adaptive-network-based fuzzy
inference system considered in this paper. Neural networks
were trained on the model data base R( r; ma; ms; g) obtained
by the Monte-Carlo method in a broad range of optical
parameters. A speciéc feature of neural networks and fuzzy
networks is that the training process requires considerable
memory and processor resources, while the trained system
gives results rapidly and does not require great computa-
tional resources. The measurements errors for the
absorption coefécient, scattering coefécient and scattering
anisotropy parameter were 20%, and 5%ë 10%, respec-
tively [including media with high albedo (above 0.98)]. A
comparatively high measurement error of the absorption
coefécient is explained érst of all by the fact that the
intensity proéles of scattered light (especially for high
albedo) are weakly sensitive to variations in the absorption
coefécient.

A comparative analysis of algorithms has shown that the
network-inversion calculation provides virtually the same
accuracy as the method of full enumeration with averaging,
however, is more time-consuming. The methods of regu-
larity and fuzzy neural system give similar results. An
attractive property of neural networks used for determining
optical parameters is the possibility of their training on the
experimental data base without using the model Monte-
Carlo data base. Note that the method of fuzzy logic is very
promising, it is quite general and therefore can be used for
solving similar problems.
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