
Abstract. The type of coupling in a ébre laser array phase
locked with the help of an external mirror located at the focal
distance from the plane of output ends of individual lasers is
studied analytically. The explicit expression is derived for the
eigenvalue of the resonator and the restriction on the width of
the tuning range in which laser array phase locking is
preserved is determined. The inêuence of the spread in the
optical lengths of ébres on the phase-locking eféciency is
considered. The phase-locking eféciency is analysed for the
spread of optical lengths of ébres considerably exceeding the
radiation wavelength.
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1. Introduction

The phase locking of an array of radiation sources attracts
attention of researchers developing high-power coherent
radiation sources based on semiconductor and ébre lasers.
At present the output power of single-mode semiconductor
lasers does not exceed a few watts [1]. Because the ultimate
output power of single-mode ébre lasers restricted by
nonlinear processes in the active medium is virtually
achieved [2], the possibility of further increasing the
diffraction-limited output beam power is pinned on the
use of spectral and coherent summation of laser beams.

In the case of the spectral summation of laser beams [3],
each channel generates at its own frequency, and then the
output radiation is extracted outside through a common
diffraction grating in the form of a single beam. In systems
with coherent summation, the radiation phase locking
should be provided in all channels of the system at one
collective mode frequency. Unlike the spectral summation of
beams, the phase locking of radiation in channels provides
narrowband radiation, which is necessary for some appli-
cations. In addition, the spectral summation method can be
used to further increase the output power of a system
consisting of phase-locked subsystems.

A stable phase locking can be provided by the global
(parallel) coupling of each laser in the array with the rest of
the lasers [4]. At present the most developed method of
global coupling is the selection of the collective modes of an
array by losses in some external or intracavity spatial élter.
The coherent summation of the radiation éelds of an array
of diode lasers coupled in pairs by ébre X-couplers is
described in [5, 6]. In this case, one of the outputs of the
X-coupler is used for summation of éelds, while the other
remains open (cleaved at an angle), which leads to losses.
The losses during lasing can be reduced to zero by selecting
the appropriate phase difference for the éelds at the open
output due to destructive interference. Such architecture can
be successively extended on many phase-locked lasers. Its
disadvantage is coupling out radiation of the entire array to
a single-mode ébre and unstable lasing [7].

Another method for coupling lasers, which was érst
realised in [8], is based on the Talbot effect [9]. A Talbot
élter for ébre lasers with active cores located along a circle is
made in the form of an additional circular waveguide of a
certain length [10]. It was shown in [11] that the global
coupling in the Talbot élter provides the phase locking of
radiation channels even in the case of a large spread of their
optical lengths. A disadvantage of this conéguration is its
complexity and rigid requirements to its adjustment. In [12],
preliminary results were obtained which demonstrate the
possibility of phase locking of a 19-channel ébre by means
of the two-dimensional Talbot effect in a passive ébre.

Another phase-locking method, which was proposed and
realised in [13], is based on coupling via a common
diffraction grating with the same radiation intensity dis-
tribution in different diffraction orders. However, the type
of coupling in this scheme has not been investigated in detail
so far.

The éeld distribution in the focal plane of a lens or a
mirror is the far-éeld radiation distribution. The production
of far-éeld radiation distributions of the minimum size is
one of the problems of laser technology. This size for a wide-
aperture solid-state laser was minimised in [14, 15] by
placing a limiting diaphragm in the focal plane of one of
the mirrors. The diaphragm selected the laser mode with the
minimal radius of the far-éeld distribution, suppressing
eféciently all other modes.

It was pointed out in review [16] that the coupling of an
array of lasers by means of an external resonator with a
diaphragm placed in the focal plane has the global nature.
However, such a scheme even for the ideal array has losses
because only the central maximum is used in the far-éeld
distribution, while the side orders are lost. Later, the authors
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of [17, 18] considered the use of apertures of different types
in the Fourier plane of an external resonator for various
multichannel lasers. In particular, the phase locking of an
array of CO2 lasers was achieved in [19, 20] with the help of
a system of holes in the diaphragm corresponding to
multiple maxima of the far-éeld distribution for the in-
phase mode.

