
Abstract. The rate of linear collisionless absorption of an
electromagnetic radiation in a nanoplasma ë classical elec-
tron gas localised in a heated ionised nanosystem (thin élm or
cluster) irradiated by an intense femtosecond laser pulse ë is
calculated. The absorption is caused by the inelastic electron
scattering from the self-consistent potential of the system in
the presence of a laser éeld. The effect proves to be appre-
ciable because of a small size of the systems. General
expressions are obtained for the absorption rate as a function
of the parameters of the single-particle self-consistent
potential and electron distribution function in the regime
linear in éeld. For the simplest cases, where the self-consistent
éeld is created by an inénitely deep well or an inénite charged
plane, closed analytic expressions are obtained for the
absorption rate. Estimates presented in the paper demon-
strate that, over a wide range of the parameters of laser
pulses and nanostructures, the collisionless mechanism of
heating electron subsystem can be dominant. The possibility
of experimental observation of the collisionless absorption of
intense laser radiation in nanoplasma is also discussed.
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1. Introduction

The development of high-power femtosecond lasers over
the past 10 ë 15 years has stimulated new experimental
studies of the interaction of various nanosystems with an
intense electromagnetic radiation. As nanosystems, metal or
atomic clusters of diameter from a few to hundreds of
nanometers are widely used which contain from several tens
to tens of millions of atoms (see reviews [1 ë 3]). Thin élms
are also used in experiments, though rarely than clusters [4].
Short laser pulses with intensities of 1014 ÿ 1021 W cmÿ2

induce internal ionisation in nanosystems to form a plasma
with the mean electron energy from tens to tens of
thousands of electron-volts. A part of electrons escape
from the system (external ionisation), producing an

uncompensated charge that traps the rest of the plasma,
which then evolves within a énite volume until the decay of
the ion core of a nanobody. The characteristic expansion
time of the electron subsystem is hundreds of femtoseconds
and more [see estimate (2) below]. Thus, a new physical
object appears on the femtosecond time scale ë a dense hot
electron plasma localised on a nanometer spatial scale, the
so-called nanoplasma [5, 6]. At present, physical properties
of nanoplasmas are being extensively studied both theo-
retically and experimentally.

A high absorptivity in the optical and IR ranges is one of
the most important properties of nanoplasmas in a strong
laser éeld. It has been shown experimentally that nano-
plasma absorbs laser radiation much more eféciently (per
atom) than gaseous target, macroplasma, or a solid [5]. The
efécient absorption of laser radiation leads to fast heating of
the electron subsystem, and as a result, the nanoplasma
becomes a source of high harmonics, characteristic X-rays,
and fast-ion and multicharged-ion emission. At present,
these effects and their possible practical applications are
being extensively studied (see papers [2 ë 4] and references
therein).

The high absorptivity of a nanoplasma observed in an
intense laser éeld was interpreted by using several different
mechanisms such as the inverse multiphoton retardation
effect [5 ë 7], vacuum heating [8, 9], stochastic heating [10],
etc. In this work, we consider a collisionless absorption
mechanism based on the electron interaction with the self-
consistent éeld of a nanostructure in the presence of the
alternating electric éeld of the laser wave. The collisionless
absorption effect was érst considered by Landau in 1946. He
showed that the longitudinal electromagnetic waves prop-
agating in an inénite plasma can be damped without
collisions [11, 12] (Landau damping). As a rule, the colli-
sionless absorption occurs through the so-called resonance
particles. In the case of linear Landau damping in an inénite
plasma, the resonance condition has the form [11, 12]

kv � o, (1)

where o Ë k are, respectively, the frequency and wave
vector of the longitudinal wave, and v is the electron
velocity. These particles move in phase with the wave and
can receive from or impart to it nonzero time-averaged
energy. In a énite-size plasma, the collisionless absorption
acquires qualitatively new features, which were érst
examined in [13] for a homogeneous layer of a classical
(nondegenerate) plasma and in [14] for small cold spherical
metal particles. The main qualitative result is that the
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collisionless absorption mechanism can dominate due to the
intense electron interaction with the system boundary. The
electron collision with boundary is nothing but its
interaction with a self-consistent potential. To avoid con-
fusion, we emphasise that by a collisionless absorption is
meant the absence of pair collisions or their insigniécance,
whereas the collisions with boundary are signiécant; rou-
ghly speaking, they are the physical reason for the effect.

Recently, the collisionless energy absorption in laser-
heated clusters and thin élms has become the subject of
extensive theoretical studies [15 ë 22]. In particular, it has
been shown that the width of the Mie resonance in clusters
can be determined by the frequency of electron collisions
with the cluster boundary rather than by the electron ë ion
collision frequency. In [15], the collisionless absorption rate
was calculated for the limiting case of a very high laser-éeld
intensity, when the amplitude of electron-cloud oscillations
exceeds the cluster radius. In this case, the interaction with
the ion core can be taken into account in the érst Born
approximation, whereas the interaction with the laser éeld
can be treated exactly. The absorption proves to be
essentially nonlinear in éeld and strong enough, because
each electron is scattered by the whole ion core rather than
by individual ions.

