
Abstract. A method for chaotic oscillation suppression in
intracavity frequency-doubled lasers based on the rate-
equation model of a bipolarised solid-state laser is proposed.
It is shown that the use of optoelectronic feedback either
stabilises the system in the stationary state or leads to quasi-
sinusoidal oscillations with a constant amplitude.

Keywords: feedback, control of laser radiation parameters, intraca-
vity frequency doubling.

1. Introduction

The development of the technical basis for quantum
electronics ë the improvement of old and creation of
new lasers, such as diode-pumped solid-state lasers and
intracavity frequency-doubled lasers, and demands for these
lasers in various éelds of technology and medicine [1 ë 4]
require the further development of the theory of nonlinear
dynamics to obtain recommendations for improving the
parameters of the lasers. The most important from the
practical point of view is the problem of stabilisation of
laser radiation parameters, providing the maximum output
power, for example, in the second harmonic upon intra-
cavity frequency doubling. There exist two types of phase
matching of the waves in nonlinear frequency conversion
[5]. In the case of type I phase matching, the waves of the
same polarisation are involved in the second harmonic
generation. In the case of type II phase matching
considered in our paper, the waves with orthogonal
polarisations are involved in frequency conversion. In the
case of multimode lasing, both frequency doubling (radi-
ation of each of the modes is converted to the second
harmonic) and frequency summation (the interaction of the
modes in pairs resulting in radiation at the sum frequency)
are possible.

It is well known [6, 7] that intracavity frequency con-
version is accompanied, as a rule, by the chaotic behaviour
of the radiation intensity with the 100% intensity modu-
lation depth both at the fundamental and converted
harmonics. This occurs because the intracavity frequency

conversion of radiation to the second harmonic acts as a
powerful factor perturbing the stationary state of the
system. At the same time, a speciéc feature of solid-state
lasers is that the relaxation time of inverse population in
them greatly exceeds the decay time of the éeld in the cavity.
As a result, relaxation oscillations appear which determine a
high resonance sensitivity of the laser to various perturba-
tions of the stationary state [8].

The dynamics of such lasers and, hence, the spectrum of
relaxation oscillations depend substantially on the type of
intermode interaction. There exist the two types of nonlinear
interaction between modes in the active medium of a laser:
purely energetic (through the saturation of the active
medium by the éeld of individual modes) and phase-
sensitive (through the scattering of mode éelds by inversion
oscillations induced by them) [9, 10]. The rate-equation
models taking into account only the érst type of mode
interaction well describe the behaviour of multimode lasers
with a Fabry ë Perot resonator. Due to the absence of
anisotropy of losses for modes with orthogonal polar-
isations, simultaneous lasing at these modes can occur.
In this case, the interaction of orthogonally polarised modes
with the active medium leads to the polarisation burning of
the inverse population, resulting in the appearance, along
with well-known relaxation oscillations in multimode lasers
[9], of low-frequency relaxation oscillations of a new type
responsible for the out-of-phase dynamics of orthogonally
polarised modes (which we will call polarisation relaxation
oscillations). It was shown [6 ë 8] that the decisive factor of
the dynamic behaviour of bipolarisation lasers is the
collective interaction of all the longitudinal modes of the
same polarisation with a total ensemble of orthogonally
polarised modes. Therefore, all the models of polarisation
interaction proposed so far were two-mode models in which
the éeld was represented by two modes with identical or
different longitudinal indices and orthogonal polarisations.

The experimental study [8] of an intracavity frequency-
doubled solid-state laser with type II phase matching has
demonstrated that, as the eféciency of nonlinear frequency
conversion increased, the stationary regime became unstable
through the Hopf bifurcation at the polarisation relaxation
oscillation frequency.

Among papers devoted to the stabilisation of the sta-
tionary state of lasers, we can point out a number of
theoretical and experimental papers, for example, [9 ë 11]
in which optoelectronic feedback controlling the laser diode
current is proposed, which is proportional either to the
deviation of the mode intensity from the stationary value or
to derivatives of the mode intensities with respect to time.
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The main advantage of such a feedback is that it does not
affect the stationary state of the system. In addition,
feedback can be easily realised in practice.

