
Abstract. The interaction of few-cycle laser pulses propagat-
ing in an isotropic nonlinear medium is studied theoretically.
A system of nonlinear Maxwell's equations is integrated
numerically with respect to time by the énite difference
method. The interaction of mutually orthogonal linearly
polarised 0.81-lm, 10-fs pulses is considered. Both the instant
Kerr polarisation response and Raman inertial response of the
medium in the nonlinear part of the medium are taken into
account. The spectral shift of the probe pulse caused by the
cross-action of the reference pulse is studied. The spectra of
the interacting pulses are studied for different time delays
between them and the shifts of these spectra are obtained as a
function of the time delay.

Keywords: femtosecond laser pulse, nonstationary stimulated
Raman scattering, spectral shift, énite difference method.

1. Introduction

Nonstationary stimulated Raman scattering (SRS) of few-
cycle femtosecond laser pulses (FLPs) opens up fundamen-
tally new possibilities for studying elementary excitations in
condensed media. The use of FLPs of duration t0 shorter or
equal to the period Tm of molecular vibrations in a medium

t0 4Tm �
2p
Om

, (1)

where Om is the frequency of molecular vibrations of the
medium, allows one to study the vibrational dynamics of
molecules. For example, the Stokes frequency shift in fused
silica is Om=(2p) � 13:05 THz and the Raman line width is
DOm=(2p) � 31 THz. Therefore, condition (1) is fulélled for
a Gaussian femtosecond pulse of duration t0 � 10 fs and
the spectral width 44 THz.

The physics of interaction of few-cycle FLPs with a
medium involves a number of speciéc features. When

inequality (1) is valid, the spectral width of the exciting
pulse exceeds the Stokes shift:

Do0 � tÿ10 5Om. (2)

For this reason, there is no need to use biharmonic
pumping to excite molecular vibrations and a Raman
resonance can be excited by a few-cycle FLP because the
Stokes component shifted by the molecular vibrational
frequency is contained in the spectrum of the pulse itself.
In this case, SRS represents a peculiar Raman self-action.
The excitation of molecular vibrations leads to the redis-
tribution of energy in the FLP spectrum, resulting in the red
shift of the pulse spectrum [1, 2].

The use of few-cycle FLPs also permits the control of the
amplitude and phase of molecular vibrations. Of interest is
also the interaction of such FLPs in an isotropic nonlinear
medium (from the point of view of controlling the amplitude
and phase of molecular vibrations of the medium). For
example, as shown in [2], if a medium is irradiated by two
femtosecond pulses, the second, probe, pulse being delayed
by time Dt with respect to the érst, reference, pulse, then
depending on Dt, the second pulse can enhance or weaken
molecular vibrations excited by the érst pulse and change
their phase. It is obvious that in this case the energy
distribution in the probe pulse spectrum will be also a
function of the time delay between pulses. Namely, depend-
ing on Dt, the spectral shift of the probe pulse will be
determined by either only the Raman self-action of the
probe pulse itself or the Raman self-action of the probe
pulse and the cross-action of the reference pulse on the
probe pulse. The latter will result in the additional red shift
of the probe pulse spectrum [3]. It is obvious that, if the time
delay Dt greatly exceeds the period of molecular vibrations
Tm, the cross-action of the reference pulse on the probe
pulse can be neglected.

The nonlinear interaction of the probe (Stokes) pulse
with the pump pulse propagating in fused silica was
theoretically studied in the slowly varying amplitude
(SVA) approximation in [3]. The dependences of the spectral
shift of the Stokes pulse on the medium length were
obtained taking into account the cross-action of the
pump pulse on the Stokes pulse. The Stokes and pump
pulse durations were longer than or equal to 100 fs.

It is shown in [4] that, when a subpicosecond soliton with
the central wavelength located in the region of anomalous
group-velocity dispersion propagates in fused silica, the red
shift of the pulse spectrum caused by Raman self-action is
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inversely proportional to the fourth power of the pulse
duration and directly proportional to its energy. According
to the results obtained in [5], when a femtosecond pulse with
the central wavelength located in the region of normal
group-velocity dispersion propagates in fused silica, the red
shift of the pulse spectrum is inversely proportional to the
third power of the pulse duration and directly proportional
to its energy.

