
Abstract. The exact solution of nonlinear equations
describing the symmetric stationary interaction of two light
waves of an arbitrary polarisation on a local photorefractive
grating in a crystal of the symmetry group �43m in the
transverse conéguration of crystal faces is obtained in the
paraxial limit. The polarisation of light waves and eféciency
of energy transfer between them are studied as functions of
the reduced length of a sample and the intensity ratio of
incident waves.
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The exact analytic solutions of nonlinear equations
describing the matched interaction of two light waves on
a photorefractive nonlinearity in non-centrally symmetric
crystals give detailed information on the inêuence of
various interaction parameters on the speciéc features of
experimental studies and photorefractive devices [1 ë 8].

The analytic solution of two nonlinear equations of
coupled waves describing the scalar two-wave interaction on
a transmission photorefractive grating in the stationary state
was obtained in [1 ë 3]. The interaction of two light waves
with speciéed orthogonal polarisations, which is also
described by two nonlinear equations, was considered in
[4, 5]. The stationary vector two-wave interaction can be
described in the paraxial limit by four nonlinear equations
for the scalar amplitudes of the orthogonal polarisation
components of the light waves. The exact solution of four
equations was found for the transmission two-wave inter-
action on a nonlocal photorefractive grating produced in
cubic photorefractive crystals of the symmetry group �43m
such as GaAs, InP, and CdTe [6, 7]. In the absence of
gyrotropy, the analytic results describing the interaction of
light waves in these crystals are also valid for interaction in
crystals of the symmetry group 23.

In this paper, the exact solution is obtained for nonlinear
equations describing the stationary self-diffraction of two
light waves of an arbitrary polarisation by a local photo-
refractive grating produced in a crystal of the symmetry

group �43m in the so-called transverse conéguration of
crystal faces [7, 8] (Fig. 1). The polarisation of the interact-
ing light waves and eféciency of energy exchange between
them are studied as functions of the reduced interaction
length and the intensity ratio of incident waves.

Figure 1 shows the scheme of two-wave interaction in a
cubic photorefractive crystal in the external permanent
electric éeld E0 applied along the vector K of the interfer-
ence light grating with the intensity I � I0�1�m cos (Kr)�. In
this case, the éeld E0 � E0p and the space-charge éeld Esc �
Escp � �ÿmEeff exp (iKr�=2� c:c:�p induce due to the linear
electrooptical effect [9] the perturbations of the dielectric
constant De�0�ij � n 4r41E0gij and Descij � n 4r41 �Escgij, of the
same structure, where n is the refractive index of a medium
and r41 is the electrooptical coefécient. For the transverse
conéguration, the components of the unit vector p and of
the second-rank tensor gij in the crystal-physics coordinate
system are determined by the relations
p3 � gii � g12 � g21 � 0;ÿp1 � p2 � g13 � g31 � ÿg23 � ÿg32
� ÿ1= ���

2
p

[7].
The external éeld E0 is produced by the electric voltage

applied to the crystal sides (usually, with metal coatings).
Let us neglect the blocking effect in the electrode region
[8, 10] and consider the case when the amplitude E0 of the
external electric éeld satisées the condition Ed 5E0 5Eq,
where Ed and Eq are the diffusion and trap-saturation éelds,
respectively [8]. In the case of interaction on a transmission
photorefractive grating with the grating spacing L �
2p=jKj > 20 mm in crystals with the trap concentration
Na > 1022 mÿ3, the typical éelds are Ed < 80 V cmÿ1 and
Eq > 100 kV cmÿ1. Therefore, the condition mentioned
above is satiséed for E0 � 10 kV cmÿ1. In this case, the
local component makes the main contribution to the
effective amplitude Eeff of the éeld Esc. In the approximation
linear in the modulation coefécient m, this amplitude is
equal with good accuracy to the external éeld: Eeff � E0 [8].

For convenience of analysis, we will use a special
coordinate system with axes z and y coinciding with the
axes of the coupling matrix H [6, 7]. For the transverse
conéguration under study, the components of the matrix H
in the traditional coordinate system with axes directed along
the TE and TM components of the light-éeld polarisation
are HMM � HEE � 0, and HME � ÿ1. In this case, the axes z
and y are located at angles of �458 to the grating vector K
[7], as shown in Fig. 1. For the grating spacing L presented
above, the paraxial limit is valid, in which only the
components y(Sy;Ry) and z(Sz;Rz) of the vector amplitudes
of the two interacting light waves
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~S � S exp�i�otÿ kSr��, ~R � R exp�i�otÿ kRr��
can be considered nonzero. In the approximations adopted
above, the equations for coupled waves can be written in
the form

dSy;z

dx
� �i g

2

SyR
�
y � SzR

�
z

I0
Ry;z;

(1)

dRy;z

dx
� �i g

2

S �y Ry � S �z Rz

I0
Sy;z;

where g � 2pn3r41E0=l is the coupling constant of the
photorefractive grating; l is the light wavelength;

m � 2
SyR

�
y � SzR

�
z

I0
(2)

is the modulation coefécient of the interference pattern.
Equations (1) and (2) differ from equations (11) and (12)
obtained in [7] by the right-hand side linear in m and the
presence of the imaginary unit, which appears due to the
local photorefractive response of the crystal.