Another limiting case corresponding to relatively weak
éelds, for which the amplitude of electron-cloud oscillations
is small compared to the system size, so that the absorption
regime is linear, was considered in [17] and [18] for thin élms
and spherical clusters, respectively. This regime occurs in a
wide range of parameters, so that even the radiation of
intensity 1017 W cmÿ2 can be weak for the systems tens of
nanometers in size. A similar problem of the collisionless
damping of an electromagnetic wave in a hot homogeneous
plasma layer was solved in [19] for one of the limiting cases
where the frequency of electron collisions with layer
boundaries is small compared to the laser frequency. For
the case where the self-consistent éeld modeling plasma can
be approximated by the potential of an inénitely deep
rectangular well, closed expressions for the energy absorp-
tion rate and the imaginary part of the dielectric constant
were obtained in [17 ë 19].

Finally, the collisionless energy absorption was studied
in [20 ë 22] by using the model of a nonlinear oscillator
describing laser-induced oscillations of an incompressible
electron cloud. It was shown that the absorption becomes
strong when the amplitude-dependent Mie frequency
becomes close to the laser frequency. The conclusions drawn
in these works are in qualitative agreement with the results
of numerical computations carried out in [22].

The estimates based on the analytic expressions [13, 17 ë
19] and the numerical results obtained in [22] indicate that
the Landau damping can play an important role in plasma
heating and even dominate it for the femtosecond laser
pulses with intensities of 1014 ÿ 1016 W cmÿ2 and thin élms
(clusters) of size less than 100 nm.

In this work, the theory formulated in [17, 18] is
developed. The linear collisionless absorption rate in a
classical nanoplasma representing one-dimensional (élm)
and three-dimensional (spherical cluster) systems is calcu-
lated and studied as a function of the shape of the self-
consistent potential and the form of the electron distribution
function. The results, in particular, can be used to discuss
the experimental manifestations of the collisionless absorp-
tion effect.

2. Statement of the problem

The electron plasma is produced in a nanostructure due to
internal ionisation at the laser pulse front. Due to the
energy absorption, plasma is heated and a part of electrons
escape from the system (external ionisation). For not too
small clusters (thin élms) of size a ' 10 nm and not too
strong radiation éelds with intensity I ' 1014ÿ
1016 W cmÿ2, most of the electrons remain trapped and
form a nanoplasma, which exists, at least, for hundreds of
femtoseconds, until the system decays due to the Coulomb
explosion [23]. Ions and trapped electrons form the self-
consistent potential having the oscillating component in
the laser éeld. If the core of the system is formed by ions of
mass mi and average charge Zi, the characteristic expansion
time of ions is [24]

ti �
�

mi

e2ntrZiZ

�1=2
, (2)

where e is the elementary charge; ntr � niZ(1ÿ Z) is the
average concentration of trapped electrons; Z is the degree
of external ionisation of the system; and ni is the ion
concentration. For a cluster consisting of xenon atoms, for
ntr ' 5� 1022 cmÿ3, Zi � 4, Z � 0:1, estimate (2) gives
ti � 300 fs. Therefore, on the time scale of tens of
femtoseconds, the plasma trapped in a élm or a cluster
can be treated as stationary with the time-independent
electron concentration n 0

e (r). Strictly speaking, the function
n 0
e (r) should be found by solving simultaneously the

Boltzmann equation for the distribution function and the
Poisson equation for the electric potential. In this work, we
do not consider this problem, assuming that the self-
consisted potential and concentration are known functions.
Note that the time ti (2) weakly depends on the cluster size
(the size dependence enters through the degree Z of external
ionisation; for small clusters, it is higher, all factors being
the same). The dependence of ti (2) on the mass mi of
plasma ions makes the stationary-nanoplasma approxima-
tion inapplicable to light clusters (D2, D2O), whereas the
same approximation applies nicely to heavy elements (Ar,
Xe, metal clusters) up to hundreds of femtoseconds.

Laser éeld excites various vibrational modes of a nano-
plasma. For small spherical bodies (a5 l, where l is the
laser radiation wavelength), these modes were found in [19]
for the case that the plasma oscillations can be described in
the hydrodynamic approximation. However, the hydro-
dynamic description, in general, does not apply to the
problem considered, because it is valid under the condition
a4 l0, where l0 is the mean free path*. In nanostructures
subjected to the intense laser éeld, the ratio between the
system size and the mean free path is often reverse. We
assume here that the electron cloud executes small-ampli-
tude oscillations without deformation, i.e., that only a
surface plasmon is excited. The necessary condition for
the incompressible-liquid approximation to properly
describe the electron-cloud oscillations is that the amplitude
x0 of these oscillations should be small compared to the
system size: x0 5 a. Moreover, one of the two additional
requirements is to be met: either a relative change in the

*Strictly speaking, the hydrodynamic equations can apply to plasma in the
opposite limit a� l0 [25] as well. However, this requires fuléllment of
some additional conditions that strongly narrows the range of laser éeld
and nanoplasma parameters.
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equilibrium electron density inside the system be small, or
the laser frequency o be large enough: o4opD, where
opD � �4pZnie 2k=(Dme)�1=2 is the plasmon frequency depen-
ding on the dimensionality D of a nanostructure; k is the
fraction of electrons trapped in the ion core; and me is
electron mass. In the latter case, the electric éeld inside the
system is little different from the external laser éeld and,
hence is almost uniform.

