
Abstract. An original procedure is proposed for measuring
residual stresses by combining the methods of holographic
interferometry and probe holes. The difference of the orders
of interference fringes for pairs of points on the surface of a
body located on the directions of principal stresses is used as
primary information. The results of the test experiment on
measuring stresses in a plate deformed in the case of a simple
shear and the results of measurement of residual welding
stresses in two samples welded by a laser are presented.

Keywords: holographic interferometry, interferogram, residual
stresses, laser welding.

Residual stresses appearing during welding and stresses
caused by operational loads can produce defects and
cracks, resulting in the premature destruction of a
construction. Therefore, information on residual stresses
is very important for providing the strength and long
operating life of constructions. The calculation of residual
stresses in welds, especially, multipass welds is a compli-
cated problem, involving not only the development of an
adequate mathematical model but also the necessity of
using a great body of experimental data (for example, about
the mechanical properties of materials at temperatures close
to the melting temperature), which are difécult to obtain.
Thus, experimental methods play a considerable role in
solving such problems [1].

Residual stresses in elements of constructions are usually
measured at present by the method of probe holes [1 ë 3].
The method is based on the detection of the deformation
response of a material to a perturbation produced by a
small-diameter hole drilled in the material. The subsequent
analysis involves the solution of the inverse problem of
solid-state mechanics, namely, the reconstruction of the
initial values of residual stresses from measured deforma-
tions (displacements).

The parameters of local strains in the vicinity of a probe
hole are measured by using small-base resistance strain
gauge rosettes. However, primary information obtained in
this way is rather limited and most commonly it only
indicates the presence of residual stresses. On the one
hand, this circumstance excludes the possibility of static
statistic approaches, and on the other, it does not allow one
to estimate the adequacy of the real deformation picture to
the model used for measuring residual stresses. For this
reason, deformations in the vicinity of a probe hole should
be measured by the so-called éeld methods, among which
holographic interferometry should be singled out as a
contactless highly sensitive method for measuring displace-
ments of points on the surface of a body diffusely reêecting
radiation.

The application of holographic interferometry in earlier
papers was mainly restricted to measurements of displace-
ment éelds normal to the body surface [4, 5]. However,
information on the sphere stress tensor was lost, which is
undesirable in most cases. Later, a method was proposed for
determining residual stresses from the tangential displace-
ment components of points of a body lying directly on the
contour of a hole [6]. In the case of a perfectly drilled probe
hole, the absolute values of displacements at these points are
maximal, i.e. the sensitivity of the method is highest.
However, in reality it is the contour of a hole that is
subjected to the strongest destructive action during drilling,
which can result in practice in the local distortion of the
interference pattern, until its disappearance.

In this paper, we consider the method for measuring
residual stresses in sheet materials, which is based on the use
of primary information in the form of the difference of the
orders of holographic interference fringes for two sets of
pairs of points selected on the principal strain axes at some
distance from the contour of a probe hole. The results of
measurements of known elastic stresses in a plate are
presented.

Two-exposure reêection holograms were recorded with
the help of an optical scheme in counterpropagating beams
by illuminating the surface of a body under study by a
normally incident collimated beam. A photographic plate is
mounted in a special kinematic device, which provides its
removal from the interferometer scheme after the érst
exposure and a subsequent precision return after the drilling
of a probe hole [7].

At the érst stage of the reconstruction of two-exposure
interferograms, the observation vector is oriented along the
normal to the object surface, which is taken as the x3 axis of
the laboratory Cartesian coordinate system. In this case,

A.A. Apal'kov, A.I. Larkin, A.V. Osintsev, I.N. Odintsev, V.P. Shchepinov,
A.Yu. Shchikanov Moscow Engineering Physics Institute (State
University), Kashirskoe shosse 31, 115409 Moscow, Russia;
e-mail: Osintsev_andr@yandex.ru;
J. Fontaine Institute National de Sciences Appliquees de Srasbourg 24,
Boulevard de la Victoire 67000 Strasbourg, France;
e-mail: joel.fontaine@insa-strasbourg.fr

Received 27 September 2005; revision received 5 February 2007
Kvantovaya Elektronika 37 (6) 590 ë 594 (2007)
Translated by M.N. Sapozhnikov

PACSnumbers:42.40.Kw; 42.87.Bg; 42.62.CfHOLOGRAPHIC MEASUREMENT METHODS

DOI:10.1070/QE2007v037n06ABEH013352

Holographic interference method for studying residual stresses

A.A. Apal'kov, A.I. Larkin, A.V. Osintsev, I.N. Odintsev,
V.P. Shchepinov, A.Yu. Shchikanov, J. Fontaine