Note that the theoretically correct description of the
propagation of few-cycle laser pulses in an isotropic non-
linear medium is of current interest because the duration of
such pulses is shorter than the period of molecular
vibrations of the medium and the pulse response of the
medium contains the most complete information on relax-
ation processes proceeding in it.

The nonlinear propagation of a femtosecond pulse was
studied in papers [3 ë 5] within the framework of the SVA
approximation. However, for few-cycle laser pulses consid-
ered here, the usual concept of the pulse envelope in invalid.
For this reason, a new approximation, which is more correct
than the SVA approximation, was developed recently to
describe the propagation of pulses consisting of no more
than ten éeld cycles (which are called few-cycle pulses). The
equations describing the evolution of the electric éeld of a
pulse rather than of its envelope are derived and analysed
within the framework of this approximation [6, 7].

At the same time, great recent interest in the use of énite
difference methods of direct numerical integration with
respect to time for studying femtosecond processes is
explained by the fact that such an approach allows one
to simulate quite simply a number of phenomena in the
nonlinear optics of few-cycle laser pulses based only on
information about the optical properties of a medium itself.
This model is quite universal and permits the simulation of
the simplest case of free space as well as different combi-
nations of nonlinear and dispersion media [8 ë 16].

In this paper, we studied theoretically the interaction of
few-cycle laser pulses propagating in fused silica. A system
of nonlinear Maxwell's equations was integrated numeri-
cally with respect to time by the énite difference method.
Linearly polarised pulses with equal central frequencies and
mutually orthogonal polarisations were considered. The
evolution of the spectra of the interacting pulses was studied
for different time delays Dt between them and the depend-
ences of the shift of these spectra on Dt were obtained. The
time delay between the interacting pulses was varied in
calculations from ÿ20 to 40 fs.

2. Mathematical model of the nonlinear
interaction of linearly polarised FLPs
with mutually orthogonal polarisations

We will describe the propagation of orthogonally polarised
plane wave packets in an isotropic nonlinear dispersion
medium within the framework of the system of Maxwell's
equations for the strengths of electric (Ex, Ey

) and magnetic
(Hy, Hx) éelds

qDy

qt
� qHx

qz
,

qHx

qt
� 1

m0

qEy

qz
, (3)

qDx

qt
� ÿ qHy

qz
,

qHy

qt
� ÿ 1

m0

qEx

qz
. (4)

The relation between the electric éeld strengths Ex, Ey

and electric inductions Dx, Dy is determined from the
constitutive equation in which the linear dispersion of
the medium and the Kerr and Raman nonlinearities are
consistently taken into account:

Dy � e0Ey � PyL � PyNL, (5)

Dx � e0Ex � PxL � PxNL, (6)

where PyL, PxL and PyNL, PxNL are the linear and nonlinear
parts of the polarisability of the medium, respectively.

As an isotropic nonlinear dispersion medium, we con-
sider fused silica used for fabricating single-mode ébres for
communication lines.

It is known that the linear susceptibility w �1� of fused
silica is described by the expression [17]

w �1��o� � n 2�o� ÿ 1 �
X3
i�1

bio
2
i

o 2
i ÿ o 2

, (7)

where b1 � 0:6961663; b2 � 0:4079426; b3 � 0:897479; l1 �
0.0684043 mm; l2 � 0:1162414 mm; l3 � 9:896161 mm; and
li � 2pc=oi:

According to (7), the linear response of the medium is
described by the expressions

PxL; yL�o� � e0
X3
i�1

bio
2
i

o 2
i ÿ o 2

Ex;y�o�

� P1xL; 1yL�o� � P2xL; 2yL�o� � P3xL; 3yL�o�. (8)

The system of equations (8) can be represented by the
system of differential equations

1

o 2
i

q 2PiyL

qt 2
� PiyL � e0biEy�t�, (9)

1

o 2
i

q 2PixL

qt 2
� PixL � e0biEx�t�, (10)

where i � 1, 2, 3.
Equations (9) and (10) describe the linear dispersion

properties of the medium in the transparency band accord-
ing to the classical Lorentz model.