Note that the high-frequency limit is of particular
interest in studying the nanoplasma interaction with intense
electromagnetic radiation. For instance, upon the interac-
tion of thin semiconductor élms with the optical or IR laser
radiation of intensity 1013 ÿ 1014 W cmÿ2, the initially
empty conduction band is gradually élled with electrons
due to multiphoton absorption. In this case, plasma heating
in the conduction band occurs under the condition o4opD,
and the élm fails upon reaching resonance [26]. Further-
more, free electron lasers were recently used to fabricate
coherent radiation sources with a photon energy of 10 ë
15 eV and intensity up to 1013 W cmÿ2. The experiments
performed with these sources on the interaction of such
éelds with clusters [27, 28] revealed an anomalously strong
UV absorption. Obviously, the condition is also met for
photons with energies 10 ë 15 eV.

Under the action of an external linearly polarised laser
éeld of strength

E�t� � E0 cos�ot� a� (3)

the electron cloud oscillates with the amplitude

x0 �
eE0

me

��o 2 ÿ o 2
pD�2 � 4G 2o 2

�1=2 . (4)

The resonance width G is caused by various relaxation
processes, including the collisionless Landau damping.
Beyond the resonance, joÿ opDj4 1, amplitude (4) is
ordinarily small compared to the system size a. As an
example, we consider a cluster (D � 3) with radius a ' 10
nm and mean electron concentration ne ' Zini ' 1023 cmÿ3.
The relevant energy of the surface plasmon (Mie resonance)
is �hop3 � �hoMie � 6 eV, so that the linear resonance is not
achieved for the radiation from a Ti : sapphire laser with
frequency o � 1:55 eV. Expression (4) gives x0 ' 1 nm, i.e.,
a value an order of magnitude smaller than the radius even
for the radiation with intensity I � 5� 1016 W cmÿ2. This
estimate demonstrates that, beyond the resonance, the
approximation linear in the external éeld adequately
describes the electron-cloud oscillations even for high
éeld intensities. Near the resonance, this approximation
can become inadequate. Below, we assume that the
condition x0 5 a is fulélled.

The laser-energy absorption rate Q is equal to the time-
averaged work executed on electrons by the internal electric
éeld. The variable éeld component inside the nanoplasma is
the sum of the laser and induced éelds. In the linear and
dipolar approximations, the relation between the internal
and applied éelds can be found with ease. We illustrate this
by the example of a one-dimensional system (élm) in the
éeld of linearly polarised laser radiation (3). In the approx-
imation of an incompressible electron cloud, its dis-
placement x0 5 a in the direction perpendicular to the

élm plane obeys, under the condition x(t), the equation
of a harmonic oscillator

�x� 2G1
_x� o 2

p1x � ÿ
eE0z

me

cos�ot� a�. (5)

The angles specifying the polarisation and éeld-propagation
directions are shown in Fig. 1. The solution to Eqn (1) has
the form

x�t� � ÿ eE0z

me

��o 2 ÿ o 2
p1�2 � 4G 2

1o 2
�1=2 cos�ot� a� b�,

(6)

sin b � ÿ 2G1o��o 2 ÿ o 2
p1�2 � 4G 2

1o
2
�1=2.

Assuming that the electron distribution in the élm is close
to uniform and the damping is small (G1 5o, op1), we
obtain the expression for the internal-éeld strength:

E�t� � 4penex�t�ez � E0 cos�ot� a�

� EE0? cos�ot� a� � ezEz cos�ot� aÿ d�,
(7)

EE0? � E0?, Ez �
E0z��1ÿ o 2

p1=o
2�2� 4G 2

1 =o
2
�1=2 ,

Ep

z

x

x

w

z

x

y

y

k

Es
E0 � Es � Ep

Figure 1. Geometry of the problem for a one-dimensional system (élm).
The external (laser) éeld is directed along the wave vector k at the angle y
to the z axis perpendicular to the élm. The electric vector E0 is directed at
the angle w to the x axis; Es is the E0 component in the élm plane xy, and
Ep is the E0 component parallel to the z axis.
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sin d �
�
op1

o

�2
sin b,

where ez is the unit vector along the z axis. The absorption
rate of electromagnetic radiation energy by a dielectric layer
of thickness a per unit surface is [29]

Q1 � ÿaP _E0 , (8)

where P � ÿenen(t) is the dipole moment per unit volume.
By using (6 ë 8), we obtain the relationship between the
energy absorption rate and the damping constant in a one-
dimensional system:

G1 �
4pQ1

aE 2
z

o 2

o 2
p1

. (9)

For the spherically symmetric systems, calculations are
analogous (see also [18]). In this case, the relationship
between the damping constant and the energy absorbed in a
unit time by the cluster has the form

G3 �
Q3

a 3E 2
0

o 2

o 2
p3

. (10)

Thus, by using (9) and (10) and the calculated linear
absorption rate Q, we can énd the damping constant G,
which determines, in particular, the width of a surface
plasmon. Below, the collisionless energy absorption rate and
the corresponding damping constant are denoted by the
small letters q and g, while the rate Q and the constant G
take into account all possible absorption mechanisms.