The system of equations for coupled waves (1) has the
obvious integral I0 � jSyj2 � jSzj2 � jRyj2 � jRzj2 � const
corresponding to the law of conservation of the light-
éeld energy during its distribution between interacting
waves in a nonabsorbing photorefractive crystal. In the
case under study, as for a nonlocal response, the laws of
conservation of energy Iy � jSyj2 � jRyj2 and Iz � jSzj2�
jRzj2 are fulélled. The integrals Iy and Iz describe the
conservation of the parts of light energy contained in
orthogonal polarisation components whose orientation
coincides with that of the eigenvectors of the coupling
matrix. However, unlike a crystal with a nonlinear response
[7], the energy of the light-éeld components with phases
shifted by p=2 with respect to each other is not conserved in
the general case. Therefore, the polarisation of linearly
polarised waves incident on a crystal becomes elliptical
at the crystal output.

The two additional laws of conversion of energy can be
written in the form of integrals

jSyj2 ÿ jSzj2 � IDS; jRyj2 ÿ jRzj2 � IDR: (3)

Taking these laws into account, the equation for the
coefécient m can be obtained in the form

dm

dx
� i

gID
2I0

m; (4)

where ID � IDS ÿ IDR. It follows from (4) that the modulus
of the modulation coefécient m � m0 exp�ixID=(2I0)] is
conserved after the interaction: jmj � m0 (the contrast of
the interference pattern does not change). The linear (in x)
phase shift for the coefécient m results in a periodic bending
of the interference fringes with the period Lx � 2p 0=(gID).

If the spatial dependence of the modulation coefécient is
known, equations (1) can be decoupled. For example, the
equation for the y component of the signal-wave polar-
isation can be written in the form

d2Sy

dx 2
ÿ i

gID
2I0

dSy

dx
� g 2m 2

0

16
Sy � 0: (5)

The solutions of this equation and similar equations for
other components of the light éeld have the form

Sy;z � exp

�
i
gx
4

ID
I0

��
Sy0;z0 cos

�
gx
4

Id
I0

�

� i
m0I0Ry0;z0 � IDSy0;z0

ID
sin

�
gx
4

Id
I0

��
; (6)

Ry;z � exp

�
ÿ i

gx
4

ID
I0

��
Ry0;z0 cos

�
gx
4

Id
I0

�
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Figure 1. Two-wave interaction in a photorefractive crystal of the symmetry group �43m in an external electric éeld in the transverse conéguration.
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� i
m0I0Sy0;z0 � IDRy0;z0

Id
sin

�
gx
4

Id
I0

��
; (7)

where Id � (I 2
D �m2

0I
2
0 ).

It follows from the exact analytic solutions (1) and (2) of
the nonlinear system of equations of coupled waves (1) that
the polarisation and intensity of the interacting waves
change periodically over the interaction length with the
period Lxd � 2pI0=(gId). The period of spatial oscillations
depends on the intensity ratio b � IR0=IS0 of the incident
waves. In the case of small (b5 1) or large (b4 1) intensity
ratios, the values of ID=I0 and Id=I0 are independent of b,
and variations in the scalar amplitudes over the interaction
length x are determined only by the difference of the
intensities of the y and z polarisation components of the
light éeld of a strong wave (IDS or IDR). Note that the
integrals IDS and IDR, as the integral Id, are independent of
the phase relations between y and z components of the light
éeld. Therefore, the period of spatial oscillations of the
polarisation of light waves in the case of the same linear
polarisation of incident light waves coincides with that in
the case of the same elliptical polarisation of incident waves
if the intensities of the y and z polarisation components of
these waves in the érst case are equal to the corresponding y
and z polarisation components in the second case. A similar
note is also valid for the period of spatial oscillations of the
light-wave intensity. It is obvious that the same period can
be selected for different intensity ratios of the incident waves
by varying their polarisation parameters.