Taking into account the Kerr and Raman nonlinearities,
the nonlinear response of the medium can be represented in
the form

PxNL�t� � e0Ex�t�
� t

ÿ1
w �3��tÿ t�E 2

x �t�dt

� e0Ex�t�
� t

ÿ1
w �3��tÿ t�E 2

y �t�dt, (11)

PyNL�t� � e0Ey�t�
� t

ÿ1
w �3��tÿ t�E 2

y �t�dt

� e0Ey�t�
� t

ÿ1
w �3��tÿ t�E 2

x �t�dt, (12)

where w �3�(t) � w �3�0 g(t); w �3�0 is the Kerr nonlinearity coefé-
cient;
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g�t� � ad�t� � �1ÿ a�gR�t�; (13)

gR�t� �
t 21 � t 22
t1t 22

exp

�
ÿ t

t2

�
sin

t

t1
; (14)

a � 0:7 is the dimensionless coefécient determining the
contribution of the Kerr nonlinearity to the total nonlinear
contribution to the nonlinear polarisation of the medium;
d (t) is the Dirac delta function; gR(t) is the Raman response
of the medium; t1 � 12:2 fs; and t2 � 32 fs.

The érst terms in the right-hand side of Eqns (11) and
(12) describe the self-action of pulses, while the second terms
describe their cross-action. According to (11) and (12), the
nonlinear response of the medium caused only by the Kerr
inertialless nonlinearity can be written in the form

PxKNL�t� � ae0w
�3�
0 E 3

x �t� � ae0w
�3�
0 Ex�t�E 2

y �t�, (15a)

PyKNL�t� � ae0w
�3�
0 E 3

y �t� � ae0w
�3�
0 Ey�t�E 2

x �t�, (15b)

while the nonlinear response of the medium caused only by
the Raman inertialless nonlinearity is described by the
expressions

PxRNL�t� � e0�1ÿ a�w �3�0 Ex�t�

�
� � t

ÿ1
gR�tÿ t�E 2

x �t�dt�
� t

ÿ1
gR�tÿ t�E 2

y �t�dt
�
, (16a)

PyRNL�t� � e0�1ÿ a�w �3�0 Ey�t�

�
� � t

ÿ1
gR�tÿ t�E 2

y �t�dt�
� t

ÿ1
gR�tÿ t�E 2

x �t�dt
�
. (16b)

Let us introduce new additional functions Sx(t) and Sy(t)
corresponding to the convolution integrals

Sx�t� �
� t

ÿ1
gR�tÿ t�E 2

x �t�dt,
(17)

Sy�t� �
� t

ÿ1
gR�tÿ t�E 2

y �t�dt,

whose Fourier transforms can be written in the form

Sx�o� � gR�o�f
�
E 2
x �t�

�
, Sy�o� � gR�o�f

�
E 2
y �t�

�
, (18)

where

f
�
E 2
x;y�t�

� � �1
ÿ1

E 2
x;y�t� exp�ÿjot�dt ;

gR�o� �
o 2

R

o 2
R � j2odR ÿ o 2

; (19)

oR �
�
t 21 � t 22
t 21 t

2
2

�1=2
; dR �

1

t2
; (20)

1=(2pt1) � 13:05 THz is the optical phonon frequency of
the medium; and t2 is the average phonon lifetime.

Therefore, the Fourier transforms of the functions Sx(t)
and Sy(t) can be written in the form

Sx�o� �
o 2

R

o 2
R � 2jodR ÿ o 2

f
�
E 2
x �t�

�
,

(21)

Sy�o� �
o 2

R

o 2
R � 2jodR ÿ o 2

f
�
E 2
y �t�

�
.

One can see from Eqns (21) that the phonon response of
the medium satisées the differential equations

o 2
RSx�t� � 2dR

qSx�t�
qt
� q 2Sx�t�

qt 2
� o 2

RE
2
x �t�,

(22)

o 2
RSy�t� � 2dR

qSy�t�
qt
� q 2Sy�t�

qt 2
� o 2

RE
2
y �t�,

which describe the oscillator SRS model of Platonenko ë
Khokhlov [18].