In this paper, we studied theoretically the possible ways
for expanding the region of stationary operation of a
bipolarised laser by using optoelectronic feedback to control
either the pump laser diode current or intracavity losses. We
propose to modulate pump radiation by using feedback,
which is inversely proportional to the derivative of the total
radiation intensity or the derivative of the radiation inten-
sity of a weak polarisation mode, while losses can be
modulated by means of feedback proportional to the
radiation intensity of one of the polarisation modes.

2. Model of a bipolarised laser

The dynamic behaviour of a laser can be described by a
system of dimensional rate equations taking into account
the angular (polarisation) burning of the population
inversion:

dI1
dt
� _I1 � G�N0 �Nc ÿ l1 ÿ eI2�I1, (1a)

dI2
dt
� _I2 � G�N0 ÿNc ÿ l2 ÿ eI1�I2, (1b)

dN0

dt
� _N0 � A0 ÿ �1� I1 � I2�N0 ÿ �I1 ÿ I2�Nc, (1c)

dNc

dt
� _Nc � Ac ÿ �1� I1 � I2�Nc ÿ

1

2
�I1 ÿ I2�N0, (1d)

where t � t=T1 is the dimensionless time normalised to the
relaxation time T1 of the population inversion; I1;2 are the
intensities of polarisation modes normalised to the satu-
ration-éeld intensity; N0 and A0 are the components of the
population inversion and pump, respectively, homogeneous
over the angle and longitudinal coordinate (N0 is normal-
ised to the population inversion in the absence of lasing and
A0 is normalised to the threshold pump intensity);

Nc �
1

2pL

� L

0

� 2p

0

N�c� cos 2cdcdz,

Ac �
1

2pL

� L

0

� 2p

0

A�c� cos 2cdcdz

are the spatially homogeneous angular cosine harmonics of
the population inversion and pump; L is the cavity length;
G � T1=Tc; Tc is the éeld relaxation time in the cavity; l1;2
are anisotropy parameters of losses in the cavity (in the
isotropic case, l1;2 � 1); e is the coefécient of nonlinear
conversion of the fundamental radiation to the second
harmonic radiation, which is proportional to the ratio of
the second-harmonic intensity to the product of intensities
of the interacting modes.

The system of equations (1) can be easily obtained from
the model of a single-mode bipolarised laser [10] by
neglecting in it all the terms containing the phases of
polarisation modes and introducing a term characterising
nonlinear losses upon frequency doubling. It was shown in

[10] that in the case of linearly polarised pump radiation, the
expression for Ac has the form

Ac � A0

�1� b�1=2 ÿ 1

b
cos 2cp,

where b � E 2
pTpt2m

2
p=h

2 is the parameter of saturation of
the active medium by the pump radiation; E 2

p is the pump
radiation intensity; tÿ12 is the rate of nonradiative
relaxation from the upper absorption level; mp is the dipole
moment of the absorption line; Tp is the half-width of the
absorption line; and h is Planck's constant. The parameter
cp determines the orientation of pump polarisation with
respect to one of the polarisation modes of the laser. By
varying cp, the intensity ratio of polarisation modes can be
controlled.

The linear analysis of the system of equations (1) gives
the fourth-order characteristic equation having two pairs of
the complex conjugated roots l1;2 � d1 � iO1 and l3;4 �
d2 � iO2. The imaginary parts of the complex conjugate
roots are the frequencies O1 and O2 of relaxation oscillations
with the decay decrements equal to the real parts d1 and d2.
The érst pair of the roots describes in-phase relaxation
oscillations, which are well-known in the dynamics of solid-
state lasers, while the second pair describes low-frequency
relaxation oscillations responsible for the out-of-phase
dynamics of the polarisation modes of the laser.

Figure 1 shows the relaxation oscillation frequencies O1,
O2 and decrements d1, d2, as well as the intensities of
individual polarisation modes and total radiation as func-
tions of the coefécient e of nonlinear conversion of radiation
to the second harmonic. The solid curves correspond to
dependences in the absence of feedback. One can see the
appearance of instability through the Hopf bifurcation at
the polarisation relaxation oscillation frequency O2: the sign
of d2 changes at the point e � e 0cr, where e 0cr is the critical
value of the parameter e in the absence of feedback. In the
region e > e 0cr near the instability boundary (Fig. 1a), the
behaviour of the self-modulation oscillation frequency Omod

is shown. Figure 1c demonstrates the behaviour of the
maximum and minimum values of the total radiation
intensity Itot and the intensities I1 and I2 of individual
modes in the instability region. It follows from Fig. 1 that
the undamped oscillations of the polarisation mode intensity
are excited near the instability boundary.

