
Abstract. The scheme of an active interferometer for
ampliécation of small optical signals for their subsequent
photodetection is proposed. The scheme provides a consid-
erable ampliécation of signals by preserving their quantum-
statistical properties (ideal ampliécation) and also can
improve these properties under certain conditions. The two-
mode squeezed state of light produced upon four-wave
mixing, which is used for signal ampliécation, can be
transformed to the non-classical state of the output éeld
squeezed in the number of photons. The scheme is phase-
sensitive upon ampliécation of the input coherent signal. It is
shown that in the case of the incoherent input signal with the
average number of photons hnsi � 1, the ampliécation process
introduces no additional quantum noise at signal ampliécation
as large as is wished. A scheme is also proposed for the
cascade small-signal ampliécation (hnsi � 1) in the coherent
state producing the ampliéed signal in the squeezed sub-
Poisson state, which can be used for the high-resolution
detection of weak and ultraweak optical signals.
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1. Introduction

The problem of measuring the number of photons in weak
and ultraweak optical signals with the single-photon
resolution remains an urgent problem of quantum optics
concerning the fundamentals of the quantum theory of
interaction of light with matter. The use of modern pho-
tocount schemes with photodetectors of different types is
complicated by the fundamental problem of passing from
the conditions of microscopic quantum electrodynamics,
which describes the interaction of a photon with matter, to
the classical description of the results of measurements of
the macroscopic photocurrent of a detector containing
information on the measured quantum-statistical properties
of light.

Because photodetection inevitably involves the stage of
ampliécation of a microscopic photocurrent produced by a

weak éeld with parameters determined by quantum-
mechanical laws, the number of electrons in a classical
photocurrent measured at the detector output proves to be
in the general case not proportional to the number of
photons in the measured éeld due to the random nature of
current ampliécation. In this case, the photocount reso-
lution is considerably larger than one photon. The
fundamental diféculty appearing in passing from the
quantum-mechanical description of a physical system to
classical conditions can be eliminated, in our opinion, by
using preampliécation of a weak quantum optical signal in
optical ampliéers by preserving and possible improvement
of its quantum noise properties [1, 2].

The noise properties of an optical signal can be
improved by using the known processes of signal trans-
formation to macroscopic quantum states of light having
squeezed numbers of photons (non-classical sub-Poisson
states). Such a transformation of a weak signal opens up
new possibilities upon its direct photodetection. The trans-
formation of the signal to the quadrature-squeezed state
also improves the quality of measurements of the squeezed
éeld quadrature during signal homodyning. The theoretical
and experimental investigations of the squeezed states of
light are reviewed in papers [3, 4].

The preparation of a macroscopic sub-Poisson state of
light (close to the Fock state) opens up new possibilities for
more accurate photon counting. In this case, the reliable
quantum-statistical description of the éeld requires only a
small number of repeated measurements involved in the
photocount procedure.

The possibility of preparing a quadrature-squeezed state
by the four-wave mixing method was predicted in [5] and
experimentally conérmed in [6, 7]. It is known that four-
wave mixing also can be used to obtain an electromagnetic
éeld squeezed in the number of photons; however, this
phenomenon has not been analysed in detail so far. Such
analysis is performed in this paper for the case of degenerate
four-wave mixing.

The use of four-wave mixing for preampliécation of an
optical signal during its detection was érst proposed in
[1, 2]. Different parametric interaction schemes applied for
ampliécation of optical signals were considered and ana-
lysed in [8 ë 10].

We proposed the scheme of an active interferometer
combining the properties of an optical ampliéer and
interferometer. The aim of this paper is to demonstrate
the principal possibility of obtaining the state of an electro-
magnetic éeld with the squeezed number of photons by
using our four-wave mixing amplifying interferometer.
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The use of beamsplitters allows one to transform the
two-mode squeezed state [3] of the signal and idler modes of
light emerging from a four-wave mixer to the single-mode
state of the éeld at the optical system output, which is
squeezed in the number of photons. The ampliéed output
signal contains information on the average number of
photons in the input signal. The high ampliécation of a
signal permits the high-resolution measurement of the
quantum-statistical parameters of a weak input signal by
using standard photodetectors. The obtaining of a narrow
photon number distribution in the ampliéed signal allows
one to perform the reliable counting of weak input signals
containing approximately one photon.