Thus, taking (15), (16), and (17) into account, the
nonlinear polarisation of the medium can be represented
in the form

PxNL�t� � Ex�t�
�
e0aw

�3�
0 E 2

x �t� � �1ÿ a�e0w �3�0 Sx�t�
�

�Ex�t�
�
e0aw

�3�
0 E 2

y �t� � �1ÿ a�e0w �3�0 Sy�t�
�
,

(23)

PyNL�t� � Ey�t�
�
e0aw

�3�
0 E 2

y �t� � �1ÿ a�e0w �3�0 Sy�t�
�

�Ey�t�
�
e0aw

�3�
0 E 2

x �t� � �1ÿ a�e0w �3�0 Sx�t�
�
.

Taking (5), (6), (10), and (23) into account, the electric
inductions Dy and Dx can be written in the form

Dy � e0
�
Ey � aw �3�0 E 3

y � aw �3�0 E 2
x Ey

��X3
i�1

PiyL

��1ÿ a�e0w �3�0 EyGy � �1ÿ a�e0w �3�0 EyGx, (24)

Dx � e0
�
Ex � aw �3�0 E 3

x � aw �3�0 E 2
y Ex

��X3
i�1

PixL

��1ÿ a�e0w �3�0 ExGx � �1ÿ a�e0w �3�0 ExGy. (25)

We used the above-described classical model of the
interaction of a high-power femtosecond laser pulse (i.e.
when Ey � 0, Ex 6� 0 or Ey 6� 0, Ex � 0) with the isotropic
dispersion nonlinear medium to describe the self-action of
radiation and Raman scattering [19]. This model was used in
[12] to describe the nonlinear dynamics of a femtosecond
optical soliton.

In this paper, we adapted this model to apply for
studying the nonlinear interaction of linearly polarised
FLPs with mutually orthogonal polarisations and identical
carrier frequencies in an isotropic dispersion nonlinear
medium.

3. Numerical scheme for integrating a system
of nonlinear Maxwell's equations

The main problem of realisation of numerical schemes for
integrating nonlinear Maxwell's equations is the algorithm
stability. We used here the modiéed énite difference scheme
for solving nonlinear Maxwell's equations proposed in [12].
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As shown in [12], the modiéed énite difference scheme has a
high stability and its dispersion parameters are two orders
of magnitude higher than those reported in [9 ë 11], and the
consideration of nonlinearity does not cause the divergence
of the numerical scheme. We used this numerical scheme to
describe the interaction of FLPs with an isotropic
dispersion nonlinear medium [19].

To simulate numerically processes described by
Eqns (3), (4), (9), (10), (23) ë (25), we will pass to the
network functions for the éelds E and H, the electric
induction D, the linear and nonlinear responses PL and
PNL, and functions Sx and Sy for which networks are
speciéed over the coordinate kDz and time nDt. The step Dz
of the spatial network was set equal to 15 nm, the time step,
determined by the Courant condition Dt � Dz=2c, was equal
to 0.025 fs. For such a time step, the dispersion of the linear
part of the scheme was maximally close to the Lorentzian
dispersion of the medium. The difference scheme is an
explicit scheme of the second-order accuracy in z. The values
of the magnetic éeld are speciéed between the network
nodes along the coordinate z and in the intermediate layer in
time.

The numerical integration was performed for the nor-
malised quantities

�Ex �
�����
e0
m0

r
Ex, �Dx �

���������
1

e0m0

s
Dx, �Hy � Hy,

�PxL �
1���������
e0m0
p PxL, �PxNL �

1���������
e0m0
p PxNL,

�Ey �
�����
e0
m0

r
Ey, �Dy �

���������
1

e0m0

s
Dy, �Hx � Hx,

�PyL �
1���������
e0m0
p PyL, �PyNL �

1���������
e0m0
p PyNL,

�Sx �
1

m0
Sx, �Sy �

1

m0
Sy, �w �3�0 � w �3�0

m0
e0

.