979/296 ë KAI ë 12/ix-07 ë SVERKA ë 5 ÒÑÎÑÔ ÍÑÏÒ. å 3
Quantum Electronics 37 (6) 590 ë 594 (2007) ß2007 Kvantovaya Elektronika and Turpion Ltd



interference fringes are loci of points of equal displacements
W from the plane. Because for holes of small diameters
(1 ë 2 mm), the local strained state can be considered
approximately homogeneous, the éeld of normal relaxation
displacements W has two symmetry axes coinciding with the
axes of principal residual stresses taken as the x1 and x2
coordinate axes. After the visual determination of principal
axes, two pairs of interferograms were recorded when the
observation vectors were independently oriented in planes
x1x3 and x2x3. Points in the half-space from which
observation is performed are usually speciéed in the
spherical coordinate system by the polar radius r, the
latitude c, and the longitude j. For r!1, observation
points are located at inénity, i.e. collimated observation of
the region of a probe hole is performed. The centre of this
system coincides with the centre of a hole on the surface of a
body, reconstructed in the reêection hologram. The direc-
tion angles of the observation vector corresponding to the
above-mentioned pairs of interferograms are 0, c1 and 1808,
c3, and 908, c2 and 2708, c4, respectively. The optical
scheme of a holographic interferometer is shown in Fig. 1.
The surface of a body in the region of a probe hole is
illuminated by a plane wave in the direction of the unit
vector es.

Each of the points of the surface of an object located on
axes x1 and x2 is displaced by the values D(x1) =
[U(x1); 0;W(x1)] and D(x2) � �0;V(x2);W(x2)� after drilling
a probe hole. Let us assume that an arbitrary pair of points
lying on the principal x1 axis and having coordinates (x1i, 0,
0) and (x1 j, 0, 0) is observed at an angle ck (i � 1; :::; I,

j � 1; :::; J, k � 1; :::;K ). By using the main relation of
holographic interferometry [8], we obtain two equations

U�x1i� sinck �W�x1i��1� cosck� � lN�x1i�; (1)

U�x1j� sinck �W�x1j��1� cosck� � lN�x1 j� (2)

for each of the considered points (see Fig. 1), where l is the
wavelength of light; N(x1i) and N(x1j) are the absolute
orders of fringes at points with coordinates (x1i; 0; 0) and
(x1 j; 0; 0). The directions of displacements are determined
by analysing the shape of interference fringes near the
contour of a probe hole [9]. By subtracting Eqn (2) from
(1), we obtain

�U�x1i� ÿU�x1 j�� sinck � �W�x1i�W�x1 j���1� cosck�

� l�N�x1i� ÿN�x1 j��: (3)

Equation (3) can be rewritten as

�DU1i j� sinck � �DW1i j��1� cosck� � lDN�x1i j�, (4)

where (DU1i j) and (DW1i j) are the differences of the
displacement components U(x1) and W(x1); DN(x1i j) is
the difference of the absolute orders of fringes at points
with coordinates (x1i, 0, 0) and (x1 j, 0, 0) equal to the
number of interference bands between them.
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Figure 1. Optical scheme of a holographic interferometer.
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The equation for points with coordinates (0, x2m, 0) and
(0, x2n, 0) on the principal x2 axis can be obtained similarly:

�DV2mn� sincl � �DW2mn��1� coscl� � lDN�x2mn�, (5)

where m � 1; 2; :::;M; n � 1; 2; :::;N; l � 1; 2; :::;L.
The functions U(x1);W(x1) and V(x2);W(x2) are in the

general case the sum of local displacements u(x1);w�x1) and
v(x2);w(x2), determined by the deformation in the vicinity of
a hole caused by the removal of a material, and of the
generalised rigid displacements U 0, V 0, W 0 of the object as
a whole with respect to the recording medium (photographic
plate):

U�x1� � u�x1� �U 0; W�x1� � w�x1� �W 0,
(6)

V�x2� � v�x2� � V 0; W�x2� � w�x2� �W 0:

The rigid displacements can be decomposed in a sum of
the translational and rotational components. It is obvious
that translations in the plane of the body surface are
mutually cancelled according to Eqns (4) and (5). The
translation normal to the body surface affects only the
localisation of holographic interference fringes. The con-
tributions from rotations of a body around the axis normal
to its surface are also absent because their projections on the
coordinate axes are independent of coordinates x1 and x2 in
the case of small rotation angles.

The remaining small rotations around the axis lying in
the plane of the body surface can be written in the form

W 0 � Ax1 � Bx2; (7)

where ¡ and £ are unknown constants.
Taking (7) into account, the differences of the displace-

ment components normal to the body surface assume the
form

DW1i j � Dw1i j � A�x1i ÿ x1j�,
(8)

DW2mn � Dw2mn � B�x2m ÿ x2n�:
In this connection it is necessary to point out the important
circumstance. Rotations of a body around the axis lying in
the plane of its surface violate, generally speaking, the
central symmetry of the pattern of interference fringes
caused by normal displacements. This complicates some-
what the determination of the principal directions of
residual stresses. However, the relative contribution of
these rotational components of the displacement éeld in the
vicinity of the contour of a probe hole is, as a rule, small,
and hence the symmetry of the normal component is
retained.