2. Quantum theory of an optical four-wave
mixing amplifying interferometer

Figure 1 shows the scheme of the amplifying interferometer
considered in the paper. The optical scheme contains a
medium with the cubic nonlinearity w �3� and two beams-
plitters ë at the input of optical signals involved in four-
wave mixing to the nonlinear medium (BS1) and at the
output from the medium (BS2). The optical signal as being
measured is supplied to one of the inputs of BS1, while the
electromagnetic éeld v of vacuum is supplied to its another
input. The general scheme of a quantum-mechanical
beamsplitter is presented in Fig. 2. Relations between the
creation and annihilation operators of the electromagnetic
éeld of the input and output éelds of the beamsplitter
preserve the canonical permutable relations for the input
éeld operators; in this case, the condition �â, b̂ � � �â, b̂�� �
�ĉ, d̂ � � �ĉ, d̂�� � 0 is fulélled (as for the éeld operators â 0,
b̂ 0, ĉ 0, d̂ 0 in the case of the generalised beamsplitter also
shown in Fig. 2). The operators of the éelds a and d
emerging from BS1 are related to the input éelds by the
expressions

â � tâs � rv̂, (1)

d̂ � ÿr �âs � t �v̂ (2)

(where r and t are the reêection and transmission
coefécients) along with the corresponding relations for
the Hermitean-conjugate creation operators â� and d̂�.
The operators â and d̂ are the annihilation operators for the
signal and idler modes of the electromagnetic éeld,
respectively.

Then, the counterpropagating collinear éelds â and d̂
enter a medium with the cubic nonlinearity. Two intense
counterpropagating classical pump waves Ep and Ep 0 are
mixed in the nonlinear medium with the signal (â) and idler
(d̂) waves. The frequencies of the four quasi-monochromatic
plane waves are assumed equal. It is also assumed that the
pump wave intensity greatly exceeds those of the signal and
idler waves, and for this reason we will consider pump
modes classically and will neglect their depletion in calcu-
lations. Note that the éxed-pump approximation remains
valid even in the case of high ampliécation under the
condition that the pump wave intensity considerably exceeds
the intensity of ampliéed waves.

The operators ĉ and b̂ are the annihilation operators of
the electromagnetic éelds of the reêected and transmitted
waves, respectively. The Heisenberg equations of motion for
the éeld annihilation operators â(z) and d̂(z) corresponding
to the signal éeld with the initial condition â (z � 0) and the
idler éeld with the initial value d̂ (z � L), where L is the
length of a nonlinear medium, give the following relations
for the output éelds [11, 12]:

b̂ � â�z � L� � Râ� Td̂�, (3)

ĉ � d̂�z � 0� � Rd̂� Tâ�, (4)

where

â � â�z � 0�; d̂ � d̂�z � L�; (5)

R � sec�KL�; T � ÿz tan�KL�; (6)

z � i exp�i�fp � fp 0 ��; K � wjEpEp 0 j
cm

, (7)

Ep and Ep 0 are the amplitudes of the pump waves; fp and
fp 0 are the phases of the pump waves; cm is the speed of
light in the medium; and w is the nonlinearity constant.

Then, the ampliéed éelds b and c arrive at the output
beamsplitter BS2, which is identical to the input beamsplit-
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Figure 1. Scheme of photodetection of a quasi-monochromatic signal
preliminary ampliéed in an amplifying interferometer: (BS1 and BS2)
input and output beamsplitters; (w �3�) nonlinear medium with cubic
nonlinearity; (PD) photodetector; (L) nonlinear medium length.
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â 0

â
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Figure 2. General scheme of a quantum beamsplitter: direct (input and
output éelds are shown by the solid straight lines) and inverted (input
and output éelds are shown by the dashed straight lines).
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ter BS1. By using (1) and (2), we énd for the éelds emerging
from BS2

Â1 � T�t 2 ÿ jrj2�âs � R�t � ÿ t�râ�s

�Tr�t� t ��v̂� R�t 2 � jrj2�v̂�, (8)

Â2 � ÿTr ��t� t ��âs � R�t� 2 � jrj2�â�s

�T�t� 2 ÿ jrj2�v̂� R�t � ÿ t�r �v̂�. (9)