3. General expression for the absorption rate

A nanoplasma heated to temperatures of tens of electron-
volts and over is a purely classical system (in particular,
nondegenerate). Nevertheless, the simplest method of
calculating the linear absorption rate is based on the
quantum-mechanical perturbation theory. Of course, the
énal result does not contain Planck's constant.

In the self-consisted éeld approximation, the nano-
plasma can be described in terms of N electrons
occupying one-particle levels in a potential well. The
interaction with the wave éeld induces electron transitions
between the one-particle levels, with photon absorption or
emission. The éeld energy absorbed by plasma in a unit time
is proportional to the difference between the numbers of
absorbed and emitted photons multiplied by the photon
energy:

q � N�ho
X
n; k

r�En��wÿn k ÿ w�n k�, (11)

where wÿn k and w�n k are the electron-transition probabilities
between the levels with quantum numbers n and k,
accompanied, respectively, by the absorption or emission
of one photon with frequency o. The index n denotes the
full set of quantum numbers for the level; e.g., n � fnr; l;mg
for the spherical cluster, where nr, l, and m are the radial,
orbital, and magnetic quantum numbers, respectively.
Clearly, the absorption per unit surface is meaningful for
the élm. The quantum electron-energy distribution function

r(En) is normalised to unity. Considering that w�n k � wÿk n
[see (14)], we obtain from (11)

q � N�ho
X
n; k

�
r�En� ÿ r�Ek�

�
wÿn k. (12)

Consider the simplest case of a one-dimensional system,
where n is characterised by a single principal quantum
number n (thin élm homogeneous in the transverse direc-
tion). The electric éeld strength inside the élm is given by
expression (7). The electron ë éeld interaction operator is

V̂int�r; t� � ÿeEE�t�r

� ÿeE�t��x cos w� y cos y sin w� z sin y sin w�. (13)

The angles w and y are shown in Fig. 1. To the érst order of
the perturbation theory,

w�n k �
pe 2E 2

0

2�h

��hkjzjnij2d�Ek ÿ En � �ho� sin 2 y sin2 w. (14)

According to the selection rules for electric dipole
transitions, kÿ n � 2s� 1, s � 0,�1,�2, ... . In the limit
n, k4 1, the quantum numbers and the quantum distri-
bution function r(En) can be expressed through the classical
quantities according to the Bohr ë Sommerfeld theory,

X
n

!
�
dn �

�
dE

�hO�E�, Ek ÿ En � �hO�En��2s� 1�,

r�E� � �hO�E�f1�E�, (15)

where O(E) � �hÿ1dE=dn � 2p=T (E) is the frequency of
electron oscillation with energy E in the unperturbed self-
consistent potential U(z); f1(E) is the classical electron
distribution function normalised as

�
dE f1(E) � 1. This

function is assumed to not be necessarily equilibrium.
For this reason, by the temperature Te below is meant the
mean electron energy. The matrix element in (14) can be
replaced by the Fourier component of the corresponding
classical quantity [30]:

hkjzjni ! zs�E� �
O�E�
2p

� T �E�

0
z�E; t� exp�i�2s� 1�O�E�t�dt, (16)

where z(E; t) is the classical trajectory of an electron with
energy E. By using (14)-(16) and taking into account that
the typical electron energies are far greater than the photon
energy, i.e., Te 4 �ho, we obtain from (9) and (12) [17]

g1�o��ÿ
pme

2
o 3
X
s

jzs�Es�j2
���� qO�E�qE

����ÿ1����
E�Es

d

dE

�
f1�E�O�E�

�����
E�Es

.

(17)

Here, the summation is performed over all roots of the
equation

�2s� 1�O�Es� � o. (18)

The meaning of condition (18) is clear: the nonzero
contribution to the absorbed energy comes from only
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those electrons whose oscillation period in the well with
potential U(z) is equal to the odd number of laser periods.
Therefore, as in the case of waves in an inénite plasma, only
resonance particles absorb, so that condition (1) is the
analog of expression (1) for the énite system with size
smaller than the radiation wavelength. In the absence of
collisions, there is no reason for the phase interruption
upon electron motion in the self-consistent potential, the
contributions from many periods to the work of laser éeld
are coherent, which provides a basis for condition (18). Any
decoherence mechanism, including pair collisions, scattering
from local-éeld êuctuations, and diffuse boundary con-
ditions, renders absorption possible also for the particles
with energies lying in a vicinity of the resonance energy Es.