Inside the instability region, chaotic oscillations of the
mode intensities develop. This process, in the absence of
feedback, is illustrated in Fig. 2, where the transfer func-
tions of individual mode intensities and of their total
intensity are presented for e � 0 (the absence of second
harmonic generation and the absence of instability) (Fig. 2a)
and e � e 0cr � x, where x5 e 0cr (a small excess over the critical
value of the nonlinear conversion coefécient and excitation
of a low-frequency oscillation) (Fig. 2b). Figure 2c shows,
for e4 e 0cr (a considerable excess over the critical value of e,
chaos), only the transfer function for the total intensity
because this function coincides with transfer functions for
individual modes in the region of chaos.

To extend the region of stable lasing upon intracavity
frequency conversion and suppress chaotic lasing, we
introduced into the system of equations (1) the optoelec-
tronic feedback of one of the two types: modulation of the
pump parameter A0 or modulation of losses l1;2 of each of
the modes. The system of equations (1) with introduced

528 P.A. Khandokhin, V.G. Zhislina



feedback was integrated numerically by the Runge ëKutta
method.

2.1 Control of the pump parameter

Optoelectronic feedback providing the control of the pump
parameter (laser diode current) and proportional to
derivatives of the intensity of polarisation modes is
introduced in the system of equations (1) as

A0 � A�1ÿ f1 _I1 ÿ f2 _I2�.

Here, f1;2 is the feedback coefécient. If one of these coefé-
cients is zero, selective feedback takes place either over the
strong polarisation mode for f2 � 0 or the weak polar-
isation mode for f1 � 0. If these coefécients are equal,
feedback over the total intensity f1 � f2 � ftot takes place.
Finally, if both coefécients are nonzero and change
independently of each other, we are dealing with combined
feedback [9, 12]. Studies have shown that the introduction
of feedback over the total intensity ( ftot > 0) or over the
weak mode ( f1 � 0, f2 > 0) results in the expansion of the
stationary lasing region compared to this region in the
absence of feedback. The use of the strong mode of any
sign for feedback does not produce stabilisation but, on the
contrary, causes the development of instability.

The dashed curves in Figures 1b, c show the behaviour
of the decrements of relaxation oscillations and the total

radiation intensity in the case of feedback over the total
intensity. One can see that feedback causes the displacement
of the instability region to the right ë to the side of
increasing nonlinear conversion coefécient. In addition,
feedback in the instability region considerably reduces
the modulation depth, making this regime regular.

Figure 3 presents total radiation intensities for small
(Fig. 3a) and considerable (Fig. 3b) excesses e over the
instability threshold (i.e. ecr) before and after the introduc-
tion of feedback over the weak mode. The behaviour of the
system for the same parameters as in Fig. 2 but with
feedback over the total intensity is similar as a whole to
its behaviour in the case of feedback over the weak mode.
However, feedback over the total intensity proves to be less
efécient than that over the weak mode, the stationary lasing
region (the maximum nonlinear conversion coefécient e)
being smaller in the case of total-intensity feedback; in
addition, the self-modulation regime appears at higher
feedback coefécients.

Figure 1c also shows the dependence of the radiation
intensity Igr � eI2I1 at the double frequency during sta-
tionary lasing. This dependence clearly demonstrates the
increase in the stationary intensity Igr after the introduction
of optoelectronic feedback: �I 0

gr < �Igr, where �I 0
gr and �Igr are

the maximum values of the intensity Igr for the given set of
system parameters in the absence and presence of feedback,
respectively. The study shows that, other conditions being
the same, the second harmonic intensity in the stationary
regime in the case of weak-mode feedback is higher than