Consider the vector amplitudes S and R and intensities
IS and IR of the interacting light waves when waves with the
TE or TM polarisation are incident on a crystal at an angle
of �458 to the y axis. In this case, the integral ID is zero, and
fringes of the photorefractive grating do not bend over their
interaction length x. By using relations (6) and (7), we can
obtain the expressions

STE;TM �
�

I0
1� b

�1=2�
cos

�
gx
2

���
b

p
1� b

�
z �0� � y �0����

2
p

ÿ i
���
b

p
sin

�
gx
2

���
b

p
1� b

�
z �0� � y �0����

2
p

�
; (8)

RTE;TM �
�

I0
1� b

�1=2� ���
b

p
cos

�
gx
2

���
b

p
1� b

�
z �0� � y �0����

2
p

ÿ i sin

�
gx
2

���
b

p
1� b

�
z �0� � y �0����

2
p

�
; (9)

IS �
I0

1� b

�
cos2

�
gx
2

���
b

p
1� b

�
� b sin2

�
gx
2

���
b

p
1� b

��
; (10)

IR �
I0

1� b

�
b cos2

�
gx
2

���
b

p
1� b

�
� sin2

�
gx
2

���
b

p
1� b

��
; (11)

where y �0� and z �0� are the unit vectors of coordinate axes,
and the insigniécant phase factor exp�igxID=(2I0)] is omitted
in (8) and (9). One can see from (10) and (11) that for
b � 1, the intensities of light waves do not change upon

self-diffraction. The waves have elliptical polarisation at an
arbitrary interaction length. The principal polarisation axes
coincide with the coordinate axes y and z, and the ratio of
their lengths, characterising the ellipticity of the light wave,
is equal to tan (gx=4). For the reduced length gx � �p , the
light waves become circularly polarised, and the crystal
serves as a quarter-wave plate. For gx � 2p, the polar-
isation of light waves is linear and orthogonal to the
polarisation of incident waves. For gx � 4p, polarisations
of the output and input waves coincide. The éxed-éeld
approximation for a strong wave, for example, the reference
wave with IR ' I0 is valid if gx5 2(1� b)=

���
b

p
. In this case,

the signal-wave intensity increases quadratically: IS '
IS0�1� (g 2x 2=4)�.

Figure 2 shows the dependences of the intensities IS and
IR, normalised to the total intensity I0, on the reduced length
gx for different intensity ratios b of the incident waves. It
follows from Fig. 2 and expressions (10) and (11) that in the
case under study, despite the local nature of the photo-
refractive response, the efécient energy exchange can occur
between the interacting waves. The energy transfer eféciency
oscillates depending on gx. The oscillation period depends
on the ratio b, which is the characteristic nonlinearity
parameter of the given problem. The dependence of the
oscillation period on the nonlinearity parameter is typical
for nonlinear oscillation processes of different types (see, for
example, [11]). In the case considered here, the period of
spatial oscillations increases for b! 1, as in the classical
example of oscillations of a mathematical pendulum whose
period increases with increasing the nonlinearity of oscil-
lations. A speciéc feature is that nonlinearity does not cause
the broadening of the spectral band of the oscillation
process, which is typical for most nonlinear oscillatory
systems.

Figure 3 presents the dependences of the two-wave gain
G � ln�bIS(b)=IR(b)�=x on the intensity ratio b of the
incident waves for different reduced lengths gx. A speciéc
feature of the dependence G(b) is its nonmonotonic type.
This is explained by the fact that not only amplitudes but
also the spatial period of the oscillating intensity distribu-
tions of light waves change depending on b. For gx > 3:73,
this leads to the nonmonotonic dependences IS(b) and IR(b),
resulting in the nonmonotonic dependence G(b). The non-
monotonic dependence of the two-wave gain on the
intensity ratio of light beams at the input face of a crystal
is not typical for most experimental and theoretical studies
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Figure 2. Dependences of the normalised intensities of light waves on the
reduced interaction length for different intensity ratios of the waves
incident on a crystal.
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of two-wave interaction in photorefractive crystals (see, for
example, [2, 3, 12 ë 18]). The exception is experiments on the
two-wave interaction on a nonlocal photorefractive grating
in a Bi12SiO20 crystal in the external meander éeld per-
formed in [19]. However, the presence of a point of
inêection in the dependence G(b) is explained in [19] by
the inêuence of corrections to the amplitude of the érst
harmonic of the space-charge éeld, which depend non-
linearly on the modulation coefécient m of the
interference radiation pattern.

Thus, we have obtained exact solutions of nonlinear
coupled equations for the amplitudes of two light waves of
an arbitrary polarisation interacting on a local photo-
refractive grating produced in a crystal of the symmetry
group �43m in the case of the transverse conéguration of
crystal faces. The solutions show that the polarisation of the
interacting waves and the eféciency of energy exchange
between them depend periodically on the reduced inter-
action length. The period of spatial oscillations depends on
the intensity ration b of the incident waves. The periodic
dependence of the energy-exchange eféciency on the reduced
interaction length results in the nonmonotonic dependence
of the two-wave gain on the ratio b. When the intensities of
the incident waves are equal, they are conserved. In this
case, linearly polarised light waves can be transformed,
depending on the reduced length, to the waves with elliptic
(in particular, circular) and orthogonal linear polarisations.
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Figure 3. Dependences of the two-wave gain on the intensity ratio of the
waves incident on a crystal for different reduced interaction waves.
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