
Abstract. A single-mode microstructured ébre for the mid-IR
region based on silver halide crystals is fabricated for the érst
time. It is shown theoretically and experimentally that the
ébre is virtually single-mode at a wavelength of 10.27 lm and
has optical losses equal to 2 dB mÿ1. It is demonstrated that
crystal microstructured ébres offer a number of advantages
compared to common ébres made of silver halide crystals. A
broad transparency window of these materials (2 ë 20 lm)
makes promising the use of these ébres in spectroscopy and in
nonlinear ébre devices for the mid-IR region.
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1. Introduction

Microstructure ébres represent a new class of optical ébres
with unique properties and the great potential for
applications. For example, a microstructured ébre allows
one to obtain the single-mode regime at a considerably
greater area of the mode éeld than in a usual ébre, thereby
reducing the eféciency of nonlinear processes [1]. By
varying the geometrical parameters of the ébre, it is pos-
sible either to increase dispersion considerably or to êatten
the dispersion curve [2]. The zero-dispersion wavelength can
be varied in a broad range [3, 4]. The rapid recent
development of the technology of microstructured crystal-
line ébres for the visible and near-IR regions stimulated the
development of microstructured crystalline ébres for the
mid-IR range [5].

In this paper, we report the fabrication and study of a
microstructured ébre for l � 10:6 mm made of silver halide
crystals. The solid solutions of silver halides AgClxBr1ÿx
(where 04 x4 1) are transparent in the region between 2.5
and 20 mm. As x increases, the refractive index of

AgClxBr1ÿx decreases almost linearly from 2.16 to 1.98.
These materials are used to fabricate êexible, nontoxic, and
nonhygroscopic multimode ébres with minimal optical
losses a � 0:1 dB mÿ1 at a wavelength of 10.6 mm [6].
They are used in IR spectroscopy, radiometry, and for
laser energy transmission [7]. However, attempts to fabricate
a high-quality single-mode ébre from silver halides with low
losses have not met with success so far [8].

The fabrication of a microstructured crystalline ébre is
an important step in the development of IR ébres because
such a ébre can operate in the nearly single-mode regime
with a large mode-éeld area.

2. Structure simulation

We analysed the properties of a silver halide micro-
structured crystalline ébre by using the CUDOS MOF
Utilities program developed at the Sidney University
(Australia) [9]. The program uses the multiplicative
calculation method, which is faster than other methods
and allows the calculation of leaky losses of the mode
related to the geometrical structure [10, 11]. We simulated
the periodic structure consisting of cylindrical inserts of
diameter d � 41:6 mm with the refractive index n1 � 2:075
equal to the refractive index of AgCl0.5Br0.5. The inserts are
arranged hexagonally in the matrix with the refractive index
n2 � 2:132 equal to the refractive index of AgCl0.2Br0.8; the
distance between the insert centres was L � 59:5 mm. This
structure maintained nine modes. The érst mode had the
efécient refractive index neff � b=k0 (b is the propagation
constant and k0 is the wave number in vacuum) for which
Re neff � 2:1302 Ë Im neff � 7:48� 10ÿ12, which corre-
sponds to the leaky losses a � 1:9� 10ÿ5 dB mÿ1. The
losses were calculated by the expression
a � (20=ln10)2p=lImneff � 106, where the wavelength l
was measured in micrometers. The losses for high-order
modes were considerably higher. For example, the second-
order mode losses were approximately 125 dB mÿ1. Such
high losses should prevent the propagation of high-order
modes even over short distances (�1 m) in the ébre.

3. Single-mode microstructured crystalline ébre

The preform for a microstructured crystalline ébre made of
a solid AgCl0.2Br0.8 solution was 12 mm in diameter. It had
holes drilled to form two concentric circles. The holes were
arranged in the hexagonal order with a distance of 1.43 mm
between their centres. The AgCl0.5Br0.5 rods of diameter
1 mm with the refractive index lower than that of the
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preform were inserted into holes. The microstructured ébre
was fabricated from the preform by extrusion through a die
of diameter 500 mm from an evacuated chamber.