The natural development of the above-mentioned
method of far-éled éltration is the use of the output
ends of the laser array itself as a selecting aperture in
the Fourier plane if the radiation distributions coincide.
Such a compound resonator was érst applied for phase
locking semiconductor lasers with ébre pigtails in [21].
Later, this method was used for phase locking ébre lasers
[22]. The aim of our paper is to analyse the global coupling
scheme based on the use of an external mirror with the
output ends of a system of active ébres located in the focal
plane of the mirror [21]. For brevity, we will call this scheme
the Fourier-resonator scheme.

2. Properties of the éeld reproduction
in the Fourier resonator

Consider a one-dimensional array of lasers with the array
period L and the aperture width 2a of each laser (Fig. 1).
The external mirror with the radius of curvature is located
at a distance of L � R=2 from the output apertures of
lasers, so that the output ends of the elements of the array
are located in the focal plane of the mirror. To decrease
diffraction losses in the direction perpendicular to the égure
plane, we propose to use a collimating cylindrical lens. We
assume for simplicity that the reêection of the radiation
éeld from the output face of each laser can be neglected, i.e.
individual ébres play the role of double-pass ampliéers with
total reêection from highly reêecting ends. In addition, the
consideration is restricted to the odd number of lasers in the
array N � 2Ne � 1.

The round-trip transit in the resonator under study,
beginning from the plane of the output ends of ébre
ampliéers, includes the transit to the mirror and backward,
then the injection of an optical image obtained from the
mirror to the system of ébre ends and the double transit
along the system of ébres. In this paper, we restrict ourselves
to analysis of a passive system, by assuming that the
reêection from the mirror and highly reêecting ends is
ideal. Because the radiation éeld returned on the ébre ends
does not coincide in the general case with the éeld emitted
from the ends, it can be represented in the form of a system

of the mode éelds of individual ébre cores and the éeld not
captured in the cores. The latter is `spread' over the entire
large aperture of the cladding and can be responsible for the
far-éeld background observed in experiments [23]. In this
paper, we treat this éeld as losses.

It is known that the Dirac comb, i.e. the functionP
m d(xÿmL) is converted after the Fourier transform

to a similar comb expressed in the Fourier variables. If
the ratio of the focal distance of the mirror to the array
period is selected properly, the returning radiation éeld in
the inénite system will be reproduced exactly. This means
that a semi-confocal resonator in the paraxial optics
approximation has a mode in the form of a comb of delta
functions. For two-dimensional periodic arrays, the delta-
function effect in the reproduction is preserved. If we now
replace the inénite array by a énite periodic structure with
the peak amplitudes having a smooth envelope, we can hope
that the array reproduction will be preserved at least
approximately. Indeed, it was shown in [24] that in the
limit of a great number of elements, the one-dimensional
comb of Gaussian beams with the common Gaussian
envelope is the mode of the construction shown in Fig. 1.

It was shown in [25] that, although the coupling in such
an array is inhomogeneous within a large system, but it
covers all the elements of the array, so that the resonator
with the Fourier self-reproduction has the only transverse
mode for which the éeld phases in all channels are identical.
Theoretical studies [24, 26 ë 28] of Fourier-coupled resona-
tors were mainly devoted to the search for functions that are
self-reproduced during the Fourier transform, i.e. are the
eigenfunctions of the external resonator. Thus, a set of
Gaussian beams with a smooth Gaussian envelope was
analysed in [27, 28]. In [27], the exact solution was obtained
for a one-dimensional inénite system with the Gaussian
envelope of éelds at the ébre output, the éeld having a
Gaussian proéle in each of the ébres. In reality, the
transverse mode distribution in a ébre laser is strictly
speciéed by the refractive-index proéle of the ébre and
vanishes in the space between ébres. It can be shown that in
this case, the exactly reproduced distributions for a énite
number of elements are absent. However, the approach
based on the approximation of real output distributions by
Gaussians and the treatment of radiation in the additional
images of apertures appearing in a énite ébre array as losses
can yield a reasonable accuracy in the case of a great
number of lasers.