a

O

c

b

0.0010

O1

OmodO2

0 0.0005 0.0010 e

20
40
60

0 0.0005 0.0010 e

�Igr � 104

�I 0
gr � 104

Itot

I1

I2
Imax
2

Imin
2

Imax
tot

Imin
tot

e 0cr ecr

0.2

0.4

0.6

0.8

I

1.0

0 0.0005 e
ÿ2:0
ÿ1:5
ÿ1:0
ÿ0:5

0
d

d1

d2

Figure 1. Dependences of the frequencies O1, O2 (a) and decrements d1,
d2 (b) of relaxation oscillations and the intensities of longitudinal modes
and their sum (c) on the second harmonic generation eféciency parame-
ter e in the absence (solid curves) and presence (dashed curves) of
feedback. The system parameters: f2 � 0:01, A � 1:5, G � 10000,
b � 0:5, cp � 258. The unlabeled curves in Fig. 1c belong to the mode
of intensity I1.
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that for total-intensity feedback. This can be explained by
the fact that the total radiation intensity is determined not
only by the weak mode but also by the strong one, the
selective use of the latter not suppressing the low-frequency
oscillation responsible for instability but, on the contrary,
increasing it. This effect is caused by the coincidence of
phases of weak oscillations in the frequency region of both
relaxation oscillations in the strong mode, unlike the weak
mode where low-frequency and high-frequency oscillations
are out-of-phase [13].

The results described above agree with the inêuence of
pump feedback in a two-mode laser without frequency
doubling (e � 0) studied earlier [14]. In this case, suppres-
sion is also achieved for feedback proportional to the
derivative of the total mode intensity, a weaker suppression
being possible for feedback proportional to the derivative of
the weak mode intensity and being impossible when the
strong mode is used.

Figure 4 shows the dependences of the modulation depth
of the total radiation intensity

mtot �
Imax
tot ÿ Imin

tot

Imax
tot � Imin

tot

on the nonlinear conversion coefécient e in the absence of
feedback [Fig. 4, curve ( 1 )] and in the presence of total-
intensity feedback [Fig. 4, curve ( 2 )] and weak-mode

feedback [Fig. 4, curves ( 3 ) and ( 4 )]. These dependences
clearly demonstrate a higher eféciency of weak-mode
feedback. Therefore, we will consider below only weak-
mode feedback ( f1 � 0, f2 > 0).

It is known from earlier papers [7, 8, 10] that a change in
the orientation cp of pump polarisation leads to a change in
the ratio of intensities I 0

1 and I 0
2 of polarisation modes in the

absence of feedback. In this case, the instability boundaries
(ecr, f cr2 ), dividing the regions of stationary lasing and
instability, change upon intracavity frequency doubling.
Curve ( 3 ) in Fig. 5 described by the expression

�Igr�ecr; f cr
2 ;cp� � ecr� f cr2 ;cp�I1�cp�I2�cp�,

shows the dependence of the maximum achievable second-
harmonic radiation intensity (at the stationary-regime
stability boundary) on the parameter cp in the presence
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of pump feedback. One can see that the maximum value
(�Igr)pump is achieved for cp � 0, which corresponds to the
maximum difference of mode intensities, while the mini-
mum value is achieved for cp � 458, which corresponds to
the modes of equal intensities. For comparison, Fig. 5
shows the dependence of the maximum achievable second-
harmonic intensity �I 0

gr in the absence of feedback.
The bifurcation diagram in Fig. 6 summs up the study of

the inêuence of the parameters e and f2 on the behaviour of
the system. The plane e f2 is divided into three regions:
stationary lasing (I), self-modulation (II), and chaotic (III)
oscillations. The stability region boundary for a éxed ratio
of mode intensities (determined by the angle cp) depends
both on the nonlinear conversion coefécient e and the
feedback coefécient f2. The boundary between regions II
and III is somewhat conditional because we judged the
appearance of chaos in the system only from time realisa-
tions and power spectra: the appearance of an irregularity
and a broad noise component in the power spectrum
indicated the passage to the region of chaotic oscillations.

2.2 Modulation of losses

Our study of the action of optoelectronic pump feedback
on the system (Fig. 5) shows that the stationary second-
harmonic intensity can be increased approximately by a
factor of four. However, the instability can be suppressed
more eféciently by using feedback of another type by
modulating losses. The stabilisation of the process in the
stationary state is achieved by introducing out-of-phase
modulation of losses in both modes, which is proportional
to the intensity of one of the modes. In the system of
equations (1), this is described as

l1 � 1� F, l2 � 1ÿ F,

where

F � ÿf1I1 or F � f2I2 , f1;2 5eÿ e 0cr , (2)

where e 0cr corresponds to the instability boundary in the
absence of feedback.