Each time step was divided into four stages. The initial data
for the iteration process are the values of Ex, Dx, Ey, and
Dy on the nth discrete time step and Hy and Hx on the
discrete time step n � 1

2
. At the érst stage, Maxwell's

equations are approximated, and we énd from them, by
using the known values of E, D, and H, the values of D and
H in the new time layers n� 1 and n� 1

2, respectively:

�Hy

��n�1=2
k�1=2 � �Hy

��nÿ1=2
k�1=2 ÿ

cDt
Dz

ÿ
�Ex

��n
k�1 ÿ �Ex

��n
k

�
,

(26)

�Dx

��n�1
k
� �Dx

��n
k
ÿ cDt

Dz

ÿ
�Hy

��n�1=2
k�1=2 ÿ �Hy

��n�1=2
kÿ1=2

�
,

�Hx

��n�1=2
k�1=2 � �Hx

��nÿ1=2
k�1=2 �

cDt
Dz

ÿ
�Ey

��n
k�1 ÿ �Ey

��n
k

�
,

(27)

�Dy

��n�1
k
� �Dy

��n
k
� cDt

Dz

ÿ
�Hx

��n�1=2
k�1=2 ÿ �Hx

��n�1=2
kÿ1=2

�
,

where c � 1=
���������
m0eo
p

is the speed of light in vacuum.
Before proceeding to the next sage, we consider differ-

ence schemes corresponding to Eqns (9) and (10). According
to (9) and (10), the difference schemes corresponding to the

linear response of a medium and allowing one to determine
the values of PixL and PiyL on the n� 1th discrete time step
can be represented in the form

�PixL

��n�1
k
� ali �PixL

��n
k
ÿ �PixL

��nÿ1
k
� cli �Ex

��n
k
,

(28)

�PiyL

��n�1
k
� ali �PiyL

��n
k
ÿ �PiyL

��nÿ1
k
� cli �Ey

��n
k
,

where �PixL

��nÿ1
k

, �PixL

��n
k
, �PiyL

��nÿ1
k

, and �PiyL

��n
k

are linear
polarisations of the medium on the nÿ 1th and nth discrete
time steps; �Ex

��n
k
and �Ey

��n
k
are the electric éelds on the nth

discrete time step; and

ali � 2ÿ �oiDt�2; cli � bi�oiDt�2. (29)

At the second stage, the linear polarisations �PixL

��n�1
k

and
�PiyL

��n�1
k

of the medium are calculated from (28) at the
n� 1th discrete time step.

According to (22), the difference schemes corresponding
to SRS in the medium and allowing one to determine the
values of Sx and Sy on the n� 1th discrete time step can be
represented in the form

�Sx

��n�1
k
� ar �Sx

��n
k
� br �Sx

��nÿ1
k
� cr

ÿ
�Ex

��n
k

�2
,

(30)

�Sy

��n�1
k
� ar �Sy

��n
k
� br �Sy

��nÿ1
k
� cr

ÿ
�Ey

��n
k

�2
,

where �Sx

��nÿ1
k

, �Sx

��n
k
, �Sy

��nÿ1
k

, and �Sy

��n
k

are the values of
functions on the nÿ 1th and nth discrete time steps,
respectively, and the quantities ar, br, and cr are determined
by the expressions

ar � 2ÿ �oRDt�2
1� dRDt

, br � 1ÿ dRDt
1� dRDt

, cr � �w �3�0 �oRDt�2
1� dRDt

. (31)

At the third stage, the nonlinear polarisations �Sx

��n�1
k

and
�Sy

��n�1
k

of the medium are calculated from (30) at the n� 1th
discrete time step.

According to (16) and (17), the Raman inertial nonlinear
response PxRNL, PyRNL of the medium at the n� 1th discrete
time step can be represented in the form

�PxRNL

��n�1
k
� �1ÿ a��w �3�0

�Ex

��n�1
k

�Sx

��n�1
k

��1ÿ a��w �3�0
�Ex

��n�1
k

�Sy

��n�1
k

,
(32)

�PyRNL

��n�1
k
� �1ÿ a��w �3�0

�Ey

��n�1
k

�Sy

��n�1
k

��1ÿ a��w �3�0
�Ey

��n�1
k

�Sx

��n�1
k

.

According to (15), the Kerr instant nonlinear response
PxKNL, PyKNL of the medium at the n� 1th discrete time
step has the form

�PxKNL

��n�1
k
� a�w �3�0

ÿ
�Ex

��n�1
k

�3 � a�w �3�0
�Ex

��n�1
k

ÿ
�Ey

��n�1
k

�2
,

(33)

�PyKNL

��n�1
k
� a�w �3�0

ÿ
�Ey

��n�1
k

�3 � a�w �3�0
�Ey

��n�1
k

ÿ
�Ex

��n�1
k

�2
.