In the case of three-dimensional geometry (spherical
cluster), the calculations are similar to those presented
above. The distinctions amount to the inclusion of angular
motion. The corresponding computational details are given
in Appendix 1. For the spherical cluster, the damping
constant is expressed by

g3�o��ÿ
pmeo

3

12

X
s

�Mmax

Mmin

M dM

�R��E;M �
sO�E;M�

���� qU��E;M �qE

����ÿ1

�
�
o

q
qE
� q
qM

��
O�E;M� f3�E;M �

����
E�E�s

� R
ÿ�E;M �

sO�E;M�
���� qUÿ�E;M �qE

����ÿ1�o q
qE
ÿ q
qM

�

��O�E;M � f3�E;M �����
E�Eÿs

�
. (19)

Here, the classical energy and angular-momentum distri-
bution function is related to the quantum distribution
function r(Enr ; l ) by the expression

f3�E;M � �
2r�Enr ; l �

�h 3O�E;M � . (20)

The functions R�(E;M ) are deéned by

R��E;M � �
����O�E�p

� T=2

0
r�E;M; t� cos�ot� f�E;M; t��dt

����2,
(21)

where r(E;M; t) and f(E;M; t) are the time-dependent radial
coordinate and the azimuthal angle of a classical particle
with energy E and angular momentum M. The functions
U�(E;M ) have the form

U��E;M � � O�E;M �
�
1� Df

2ps

�
. (22)

Here, O�E;M ) � 2p=T (E;M ) is the frequency of electron
radial oscillations in the self-consistent potential U�r�, and

Df �
�

2

me

�1=2
M

� rmax

rmin

dr

r 2
�
EÿU�r� ÿM 2=�2mer

2��1=2
is the increment in the azimuthal angle per period*. The
sum in (19) goes over all roots E�s (M ) of the equation

sU��E�s � � o, (23)

which generalises (18) to the case of a spherically symmetric
three-dimensional system.

Note that the sum over s � nr ÿ n 0r in Eqn (19) [as also
the corresponding sum in (17)] cannot be represented in the
form of integral even in the classical limit. The latter is
possible only if the separation between the neighboring
resonance levels [solutions to Eqns (18) and (23)] is smaller
than the mean electron energy and its dispersion in the well.
For the self-consistent potential in the form of an inénitely
deep rectangular well, the resonance levels become close to
each other in the low-temperature limit Te 5meo

2a 2

(Appendix 2). This situation is considered in detail in
[17, 18].

Expressions (17) and (19) are the main results of this
work. They can be used to estimate the rate of linear
absorption of the intense laser radiation in a nanoplasma.
Despite the fact that the system under consideration is
purely classical and the absorption rate does not involve
Planck's constant, the method of calculation based on the
quantum-mechanical perturbation theory proved to be the
simplest*. The same results can be obtained directly by the
classical mechanics methods, but this involves more cum-
bersome calculations, particularly for D 6� 1.

4. Discussion

The expressions obtained above can be used to calculate the
rate of linear collisionless absorption of laser radiation in a
hot nanoplasma, provided that the form of the electron-
trapping self-consistent potential and the distribution
function are known. The determination of these quantities
is a separate problem that requires numerical solution of
the kinetic equation, which is beyond the scope of this
work. We consider below the qualitative features of the
collisionless absorption in a énite-size classical plasma using
the simple model expressions for the self-consistent
potential and the distribution function.

In Appendix 1, the damping constant g(o) is calculated
for the one- and two-dimensional inénitely deep rectangular
wells and for the éeld created by a charged inénite plane
(`triangular' potential). The latter situation corresponds to
the ionised homogeneous thin élm in the case that electrons
reside, for the most part, beyond the ion core. The electron
velocity distribution is assumed to be Maxwellian with
temperature Te. The results of calculations are shown in
Figs 2 and 3. For the one-dimensional rectangular well, the
result exactly coincides with that obtained in [13]. One can
see that dependence of the damping constant on the
dimensionless variable (for the rectangular well) is virtually
the same for the systems of different dimensionality. The
dependence on the form of the self-consistent potential is of
particular interest. In the rectangular well, g � T

ÿ3=2
e at high

temperatures, Te 4T0 � me�oa� 2, and g � T
1=2
e at Te 5

T0. In the éeld of a charged layer (Fig. 3), the damping
constant decreases at high temperatures somewhat slower:
g � T

ÿ3=2
e lnTe, and it is exponentially small at low temper-

atures: g � exp�ÿp 2=(8y 2)�, where y � o0(meTe)
1=2a=U0 (see

*For a three-dimensional harmonic oscillator and Coulomb éeld,
Df � 2p, and expression (19) is greatly simpliéed. However, the self-
consistent éeld in a heated cluster is obviously different from the éelds in
these simplest cases, so that there is no reason to discuss them in this work.

*The situation considered in this work is no exception. For instance, the
dielectric constant of a high-temperature classical magnetised plasma was
calculated in [31] also using the quantum-mechanical perturbation theory.
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Appendix 2). Such a distinction can easily be understood:
the energy absorption is determined by the contribution
from the resonance levels, while their positions are deter-
mined by the level density in the well, i.e., by the function
O(E). In the rectangular well, the energy spectrum becomes
sparse with increasing energy, whereas, in the triangular
well, this happens with a decrease in energy. For this reason,
the damping constant in the triangular well decreases
exponentially in the low-temperature limit, when the dis-
tribution function is localised near the bottom of the well. In
the inénite plasma, the behavior of the Landau damping
constant is similar, provided that the condition o4 kBvT is
fulélled, where kB is the Boltzmann constant and vT is the
electron thermal velocity [12].