Figure 1 shows a photograph of the microstructured
ébre end. The average diameter of inserts was d � 45 mm
and the average distance between their centres was L �
62 mm. The diameter of inserts in the ébre was somewhat
larger that that in the preform (d=L � 0:73 versus
d=L � 0:7). The ébre core diameter was �79 mm. To avoid
the propagation of cladding modes, the beginning and end
of the ébre were covered with a polymer with a carbon éller,
which strongly absorbs in the IR region. To prove that the
ébre fabricated in this way is a single-mode one in fact, we
performed two experiments.

In the érst experiment, the CO2 laser radiation was
focused to the ébre core by a ZnSe lens with a focal distance
of 30 mm. This radiation had the following parameters: the
TEM00 mode, l � 10:2744 mm (the 10R16 line), the output
power �5 W, the laser beam diameter less than 6 mm, the
beam divergence less than 4.2 mrad, and the polarisation
degree 90%. The calculated diameter of the focal spot was
69.5 mm. The radiation power at the ébre output was
measured with a mercury ë cadmiumë telluride (MCT)

detector (Opto-Electronic Components, KR208-FSMA2-
GI) sensitive in the region from 8 to 14 mm.

The far-éeld radiation distribution was obtained by
scanning the radiation éeld by the detector at the distance
L1 � 60 cm from the ébre end. The near-éeld distribution
was obtained by scanning the radiation éeld by a single-
mode ébre coupled with the detector along the end of the
microstructured ébre at the distance L2 � 50 mm (Fig. 2).
The diameter of the core of the single-mode step-index ébre
was 40 mm. The cladding modes of this ébre were sup-
pressed by the absorbing silver layer covering the ébre clad-
ding. The results of scanning are presented in Figs 3 and 4.

In the second experiment, the laser radiation was
coupled to the microstructured ébre through a multimode
ébre with the core and cladding diameters of 900 and
1000 mm, respectively. We also measured the far- and near-
éeld radiation distributions. These distributions, as in the
érst experiment, were described by a Gaussian and were
independent of the radiation coupling conditions, i.e. of the
distance between the multimode and single-mode ébres and
the angle between them. Thus, we have demonstrated
experimentally that the 10.27-mm radiation propagates in
the microstructured crystalline ébre in the single-mode
regime because no higher-order modes were observed in
the far- and near-éeld radiation distributions.

Optical losses in the microstructured crystalline ébre
measured by the `cut-back' method for the ébre of length 2.5
m were 2:0� 0:8 dB mÿ1. These losses considerably exceed

Figure 1. Photograph of the microstructured crystalline ébre end of
diameter 500 mm.
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Figure 2. Scheme for measuring the near-éeld radiation distribution.
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Figure 3. Experimental far-éeld radiation distribution (squares) appro-
ximated by a Gaussian (solid curve).
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theoretical losses due to scattering and absorption at the
matrix ë insert interfaces. The maximum power at the ébre
output was �3 W. No damage of the ébre was observed in
this case.

4. Conclusions

A microstructured ébre for the mid-IR region has been
fabricated for the érst time. It has been shown exper-
imentally that this ébre is in fact single-mode for the 10.27-
mm radiation, in accordance with numerical calculations.
Further efforts will be directed to improve the matrix ë
insert interface in order to reduce scattering and absorption
losses.

Microstructure crystalline ébres are quite promising for
the transfer of high-power laser radiation because the mode-
éeld area in them can considerably exceed that in usual
single-mode crystalline ébres. Microstructure ébres for the
mid-IR region with a small-diameter core and controlled
dispersion value can be used in nonlinear-optical devices
operating in the mid-IR spectral region.
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Figure 4. Experimental near-éeld radiation distribution (squares)
approximated by a Gaussian (solid curve).
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