Let us érst analyse qualitatively the properties of a
Fourier resonator. The radiation éeld after the round-trip
transit between the output ends of ébres and the external
mirror can be expressed in terms of the Fourier transform of
the initial distribution

F̂ �u�x�� � �ilL�ÿ1=2
�
exp

�
ÿ ikxx 0

L

�
u�x 0�dx 0, (1)

where l � 2p=k is the radiation wavelength (integration is
performed over the entire axis). If the radiation éeld
emitted by a laser array is

ue �
XNe

n�ÿNe

g�n� f �xÿ Ln� exp�ijn�

[where g(n) is the envelope of the éeld distribution over
ébres, jn is the radiation phase on the nth ébre, and f (x) is
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Figure 1. Scheme of the array of ébre lasers with a common semi-
confocal resonator.
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the mode proéle in a ébre), then the radiation éeld after the
round-trip transit is described by the expression

ur�x� �
�
ÿ i

lL

�1=2� �
f �x 0� exp

�
ÿ ikxx 0

2L

�
dx 0
�

�
XNe

n�ÿNe

g�n� exp�ijn� exp
�
ikxLn
L

�
. (2)

Expression (2) contains two functions, one of which is
the envelope appeared due to the Fourier transform of the
éeld of a beam, and the other is the array sum containing
contributions from all ébre lasers. This circumstance dem-
onstrates that the coupling in this system is global. The
array sum is an inénite periodic function with the period
lL=L coinciding with the period L of the laser array under
the condition

l0L � L 2, (3)

which is fulélled for speciéed values of L and L only for
one wavelength l0, which we will call the resonance
wavelength. When the radiation wavelength is detuned,
the period changes, so that the image of the extreme ébres
no longer falls on the ébre core. This restricts the
admissible interval of radiation wavelengths by the
expression

dlmax

l0
� a

NeL
. (4)

For the ébre array coupling to be global, the width of
the envelope determined by the Fourier transform of the
ébre mode should be of the order of the size of the ébre
array, i.e. lL=pa � NeL. This condition and equality (3)
impose the restriction

amax �
L
pNe

(5)

on the maximum half-width of the aperture of one element.
Thus, the élling factor of the emitting aperture should
decrease with increasing the size of the laser array. A
similar requirement appears in the global coupling scheme
in a circular Talbot élter [29]. According to restriction (5),
the admissible wavelength range decreases inversely propor-
tional to the square of the number of ébres in the array:
jdlmaxj � l0=(pN

2
e ).

The array sum in (2) for the resonance wavelength l0
determines the proéle of the éeld injected into ébres. The
envelope g(n) for a énite laser array has the width of the
order of 2NeL. In the limit of a great number of ébres and
the absence of the phase spread, the proéles of the éelds
injected into individual ébres will be described approx-
imately by the continuous Fourier transform of the envelope
g(n), which has the width of the order of l0L=(pNeL) �
L=(pNe) ' a. The required decrease of the élling factor of
the emitting aperture with increasing the number of ébres
leads to the redistribution of the far-éeld radiation power
from the zero to side orders, which should be corrected by
using additional external optics.

The random spread of phase shifts appearing after the
double passage of radiation in ampliéers results in a change
in the array sum. Below, we analyse the eféciency of the in-

phase mode selection in the case of random phase shifts in
ébres.