For the output éeld operator A1 to contain only the
vacuum operators, and the operator A2 ë only signal ope-
rators, it is sufécient to fulél the relation

t � t � � jtj � jrj � 1���
2
p ; (10)

which is, in particular, valid for a symmetric beamsplitter
for

t � 1���
2
p , r � i���

2
p , jtj2 � jrj2 � 1. (11)

By using (10), we énd from (8) and (9) the relations

Â1 � e ifrTâs � Râ�s , (12)

Â2 � ÿeÿifrTv̂� Rv̂�, (13)

where fr � Arg r and, when (11) is satiséed, we have

Â1 � iTâs � Râ�s , (14)

Â2 � iTv̂� Rv̂�. (15)

As the output beamsplitter BS2, an inverted beamsplitter
can be also used. In this case, the input éeld b is supplied to
the output of the éeld d, while the input éeld c is supplied
to the output of the éeld a of the beamsplitter BS1 (see Fig.
2). The output éelds A1 and A2 in such a conéguration (see
Fig. 1) can be written as

Â1 � t �b̂ÿ rĉ, (16)

Â2 � r �b̂� tĉ. (17)

By substituting expressions (3) and (4) into (16) and (17),
we énd

Â1 � Tâs ÿ 2t �rRâ�s � Tâs ÿ e iyRâ�s , (18)

Â2 � Tv̂� e iyRv̂�, (19)

where y � Arg(t �r); jtj � jrj � 1=
���
2
p

.
It is obvious that the measurement of the number of

photons hNi � hÂ�1 Â1i of the éeld A1 allows one to
determine the required number of photons hnsi � hâ�s âsi
of the signal éeld as:

3. Quantum-statistical properties
of a four-wave mixing amplifying interferometer

By using (3), (4) and (12), (13), (14), we énd the average
values and dispersions of the number of photons in the éeld

A1 containing information on different quantum states of
the input signal as, which we assume coherent, chaotic or
Fock states with a certain number of photons.

The average number hÂ�1 Â1i of photons for the coherent
signal jai at the system input for any conégurations of
beamsplitters considered above is

hNi � jaj2�jTj2 � jRj2 � 2
ÿjTj2jRj2�1=2 cosF�� jRj2. (20)

The root-mean-square deviation (êuctuations) of the
number of photons at the system output has the form
�DN�2� � jaj2�ÿjTj2 � jRj2�2 � 4jRj2jTj2 � 4

ÿjRj2jTj2�1=2
�ÿjRj2 � jTj2� cosF�� 2jTj2jRj2. (21)

When two symmetric beamsplitters are used, the relative
phase entering (20) and (21) is

F � 2fs ÿ fp ÿ fp 0 , (22)

where fs is the phase of the coherent signal mode. The
output beamsplitter BS2 for jtj � jrj � 1=

���
2
p

can be also an
inverted input beamsplitter. In this case,

F � 2fs ÿ fp ÿ fp 0 � ft ÿ fr ÿ
p
2
, (23)

where ft � Argt.
It follows from (20) that for F � p and

jaj2�jTj ÿ jRj�2 � 0 (24)

the average number of photons is

hNi � jRj2, (25)

and êuctuations of the output éeld are


�DN�2� � 2jTj2jRj2. (26)

Condition (24) is fulélled at large gains (jGj2� jTj2 4 1),
jRj2 � jTj2 ÿ 1 � jTj2, and small jaj2. Under such condi-
tions, it is impossible to measure the parameters of the input
signal as because the signal A1 transformed by the system
does not contain information on the input signal as. In this
case, the system under study represents a light generator
with characteristics determined only by its internal param-
eters.