Within the framework of the model of an elastic
medium, the distributions of the deformation components
of differential displacements for pairs of points along the
directions of principal stresses s1 and s2 can be written in
the form

Duij � s1DFij � s2DGi j;

Dwij � s1DHi j � s2DQi j ÿ ADxi j;
(9)

Dvmn � s1DGmn � s2DFmn;

Dwmn � s1DQmn � s2DHmn ÿ BDxmn;

where DF, DG and DH, DQ are the basis functions of the
displacement difference caused by unit stresses acting along
axes x1 and x2.

For a through hole in a plate, these functions have the
analytic form [10, 11]
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where E is the elastic modulus of the plate material; v is the
Poisson coefécient; R is the hole radius; and t is the plate
thickness.

By using expressions (4), (5), and (8) ë (10), the system of
equations for determining principal residual stresses can be
written in the matrix form

ZS � Z11 Z12 Dx1�1� cosck� 0
Z21 Z22 0 Dx2�1� coscl

� �
S � lN;

(11)

where

Z11 � DFi j sinck � DHij�1� cosck�;
Z12 � DGi j sinck � DQij�1� cosck�;
Z21 � DHmn sincl � DFmn�1� coscl�;

Z22 � DGmn sincl � DQmn�1� coscl�;
S � (s1s2AB)

T is the vector of the required quantities (the
superscript T denotes transposition); and N � (DNi jDNmn)

T

is the vector of the relative orders of fringes. In the general
case, the overdetermined system of equations (11) is solved
by the method of least squares.

We tested our method for measuring principal residual
stresses by using a 70� 32� 3-mm plate made of an
aluminium alloy and loaded under conditions of a plane
stressed simple shear state: sx1 � ÿ sx2 � 70 MPa [6].
Interferograms were visualised by using the following
parameters: c � 508, j � 0, 908, 1808, and 2708. Figures 2a,
b present interferograms obtained for j � 0 and 908. The
interpretation of interferograms and solution of the
obtained system of equations give sx1 � 72 MPa and
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sx2 � ÿ78 MPa, which, within an error of �15 MPa typical
for this measurement method, well agrees with the speciéed
nominal stresses. For comparison, Figures 2c, d show
interference patterns simulated by using the above expres-
sions for stresses obtained in the given experiment. The
similarity of the corresponding experimental and calculated
interference patterns conérms the validity of our physical
model for interpretation of experimental data.

It is known that the inhomogeneity of the temperature
éeld and structural transformations caused by welding give
rise to residual stresses in the weld and its vicinity. We
studied the residual stress éelds in the vicinity of the laser
weld of aluminium sheets by testing two rectangular
samples. Sample 1 was prepared by laser butt-welding of
two 2-mm-thick plates; the weld width and thickness was 3
and 2.7 mm, respectively. Sample 2 was obtained by laser
welding of two plates of thicknesses 1.2 and 2.0 mm; the
weld width and thickness was 1.5 and 2.25 mm, respectively.

Residual stresses at each of the points were calculated by
averaging the data for holes of diameters 2 and 2.9 mm. The
difference in the measured values of stresses was within the
admissible error (�15 MPa). This means that, within the
framework of our model, stresses can be considered homo-
geneous on the basis of selected diameters of the holes. The
calculated dependences of residual stresses on the distance
to the middle of the weld are presented in Fig. 3. Curve ( 1 )
in Fig. 3a corresponds to residual stresses s1 in sample 1
directed parallel to the weld, and curve ( 2 ) corresponds to
stresses s2 in the perpendicular direction. One can see that
the stressed state is close to the uniaxial state. The maximal
tensile stress acts along the x1 axis at a distance of 3 mm
from the weld and is 164 MPa. The distributions of residual
stresses s1 and s2 along principal axes x1 and x2 are shown
in Fig. 3b by curves ( 3 ) and ( 4 ), respectively. The most

dangerous region from the point of view of strength is the
middle of the weld, where the stressed state is biaxial, with
tensile stresses s1 � 270 MPa and s2 � 62 MPa.

Thus, the procedure based on the combined use of the
methods of holographic interferometry and a probe hole
allows the measurement of residual stresses in a weld and its
vicinity for laser-welded aluminium samples with an accu-
racy of �15 MPa. The most dangerous region is the middle
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Figure 2. Holographic interferograms of a plate deformed due to the simple shear obtained for j � 0 (a) and j � 908 (b) and simulated interference
patterns calculated for j � 0 (c) and j � 908 (d).
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Figure 3. Distributions of residual stresses as functions of the distance to
a weld for two samples.
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of the weld where typical tensile stresses s1 and s2 are 270
and 62 MPa, respectively. The similarity of the experimental
and calculated interference patterns demonstrates the vali-
dity of the physical model for interpreting experimental
data.
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