3. Effect of the phase spread in ébres
on the Q factor of the Fourier resonator

To analyse the éeld distribution at the end of each ébre, it
is convenient to approximate it by a Gaussian beam
um(x) � exp�ÿ(xÿ Lm)2=a 2�, where m is the number of the
element. In this case, the éeld returning at the ampliéer
input is described by the expression

ur�x� � �ilL�ÿ1=2 exp
�
ÿ
�
pax
lL

�2 �

�
XNe

n�ÿNe

g�n� exp
�
ijn ÿ 2pin

Lx
lL

�
. (6)

The fraction of radiation exciting ébre modes is determined
by the overlap integral between the éeld returned to the
laser array and mode éeld of the mth waveguide. The
Gaussian envelope in expression (6) weakly varies at the
aperture of each of the ébres if the number of ébres is large.
We will calculate the overlap integral by neglecting
variations of the envelope. In this case, the amplitude Pm

of the mode excited in the mth ébre has the form

Pm � �ÿ2iNa�1=2 exp
�ÿ �amNa�2

�
�
XNe

n�ÿNe

g�n� exp �ijn ÿ �naNa�2 ÿ 2inma 2Na

�
. (7)

Here, Na � pa 2=(lL) is the Fresnel number for a beam
from one element and a � L=a is the inverse élling factor of
the array. In fact, Pm is the effective reêection coefécient of
the mirror taking into account the condition of the éeld
entry into ébre cores. Condition (3) of the coincidence of
the array sum period with the laser array period L in these
variables has the form

a 2Na � p. (8)

Under condition (8), expression (7) takes the form

Pm � aÿ1
�

2

ip

�1=2

exp
ÿÿ pNam

2
�

�
XNe

n�ÿNe

g�n� exp ÿijn ÿ pNan
2
�
. (9)

If the envelope of the éelds emitted by ébres is taken in the
form �exp (ÿm 2L 2=D 2�, where D is the half-width if the
envelope, then, under the condition a � pD=L, is repro-
duced in the returned éeld. In the general case, the envelope
shape changes after the double passage of radiation in the
system of active ébres, for example, due to the gain
saturation. However, the condition of the exact reproduc-
tion of the envelope is not necessary. It is sufécient only
that the array sum would give the éeld proéle close to the
mode proéle in the ébre.

The factor Pm describes the redistribution of éelds in the
Fourier resonator. The round-trip transit in the system is
closed by the double passage of the returned éeld over the
ébre array. This passage in a passive system results in the
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multiplication of each of the éeld amplitudes Pm by the
factor exp (ijm), where jm is the phase shift in a ébre minus
an integer number of 2p because the leakage of the éeld
from ébre core can be neglected. In this case, the eigenvalue
of the round-trip transit operator under the condition
a � pD=L can have the form

g �
�

2

ip

�1=2 L
D

XNe

n�ÿNe

exp

�
ijn ÿ

2n 2L 2

D 2

�
. (10)

The transformation of the returned éeld in the case of
the phase spread is illustrated in detail in Fig. 2, where the
éeld proéles jurj � (I=Imax)

1=2 on the period L [i.e. the array
sum in (6)] are presented for the array of éve ébres by
approximating the element mode by a Gaussian beam. It
was assumed that the condition a � pD=L is fulélled and
the envelope half-width is D � 2L. The latter means that the
envelope height for the extreme ébre is e times smaller than
that for the central ébre. The distributions are constructed
for different values of the mathematical dispersion of phases
jn measured from the phase of the central ébre (for the
same random sampling). One can see that for the phase
dispersion of the output éeld � 1 rad, the returned éeld
distribution strongly differs from the Gaussian proéle, and
for the random sampling used, the éeld virtually does not
fall in the aperture of the ébre core, which well corresponds
to the peak for the zero spread.