Such a form of feedback is caused by the simplest
theoretical calculations: due to nonlinear intracavity second
harmonic generation (described by the parameter e), the
instability appears érst of all in the strong mode, whose
behaviour is described by Eqn (1a) containing the term ÿeI2
in the parentheses, which is responsible for nonlinearity
resulting in the appearance of instability. Therefore, it is
necessary to compensate the action of this term with the
help of feedback in the form �eI2, not producing instability
in the weak mode by introducing feedback in the form ÿeI2
in Eqn (1b).

Figures 7 and 8 present the results of introducing the
modulation of losses described by expression (2) into the
system of equations (1). Figure 7 shows the total radiation
intensities for a small (Fig. 7a) and considerable (Fig. 7b)
excesses of e over the critical value before and after the
introduction of loss-modulation feedback. The bifurcation
diagram in the plane e f2 is shown in Fig. 8. One can see
from Figs 7 and 8 that this method is more efécient than
pump modulation not only due a decrease in the feedback
coefécient required for stabilisation but also because it
provides stable lasing for large nonlinear conversion coefé-
cients.

Note that such a feedback, proportional to the weak-
mode intensity (rather than to the derivative of the intensity,
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as in the case of pump feedback), causes a small change in
the stationary state of the system, but allows the stabilisa-
tion of the system in this new stationary state at higher
nonlinear conversion coefécients than in the case of pump
feedback.

Curve ( 1 ) in Fig. 5 shows the behaviour of the max-
imum achievable second-harmonic radiation intensity
(�Igr)loss (at the stability boundary of the stationary regime)
in the presence of loss feedback. One can see that, as in the
case of pump modulation, the maximum value (�Igr)loss is
achieved for cp � 0, which corresponds to the maximum
difference of mode intensities (i.e. to the maximum of the
polarisation mode of intensity I 0

1 and the mode minimum of
intensity I 0

2 ), and the minimum value is achieved for
cp � 458, which corresponds to modes of equal intensities.
The behaviour of the system is completely similar to its
behaviour in the case of pump modulation, but the
maximum achievable value (�Igr)loss for all cp is considerably
higher.

Upon modulation of losses, as in the case of pump
feedback, the bifurcation plane ef2 is divided into three
regions of stability (I), self-modulation oscillations (II), and
chaos (III). The boundary of the stability region for a éxed
ratio of mode intensities (determined by the angle cp)
depends both on the nonlinear conversion coefécient and
the feedback coefécient; however, the shape of stability
regions proves to be considerably more complex. Thus, for a
éxed value of e, the increase in f1;2 ( f1;2 > eÿ e 0cr) up to some
limit facilitates stabilisation, but as f1;2 is further increased,
the instability appears. Note that stability region I is not
inénite ë as e is further increased (beyond the range
presented in Fig. 8), the system becomes unstable due to
the properties of the numerical simulation. In experiments,
this will correspond to the appearance of instability due to
the ampliécation of random êuctuations at a high nonlinear
conversion coefécient.

Another difference between the action of the pump and
loss feedbacks is the behaviour of the frequency of the
established self-modulation regime. One can see from Fig.
1a that the self-modulation oscillation frequency is close to
the relaxation oscillation frequency, but as the nonlinear
conversion coefécient increases [curve ( 1 ) in Fig. 9], this
frequency slowly decreases. Numerical calculations show
that this decrease occurs most rapidly in the case of total
intensity feedback and most slowly in the case of weak-
mode feedback [curves ( 1 ) and ( 3 ) in Fig. 9].

3. Conclusions

We have proposed methods to stabilise chaos in a
bipolarised frequency-doubled solid-state laser which pro-
vide either the passage of chaotic oscillations to the self-
modulation regime (quasi-harmonic oscillations with a
constant amplitude) or a complete passage of the system
to the stationary state. The most efécient stabilisation
method is optoelectronic pump feedback, which is propor-
tional to the derivative of the weak-mode intensity. The
method for suppressing the chaotic radiation dynamics of a
laser with the help of optoelectronic feedback controlling
the pump parameter is simple in practical realisation.

The complete stabilisation of the system (transition to
the stationary state) even when the nonlinear conversion
parameter considerably exceeds the critical value is achieved
in the case of feedback performed by the intracavity
modulation of losses, which is proportional to the intensity
of one of the modes. In this case, the modulation should
affect both modes out of phase. Although we are not aware
of the experimental realisation of loss feedback in fre-
quency-doubled lasers, we can assume that such an
electrooptical Q-switching can be also achieved, for exam-
ple, by using a Pockels cell.
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