In the low-temperature limit vT=(oa)5 1, electron
absorbs in a single collision with the wall the energy of
the order of its ponderomotive energy in the internal laser
éeld. This result is well known [13]. Interestingly, this result
is obtained only for a deep rectangular well. One can see
from the results obtained in Appendix 2 that the behavior of
the damping constant in the éeld of a charged plane is quite
different even in the high-frequency limit.

We now consider the dependence of the absorption rate
on the form of the electron distribution function. The
electron thermalisation in nanoplasma is controlled by
the electron ë electron collision frequency,

vee �
4
������
2p
p

3

e 4 neLC

m
1=2
e T

3=2
e

, (24)

where LC is the Coulomb logarithm. For ne ' 1022 cmÿ3

and Te ' 1 keV, one has the estimate nee � 1013 sÿ1, which
indicates that the thermalisation time can be comparable to
the laser pulse duration. It follows that, by changing the
pulse and target parameters, one can obtain nanoplasma
with both Maxwellian and nonequlibrium electron distri-
butions. Note that, upon transition to a nonequilibrium
distribution with a small dispersion, the damping constant
becomes more sensitive to the form of the resonance
condition. One can see in Fig. 4 that, with a decrease in the
distribution width, peaks arise on the curve g(o). Similar
structures were observed in the analysis of the collisionless
absorption in cold énite systems with the Fermi distribution
[32]. The absorption peaks are clearly seen if the energy
distribution is narrow: D9dEs � jEs�1 ÿ Esj, where D is the
distribution width. The positions of the maxima of g1(o) in
the rectangular well are E � me(oa)

2=2, E � 9me(oa)
2=2,

E � 25me(oa)
2=2 ... , which coincide with Es in Eqn (18) for

s � 0, 1, 2, ... . Here, E is the electron mean energy corre-
sponding to the given distribution. The érst resonance is
seen even for the Maxwellian distribution (Fig. 2).

5. Conclusions

At least two effects considered in this work can be observed
in the experimental studies of the interaction of intense laser
pulses with the thin-élm and cluster targets. First, the
collisionless absorption of laser radiation can serve as an
efécient mechanism of plasma heating. Let us show that
this is possible under the conditions typical of the present-
day experiments. The interaction of 10-nm clusters with
pulses of intensity I ' 1016 W cmÿ2 results in the primary
(internal) atomic ionisation and formation of a nanoplasma
with the mean electron energy of 200 ë 300 eV. In obtaining
this estimate, one should take into account that the typical
drift energy of a photoelectron ionised by a linearly
polarised laser éeld is Edr � (E0=Ea)Up, where Ea is the
characteristic atomic-éeld strength and Up � e 2E 2

0 =(4meo
2)

is the electron ponderomotive energy in a linearly polarised
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Figure 2. Damping constants for one-dimensional (solid line) and three-
dimensional (dashed line) systems with a self-consistent potential simu-
lated by a deep rectangular well.
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Figure 3. Damping constant for the one-dimensional system in the éeld
of a charged plane.
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Figure 4. The damping constants for various electron distribution
functions. One-dimensional system with inénitely deep rectangular
potential is taken as an example. The functions r�E� � exp�ÿ2E=Te�
(dashed line) and r�E� � exp�ÿ10E=Te� (solid line) were used as model
distribution functions.
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éeld with amplitude E0 [33]. Using expressions (A2.17) and
(10) and setting ne�1023 cmÿ3 and t ' 100 fs for the pulse
duration, one obtains the following estimate for the mean
energy absorbed by one electron during the pulse:

DE ' qt
N
' 103 eV. (25)

For a 10-nm thick élm irradiated with a femtosecond pulse
of intensity I ' 1015 W cmÿ2, the analogous estimate using
expressions (A2.4) and (9) yields DE ' 102 eV. Both
estimates are in qualitative agreement with the experiment
and the results of numerical simulation [4, 5]. For the
above-mentioned parameters, the ratio vT=(oa)5 1,
because the damping constant is derived from the linear
portion of the curves in Fig. 2*.

Second, the constant g(o) gives an estimate for the
contribution of the collisionless damping mechanism to the
width of the plasma resonance (the Mie resonance). By
using the relation between q and g [see (10)], we obtain with
the above-mentioned parameters of laser pulse and cluster:

�hg ' 0:4 eV. (26)

This estimate agrees well with the width of the linear Mie
resonance; it can be obtained by the numerical simulation
of cluster evolution in an intense laser éeld [34]. Thus, we
can conclude that the collisionless absorption mechanism
makes an appreciable, if not the main contribution to the
heating rate of electron nanoplasma and to the width of
surface plasmon for the nanosystems of size 10 nm and
smaller irradiated by the femtosecond pulses with intensities
I ' 1014 ÿ 1016 W cmÿ2.