Experiments [23] have demonstrated the insensitivity of
the output radiation of the array of seven ébre lasers in the
Fourier resonator to a change in the optical length of one of
the ébres. Expression (10) can be used to estimate the
dependence of the resonator Q factor on the phase shift
in ébres. Figure 3 shows the modulus of the eigenvalue g of
the round-trip transit operator normalised to its value in the
absence of the phase spread as a function of the phase
mismatch in separate elements. The calculation was per-
formed under the same conditions as in Fig. 2. One can see
from Fig. 3 and expression (10) that the extreme elements
affect the mode stability considerably weaker than the
central ones, so that the standard phase dispersion poorly
characterises the system behaviour. Expression (10) for the
eigenvalue contains the weight function exp (ÿ 2n 2=N 2

e ).
For this reason, we will characterise the random spread of

phases in channels by the phase dispersion with this weight
function

sw �
�

1

Nep

�1=2� XNe

n�ÿNe

�jn ÿ j0�2 exp
�
ÿ 4n 2

N 2
e

�
ÿ 1

2Ne

�
� XNe

n�ÿNe

�jn ÿ j0� exp
�
ÿ 2n 2

N 2
e

��2�1=2

. (11)

Figure 4 presents the modulus of the eigenvalue g for the
array of éve ébres normalised to its value in the absence of
the phase spread as a function of the phase dispersion sw for
several sets of random numbers. One can see that the phase
spread � 1 rad can reduce the eigenvalue approximately by
half.

The spread of the optical lengths of ébres used in lasers
can amount to hundreds of wavelengths, which should cause
at érst glance a complete degradation of the system ope-
ration. However, experiments [22, 23] have demonstrated
the stability of phase locking seven ébre lasers in the Fourier
resonator when the equality of ébre lengths was not con-
trolled. Effects of the same type were observed in the
coherent summation schemes with distributed 2� 2 [6]
and 4� 4 [7] couplers as a well as upon phase locking
with the use of the Talbot coupling in a ring multichannel
ébre laser [11].

ÿ0:4 ÿ0:2 0 0.2 �xÿmL�=L

�I=Imax�1=2
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Figure 2. Normalised distributions of the éeld over the period L
returned to the éve-ébre array for phase dispersions of beams emerged
from ébres equal to zero (solid curve), 0.4 rad (dashed curve), 0.8 rad
(dotted curve), and 1.2 rad (dot-and-dash curve).
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Figure 3. Moduli of the eigenvalue of the resonator with éve (solid
curves) and seven (dashed curves) ébres normalised to unity at zero as
functions of the phase detuning in one element. The numbers denote the
element number; zero corresponds to the centre.
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Figure 4. Moduli of the eigenvalue of the resonator with éve ébres as
functions of the phase spread of éelds emitted by ébres for four different
sets of random numbers.
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It seems that the mechanism underlying spontaneous
phase locking occurring in the case of the global coupling
with a large spread of the optical lengths of channels was
érst described in [14]. It consists in the self-tuning of the
generated radiation frequency to the value providing the
maximum Q factor of a compound resonator. Because the
array of globally coupled lasers has the only transverse
mode, the frequency is tuned due to a high density of the
spectrum of longitudinal modes, which is typical for ébre
lasers. In this case, the laser emits at the frequency
corresponding to the minimal losses in the resonator.

If losses at several frequencies within the ampliécation
band of the active medium are approximately equal, jumps
can occur between them, resulting in the spike-mode
oscillation [7]. It should be expected that the same mech-
anism of the laser frequency self-tuning is also possible in
the Fourier resonator. However, it should be taken into
account that the éeld reproduction effect in the Fourier
resonator depends on the radiation wavelength. As pointed
out above, the wavelength interval where this effect is
preserved upon detuning from the resonance is determined
by the inequality jdlmaxj=l0 4 (pN 2

e )
ÿ1. Figure 5a shows the

dependence of the square of the modulus of the eigenvalue
on the detuning from the resonance dl=l0 for the ideal
system (jn � 0). Because the wavelength dependence of the
éeld reproduction effect is caused by a change in the array
period of returned beams, the fraction of radiation returning
to the extreme ébres decreases to the greatest degree
(Fig. 5b). The narrowing of the wavelength spectrum in

which the self-reproduction occurs can restrict the possi-
bility of tuning the radiation frequency to the point of the
maximum Q factor of the resonator.