In the case of the incoherent (chaotic or Fock) input
signal, the dependence of the average number of output
photons on the average number of input photons hnsi �
hâ�s âsi is

hNi � ÿjTj2 � jRj2�hnsi � jRj2. (27)

Fluctuations of the number of output photons depend on
the parameters hnsi,h(Dns)2i of the input signal as
�DN�2� � jRj2��ÿjRj2 � jTj2�2 � 2jRj2jTj2�
�Dns�2�

� 2jRj2jTj2�hnsi2 � hnsi � 1�	. (28)
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Expressions (21) and (24) can be conveniently analysed by
using the notation

jTj � cosh s, jRj � sinh s, jTj2 ÿ jRj2 � 1. (29)

It follows from (21) that the output signal squeezing in the
number of photons is possible only for certain relative
phases (22) [or (23) for symmetric beamsplitters]. The sub-
Poisson statistics (the Fano factor F < 1) is present for
F � p, whereas output photons for other values of F are
described by the super-Poisson statistics (F > 1).

When the input signal âs is in the incoherent quantum
state, the Fano factor of the output éeld

F �

�DN�2�
hNi (30)

is expressed in terms of quantum-statistical parameters
h(Dns)2i, hnsi of the input éeld as

F � jTj2 6h�Dns�2i � 2�hnsi2 � hnsi � 1�
2hnsi � 1

(31)

by assuming that jRj2 � jTj2 4 1. It follows from (31) that
the output éeld has a high level of the photon noise and is
super-Poisson (F4 1). Thus, in the case of the inverted
output beamsplitter and a strong input éeld (hnsi4 1), we
have F � jTj2hnsi, while for the input éeld in the single-
photon Fock state, we have F � 2jTj2.

For the coherent input signal, it follows from (21) that
for the given average number jaj2 of photons in the input
signal, the minimal value of the dispersion of output
photons is


�DN�2�
min
� 1

8

�
B 2 � Bÿ 1

B
ÿ 1

B 2

�
, (32)

where B � (8jaj2 � 1)1=4. Fluctuations are minimal for a
certain value of the gain

jTjsq �
1

2

� ����
B
p
� 1����

B
p

�
. (33)

In this case, the Fano factor of the squeezed output signal
can be considerably lower than unity, i.e. the éeld produced
upon ampliécation is sub-Poisson. At the same time, for
large jaj2, the minimal value of êuctuations of the number
of photons (32) is rather large (F4 1), which means that
the Fock state of the output éeld cannot be prepared by
using the ampliécation scheme considered above. A strong
squeezing of the number of photons (F5 1) can be
achieved only in the case of a large average number of
photons of the input signal. In the case of a high gain and
jaj2 4 32jTj8, jTj2 4 1, the squeezing with

F � e 2s � 1

4jTj2 5 1 (34)

can be possible, where sinh s � e s=2.
The signal-to-noise ratio r for the éeld A1 transmitted

through the beamsplitter BS2 in our scheme is presented in
Fig. 3 for different values of the gain jGj2 � jTj2 and
different average numbers as of photons incident on the
beamsplitter BS1. Figure 3a shows the results for the éeld as

in the chaotic quantum state (described by the Bose ë
Einstein distribution) obtained from (27) and (28). One
can see from Fg. 3a that for hnsi4 1, the value of r
drastically decreases with increasing jGj2 from 1 for
jGj2 � 1 to 0.5 for jGj2 � 4. At the same time, for
hnsi � 1, the dependence of r on the gain is qualitatively
different: r decreases for 1 < jGj2 < 1:5 and then increases
and achieves unity for jGj2 4 1. Thus, the amplifying
interferometer considered here is an ideal ampliéer of
ultraweak chaotic (thermal) light (hnsi � 1), which does
not change the signal-to-noise ratio of the incident éeld
at ampliécations as high as is wished.

Figure 3b presents the results of calculations performed
for the initial signal in the coherent quantum state by
expressions (20) and (21) for the relative phase F � p. As
follows from the curves, the value of r decreases with
increasing the gain for all the values of the average number
hnsi � jaj2 of input photons. As hnsi increases, the decrease
of r with increasing gain slows down, and for large hnsi;
(approximately 106) the value of r will not decrease even
for jGj2 4 1. Note that in the case of the coherent input
éeld, when the ampliécation scheme has the phase sensi-
tivity, the ampliéer introduces the additional noise to the
output éeld, and r decreases from 1 to 0.5 with increasing
gain.