Nevertheless, the above estimates can be considered as
an indirect evidence of the crucial role of the collisionless
damping in hot plasma. The question now arises of the
possibility of a direct experimental observation of this effect.
The following possibilities are noteworthy. First, the colli-
sionless damping in a homogeneous thin élm arises only
upon the excitation of plasma oscillations in the direction
perpendicular to the élm plane. As a result, the collisionless
absorption rate becomes proportional to sin 2y sin 2w [see
(13) and Fig. 1] for an arbitrary orientation of the wave
polarisation about the élm surface; i.e., the absorption
associated with the énite size of the élm is possible only
for the p-polarised wave component. Since the mean energy
of electrons arisen from the élm irradiation is proportional
to the absorbed laser energy, this energy is expected to
depend on the polarisation degree of the radiation. More-
over, because the various secondary processes in a
nanoplasma (formation of multicharged ions, X-rays and
UV radiation) arise mostly due to hot electrons, the
eféciency of these processes is expected to depend on the
polarisation of the incident radiation. Such dependences
were observed in [4], where it was found that the X-radiation
output for the p-polarised wave is several times greater than
for the s-polarised wave. Repetition of the experiment [4]
with the aim of analysing these dependences can provide a
quantitative estimate for the collisionless damping effect.

Second, to observe the damping effect, its dependence on
the nanobody size can be used. Indeed, if the condition
vT 5oa is fulélled (which is easily realised for thin élms and

clusters; see estimates above), the rate of energy absorption
by an electron changes in inverse proportion to the body
size, irrespective of its dimensionality. For this reason, the
collisionless energy absorption mechanism becomes inefé-
cient for the systems of size 100 nm and over. The
dependence of the mean electron energy on the élm thick-
ness was observed in [4] upon the élm irradiation by the
femtosecond pulses with intensity I ' 1015 W cmÿ2. The
dependence of the absorption rate on the system size can be
observed by irradiating the oriented nonspherical nano-
targets with femtosecond pulses and measuring the
dependence of electron mean energy in the spectrum on
the target orientation.

Finally, the width of surface plasmon can be measured
as a function of the parameters of laser pump pulse in the
pump-probe experiment. The pump pulse produces nano-
plasma in a thin élm or cluster, while the weak probe pulse
of several tens of femtoseconds in duration is scattered by
nanoplasma with a controlled delay after the pump pulse.
By varying the delay time, one can control the value of opD

at the instant of interaction, to achieve linear resonance and
measure its width. The parameters of the pump pulse
determine the properties of nanoplasma and, in particular,
its electron temperature. Thus, one can determine the
temperature dependence of the plasmon width and compare
it with the results of calculations by expressions (17) and
(19).

Note that these results are mostly qualitative. This is
caused by the fact that many factors governing the nano-
plasma dynamics in the éeld of an intense electromagnetic
radiation cannot be taken into account within the frame-
work of a simple analytic model. A more thorough study of
the collisionless absorption of laser radiation in nanoplasma
can be carried out only on the basis of numerical simulation
with allowing for the realistic form of the self-consistent
potential, the distribution function, the nonstationary char-
acter of interaction (ion-core expansion, electron evapo-
ration from the system), and the contribution from the
nonlinear processes. The model formulas obtained in this
work can be used for the numerical estimates and qualitative
analysis of the results of numerical simulation.
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Appendix 1. Derivation of expression (19)

For a spherically symmetric system (cluster), the energy
absorption rate (12) is given by the expression

q � pe 2E 20o
2

N
X
nr; l;m

X
n 0r; l 0;m 0

jhnrlmjr cos yjn 0rl 0m 0ij2

�� r�E� ÿ r�E 0��d�Eÿ E 0 ÿ �ho�. (A1.1)
*For a � 10 nm, o � 1:55 eV, and Te � 10 eV, vT=�oa� � 0:1.
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The level energies E(nr; l ) depend on the radial (nr) and
azimuthal (l ) quantum numbers; the interaction operator
has the form V̂ � ÿeEE0 r cos (ot); and the quantisation axis
is chosen along the direction of éeld polarisation.

Using the properties of 3j-symbols [30], one can calculate
the sum over magnetic quantum numbers in (A1.1):

X
m;m 0
jhlmj cos yjl 0m 0ij2 � l� 1

3
dl l 0ÿ1 �

l

3
dl l 0�1

� l

3

ÿ
dl l 0ÿ1 � dl 0 l 0�1

�
. (A1.2)

Next, by using the standard quasi-classical representation
of the radial wave functions, one obtains for the radial
matrix element [35] the following expression:

hnr; l jrjn 0r; l� 1i

� O�E;M �
p

� p=O

0

r�t� cos�ot� f�E;M; t��dt, (A1.3)

where M � �hl is the classical angular momentum;
O(E;M ) � �hÿ1(qE=qnr)l is the frequency of radial oscilla-
tions of a particle in the self-consistent potential U(r); and
f(E;M; t) is the azimuthal rotation angle of the trajectory.
Expression (21) is obtained from (A1.3).

Let us go from the summation over the radial quantum
numbers nr, n

0
r in (A1.1) to the summation over nr and

s � nr ÿ n 0r. In the classical limit, the levels are closely
spaced, so that the sum over nr can be replaced by the
integral over energy and calculated using the relation

d�Eÿ E 0 � �ho�

� �hÿ1d
�
O�E;M ��nr ÿ n 0r� �

1

�h

�
qE
ql

�
nr

�lÿ l 0� � o
�
. (A1.4)

As a result, we obtain expressions (19 ë 23).