We calculated jgj by expression (10) with random phases
jn described by the relation jn � 4pnmoddLn=l (nmod is the
mode refractive index and dLn is the difference of lengths of
the nth and central ébres). Figure 6 presents the values of
jgmaxj2 calculated for random samplings for arrays of seven
and éfteen ébres and dlmax=l0 � 6:6� 10ÿ3. On the abscissa
the dispersion sw of the phase shift after the double passage
of radiation in ébres is plotted, which was calculated with
the weight function exp (ÿ 2n 2=N 2

e ) by expression (11).
Each point corresponds to the calculated maximum square
of the eigenvalue. One can see that the maximum Q factor of
the resonator within the ampliécation band is also a random
quantity, which depends on the particular random sampling
of the optical lengths of ébres.

It follows from Fig. 6 that the Q factor of the Fourier
resonator in the limit of a large spread in optical lengths
increases on average with increasing the dispersion of the
phase difference and decreases with the number of ébres.

Of interest is the dependence of jgmaxj2 averaged over all
random realisations on the dispersion of the phase spread.
The problem for the homogeneous global coupling is
reduced to the search for the maximum of the quantity
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Figure 5. Square of the modulus of the eigenvalue (a) and the fraction of
radiation injected into the extreme element (b) as functions of the
normalised detuning of the radiation wavelength for different numbers
of elements in the array (numbers at the right) and the zero phase spread
for elements.
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Figure 6. Square of the maximum eigenvalue modulus within the
spectral band dlmax=l0 � 0:0066 as a function of the weighted dispersion
sw of the phase difference of éelds in ébres appeared after the double
passage of radiation in the resonator with seven (a) and éfteen (b) ébres.
The solid curves are approximations by the function �w� y ln sw�=N,
where w and y are constants.
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jgj2 / Nÿ2
����XN
n�1

exp�ijn�
����2,

where N is the number of channels. This problem was
solved in [14], where it was shown that the average
maximum value of jgj2 tends asymptotically in N to the
dependence of the type �const� ln (Nsjdlmax=l)�=N (dlmax

is the ampliécation bandwidth and sj is the standard phase
dispersion). It was pointed out in [29] that the problem of
phase locking multichannel ébre lasers with circularly
located cores and a circular élter is reduced to the same
problem. As pointed out above, the coupling between
channels in the Fourier resonator is global but contribu-
tions from different channels prove to be different.
Therefore, analysis performed in [14] is inapplicable to
the Fourier resonator. Not solving here the problem of
énding asymptotics in the number of channels, we veriéed
the fulélment of the approximation of hNjgmaxj2i by the
function w� y ln s, where w and y are the approximation
parameters. This approximation proved to be quite
satisfactory in the case of a large phase spread. Figure 7
shows the dependence of the coefécient y on the number N
of elements. For the ampliécation bandwidth used in
calculations, the phase locking of a seven-channel laser is
virtually ideal, whereas the coupling eféciency for a éfteen-
channel laser decreases approximately by half.

4. Conclusions

We have studied analytically in the paraxial approximation
the phase locking of radiation of a one-dimensional laser
array in the Fourier resonator. It has been found that phase
locking is violated upon detuning from a certain resonance
wavelength inherent in the given system. By approximating
optical ébre modes by Gaussian beams, we have derived the
explicit expression for the eigenvalue of the round-trip
transit operator, which determines the fraction of radiation
returned from the external mirror into ébre cores. The
spread of the optical lengths of ébres results in the increase
in the in-phase mode lasing threshold. The rate of decrease
of the effective reêection to the cores of ébres caused by the
spread of their optical lengths has been analysed. It has
been found that the wavelength self-tuning in the amplié-
cation band of the active medium results in the increase in
the phase-locking eféciency with increasing the spread of
the ébre lengths. Our analysis has shown that a one-

dimensional chain containing up to 15 ébre lasers can be
eféciently phase-locked.
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Figure 7. Dependence of the approximation parameter y on the number
N of phase-locked ébres.
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