The calculation performed for the relative phase F � 0
showed in this case r � hnsi for any hnsi and jGj2, i.e. for
this phase matching the ampliécation of the coherent signal
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Figure 3. Dependences of the signal-to-noise ratio r � hNi2=h�DN�2i
for the éeld incident on a photodetector (hNi � hA�1 A1i) on the gain jGj2
for different average numbers hnsi of photons in the input (measured)
signal as when the input signal is in the chaotic (thermal) quantum state
(a) and coherent quantum state (b) (the relative phase is F � p, hnsi � 1,
2, 3, . . . , 10, 10000).
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is ideal (noiseless). An increase in r to 1:36hnsi is also
possible for hnsi � 1 and jGj2 4 1.

The dependences of the noise parameter n � rin=rout

of the ampliéer on jGj2 for different hnsi are presented in
Fig. 4. For the chaotic input signal, it follows from (20) and
(21) that for jGj2 4 1,

n � 2
hnsi
hnsi � 1

. (35)

For hnsi � 1, ampliécation becomes noiseless, i.e. n! 1
for jGj2 4 1.

The coherent signal for F � 0, as follows from Fig. 4b, is
ampliéed for hnsi4 1 almost without increasing the noise
parameter n, while for hnsi � 1, the ratio of rin to rout

even increases: n � 0:72 for jGj2 !1. If F � p, amplié-
cation introduces the additional noise to the output signal
for hnsi � 1 and is almost noiseless for hnsi ! 1. Figure 4c
shows the dependence of êuctuations of the number h(DN)2i
of photons on the gain for different values of the coherent
input signal. One can see that, as was mentioned above, the
Fock state of the ampliéed light in which êuctuations of the
number of photons are zero, is not achieved in our four-
wave mixing scheme even in the case of strong squeezing
(F5 1). Small êuctuations of the number of photons
h(DN)2i < 1 are present only for weak input signals
(hnsi < 1) upon weak ampliécation. As hnsi increases,
êuctuations for the same ampliécation also increase. As
the gain is increased for éxed hnsi, êuctuations increase, and
for jGj2 > 10, êuctuations of the number of photons are
independent of hnsi, and in this case h(DN)2i4 1.

The dependence of the Fano factor on the gain for
different hnsi is shown in Fig. 5. It follows from Fig. 5a that
the Fano factor for the chaotic quantum state of the initial
signal always exceeds unity and increases with the gain, i.e.
the output radiation of the ampliéer in this case is always
super-Poisson.

The squeezed state of the ampliéed light can be obtained
in the case of the coherent state of the input signal. One can
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Figure 4. Dependences of the noise parameter n � rin=rout of the éeld
incident on a photodetector (hNi � hA�1 A1i) on the gain jGj2 for
different average numbers hnsi of photons in the input (measured) signal
as when the input signal is in the chaotic (thermal) quantum state (a) and
coherent quantum state (b) (the relative phase is F � p, hnsi � 1, 2,
3, . . . , 10, 10000), and the dependences of the dispersion of the number of
photons h�DN�2i on jGj2 for the input signal in the coherent quantum
state (hnsi � 1, 2, . . . , 105) (c).
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hnsi � 1, 2, 3, . . . , 10, 40000) (b).
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see from Fig. 5b that slightly squeezed light (F < 1) is
present at the output in the case of a weak ampliécation
of a small input signal (hnsi � 1) and F � p. Strong
squeezing (F5 1) is achieved at large hnsi and the optimal
value of the gain jGj2 depending on hnsi [see expressions (32)
and (33)]. For gains exceeding this optimal value and
jGj2 !1, the output éeld becomes super-Poisson.

The value of the relative phase F � p is optimal for the
preparation of the squeezed (sub-Poisson) state; for F � 0,
squeezing is impossible. It follows from (2) that the average
number of output photons for F � p decreases with
increasing jGj2, and takes the value jTj2jRj2 � jGj2�
(jGj2 ÿ 1) when relation (24) is fulélled. Thus, for small
hnsi and F � p, a considerable ampliécation of a signal
(hNi4 hnsi) becomes impossible. The transformation of a
weak coherent signal to a squeezed ampliéed output signal
involves diféculties in this case. In the case of a weak
coherent signal (jaj2 � 1) at the ampliéer input, the intense
sub-Poisson output signal can be also obtained; however, it
is necessary to use a cascade of ampliéers considered here
with different gains. At each ampliécation stage, a éeld close
to a coherent éeld is produced, but with the increasing
average number of photons. The gain jGij2 � 1 in each of
the ampliéers in the cascade (i � 1, . . . ,Mÿ 1, where M is
the number of ampliéers in the cascade) increases with i and
allows the preparation of the éeld in the coherent state with
a large average number of photons at the output of the
Mÿ 1 ampliéer. At the last (Mth) transformation stage, an
ampliéer with the gain jGMj2 � 1 is used which produces
ampliéed light in the squeezed state.