Appendix 2. Damping constant for model
potentials

Let us obtain the damping constant g(o) for the simplest
potentials using (17) and (19) and assuming the Gibbs'
electron distribution with temperature Te in the well:
r(E) � Zÿ1(Te) exp (ÿ E=Te). In this case,

f1�E� �
exp�ÿE=Te�
O�E�Z1�Te�

, Z1�T � �
�

dE
O�E� exp�ÿE=Te�;

f3�E;M � �
exp�ÿE=Te�

O�E;M �Z3�Te�
, (A2.1)

Z3�T � �
�
dE
�
MdM

exp�ÿE=Te�
O�E;M � .

One-dimensional rectangular well. In the case of a one-
dimensional inénitely deep rectangular well of width a one
has

O�E� � p
a

�
2E
me

�1=2
and the solutions of (18) take the form

Es �
meo

2a 2

2p 2�2s� 1�2 .

Expressions for the matrix elements (16) and the normal-
isation constant for the distribution function in (A2.1) are,
respectively,

jzs�E�j2 �
8E

p 2meo 2
, Z1�Te� � a

�
meTe

2p

�1=2
, (A2.2)

so that expression (17) gives

g1 �
64

p 6x 3
o
X1
s�0

exp
�ÿ 4=

�
p 3�2s� 1�2x 2

�	
�2s� 1�5 ,

x �
�

8Te

pmeo 2a 2

�1=2
� vT

oa
. (A2.3)

This formula follows also from the expression for the
imaginary part of the dielectric constant of a homogeneous
plasma layer [13]. The limit x5 1 corresponds to cold
plasma in a relatively wide well, so that the sum in (A2.3)
can be replaced by integral. As a result, we obtain

g1 � ox. (A2.4)

This limiting case corresponds to the linear portion of the
curves in Fig. 2. In the opposite high-temperature limit, the
exponential factor in (A2.2) can be set equal to unity. Then

g1 � 0:13
o
x 3

. (A2.5)

Field of a charged plane. In the case when the self-
consistent éeld is created by a charged inénite plane
(triangular well), we have

U�z� � U0

���� za
����. (A2.6)

In this case,

O�E� � pU0

2a

1

�2meE�1=2

and the expression for the roots of Eqn (18) takes the form

Es �
p 2U 2

0 �2s� 1�2
8meo 2a 2

.

Then

jzs�E�j2�
32E

p 4�2s�1�4meo 2
,

Z1�Te��
a

pU0

ÿ
2pmeT

3
e

�1=2
. (A2.7)
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Substitution of these expressions into (17) gives

g1�o� � 2

�
2

p

�1=2 o
y 3

X1
s�0

exp
�ÿ p 2�2s� 1�2=�8y 2��

2s� 1
,

y � o�meTe�1=2a
U0

. (A2.8)

As in the case of rectangular well, the damping constant is a
function of one variable. The function g1( y�=o is shown in
Fig. 3. In the limiting cases of large and small y, expression
(A2.8) is simpliéed:

g1 � 2

�
2

p

�1=2 o
y 3

exp

�
ÿ p 2

8y 2

�
, y� 1, (A2.9)

g1 �
�
2

p

�1=2 o
y 3

ln

� ���
8
p

y

p

�
, y� 1. (A2.10)

The érst of these expressions corresponds to cold plasma in
a deep well, and the second, to high temperatures.

Spherical well. In the case when the self-consistent cluster
potential is simulated by an inénitely deep spherical well

U�r� � 0; r4 a;
1; r > a;

�
it is convenient to pass to new variables in (19) ë (23)

m � arctan

�
a 2

b 2
ÿ 1

�1=2
, z �Mo

2E

�
a 2

b 2
ÿ 1

�1=2
,

b �
�

M 2

2meE

�1=2
,

where a is the cluster radius. By using these variables, we
obtain

O�m; z� � po
z

, (A2.11)

R��m; z��b 2

z 2
cos 2m

��
1� tan m

z

�
sin z� tan m cos z

�2
, (A2.12)

U��m; z� �
po
z

�
1� 1

j

m
p

�
, (A2.13)

where j is an integer. Equation (23) takes the form

z � �m� p j. (A2.14)

The normalisation constant for the distribution function
in (A2.1) is

Z3�Te � �
�2meTea

2�3=2
6
���
p
p . (A2.15)

Substituting expressions (A2.11) ë (A2.15) into (19), one
obtains

g3 �
64o
p 2x 5

� p=2

0

dm sin 9m cos m
�X1

j�0
exp

�
ÿ 4 sin 2m

px 2�p j� m�2
�

� 1

�p j� m�7 �
X1
j�1

exp

�
ÿ 4 sin 2m

px 2�p jÿ m�2
�

1

�p jÿ m�7
�
. (A2.16)

The dependence of this function on the dimensionless
variable x is illustrated in Fig. 2. In the low-temperature
limit, the sums in (A2.16) can be replaced by integrals,
whereupon the following expression is obtained for the
damping constant [18]:

g3 �
1

2
ox. (A2.17)
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