The dependence of the quantum-statistical parameters
r, F, and n of the ampliéer signal on the relative phase
F 2 �0, 2p� are shown in Fig. 6 for different average
numbers of photons of the coherent input signal. One
can see from Fig. 6a that the value of r drastically increases
at F � p and a large number of input photons; for
hnsi ! 1, we have r(F � p)!hnsi � r(F � 0). For
hnsi � 1, the relation r(F � p)5r(F � 0) � hnsi takes
place; this means that the best value of rout for a weak
coherent input signal is achieved for F � 0.

One can see from Fig. 6b that the squeezed state of the
output éeld (F5 1) is achieved only for F � p and hnsi4 1;
in this case, a small deviation of the relative phase F from p
results in a drastic increase in êuctuations of the output
éeld.

The noise parameter n also drastically depends on the
relative phase F (Fig. 6c). One can see that the best value
n < 1 is realised at hnsi � 1 for F � 0. When the output
éeld is in the squeezed state (F � p, hnsi4 1), the signal is
ampliéed without deterioration of its noise parameter, i.e.
n � 1. Note that small errors in the relative phase (near
F � p) resulting in a drastic increase in the noise parameter
n are possible due to êuctuations of the phase of pump
éelds. For this reason, the values F � 0 can be used in
experiments, because ampliécation in this case also does not
introduce any additional noise (n < 1), and the effect of
the strong dependence of the quality on the relative phase F
of the ampliéed signal is absent.

4. Conclusions

We have shown that the active four-wave mixing interfer-
ometer proposed in the paper can be used to amplify
considerably weak optical signals in different quantum

states without deterioration of their quantum noise
parameters. The quantum-statistical properties of the
transformed light have been studied for coherent, chaotic
(thermal), and Fock quantum states of the input éeld.

In the case of the coherent input signal, our interfer-
ometer is a phase-sensitive ampliéer. By providing the
optimal matching of the input éeld and phases of coherent
pumping in the four-wave scheme, it is possible to produce
the ampliéed output éeld that have non-classical statistical
properties (squeezed in the number of photons). The intense
sub-Poisson light can be produced at large gains Gj2 4 1
only for suféciently intense input signals (hnsi4 1). Under
these conditions, the best value n � rin=rout � 1 is
realised. For ultraweak signals (hnsi � 1), the ampliéer
improves the quality of the signal and n < 1 for
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Figure 6. Deopendences of the signal-to-noise ratio r (a), Fano factor
(b), and the noise parameter n (c) of the ampliéer for the éeld incident
on a photodetector (hNi � hA�1 A1i) on the relative phase for different
average numbers of photons in the input (measured) signal as and
jGj2 � 10.
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jGj2 4 1. An ultraweak coherent signal also can be trans-
formed to the intense squeezed (sub-Poisson) light by using
a cascade of such ampliéers with specially selected increas-
ing gains.

Our analysis has shown that, by using nonlinear four-
wave mixing in our scheme, the coherent input signal can be
transformed to the intense squeezed (sub-Poisson) signal
with the Fano factor F5 1; however, it is impossible to
prepare the purely Fock state with a certain number of
photons.

Fluctuations in the number of photons in the case of a
chaotic éeld at the input of our interferometer considerably
increase upon strong ampliécation and n4 1. However, in
the case hnsi � 1, when the inverted output beamsplitter and
large gains are used, it is possible to obtain n � 1, i.e.
ampliécation occurs without deterioration of the r value,
which allows the measurement of ultraweak chaotic signals.
As hnsi increases, the detection quality is impaired under
these conditions.

Thus, the transformation of light performed by the
amplifying interferometer considered in the paper can
improve, under certain conditions, the resolution upon
detecting weak optical signals to one photon only.
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