According to (24) and (25), the components Dx and Dy

of the electric induction at the n� 1th discrete time step can
be written in the form
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�Dx

��n�1
k
� �Ex

��n�1
k
�
X3
i�1

�PixL

��n�1
k
� �PxKNL

��n�1
k
� �PxRNL

��n�1
k

,

(34)

�Dy

��n�1
k
� �Ey

��n�1
k
�
X3
i�1

�PyxL

��n�1
k
� �PyKNL

��n�1
k
� �PyRNL

��n�1
k

.

At the last stage, the éelds �Ex

��n�1
k

and �Ey

��n�1
k

are
determined from the given linear and nonlinear polar-
isations by using the recurrent expression

�Ex

��p�1
k
� �Dx

��n�1
k
ÿ
X3
i�1

�PixL

��n�1
k

h
1� a�w �3�0

ÿ
�Ex

��p
k

�2
� a�w �3�0

ÿ
�Ey

��p
k

�2 � �1ÿ a� �Sx

��n�1
k
� �1ÿ a� �Sy

��n�1
k

iÿ1
,

�Ey

��p�1
k
� �Dy

��n�1
k
ÿ
X3
i�1

�PiyL

��n�1
k

h
1� a�w �3�0

ÿ
�Ey

��p
k

�2 (35)

� a�w �3�0

ÿ
�Ex

��p
k

�2 � �1ÿ a� �Sy

��n�1
k
� �1ÿ a� �Sx

��n�1
k

iÿ1
,

where �Ex

��p
k
� �Ex

��n�1
k

and �Ey

��p
k
� �Ey

��n�1
k

are the electric éelds
at the beginning of iteration.

4. Results of numerical simulation and discussion

The numerical simulation was performed under the initial
conditions

Ex�t; z � 0� � Ex0 exp

�
ÿ t 2

t 20

�
cos

�
2pc
l0
�tÿ Dt�

�
,

(36)
Ey�t; z � 0� � Ey0 exp

�
ÿ t 2

t 20

�
cos

�
2pc
l0

t

�
,

where Ex0 and Ey0 are the initial amplitudes of pulses with
mutually orthogonal x- and y-polarisations.

The calculations were performed for the pulse duration
t0 � 10 fs and its central wavelength l0 � 0:81 mm. The
amplitude of a pulse with the x-polarisation was Ex0 �
8:2� 109 V mÿ1, while for a pulse with the y-polarisation,
the amplitudes Ey0 � 1:2� 109, 2:6� 109, 3:6� 109, and
5:8� 109 V mÿ1 were considered. The length of a medium
for the give model was chosen to provide the coincidence of
the network dispersion curve with the material dispersion
curve [12]. The length of the medium used in calculations
was L � 525 mm and the time delay Dt between the
interacting pulses was varied from ÿ20 to 40 fs.

Figure 1 presents the calculated dependences of the
normalised power densities for orthogonally polarised
pulses on the wavelength for different values of Dt and
Ey0 � 5:8� 109 V mÿ1. The values of Px and Py were found
from the expression

Px;y � 10 lg

�
Sx;y

Sx0;y0

�
� 10 lg

� ���� �1ÿ1 Ex;y�t; z� exp�j2pvt�dt
����2

�
���� �1ÿ1 Ex;y�t; z � 0� exp�j2pvt�dt

����ÿ2 �. (37)

For comparison, the dashed curves in Fig. 1 show the
power densities Ex(t, z � 0) and Ey(t, z � 0) for pulses
incident on the medium.

Figure 2 shows the dependences of the shift of carrier
frequencies of interacting pulses corresponding to the
spectral maxima on the time delay between the pulses
for different amplitudes Ey0. One can see that for
ÿ15 fs > Dt > 15 fs, when the interaction of the pulses
can be neglected, the carrier frequencies of pulses shift to
the red due to self-action. This means that self-action of the
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pulses takes place, which is mainly related to the Raman
inertial nonlinearity. As a result, the energy in the pulse
spectrum is redistributed and the pulse spectrum shifts to the
red. In particular, the carrier frequency v0 ÿ v of the
reference pulse Ex shifts by 6.1 THz, while the carrier
frequency of the probe pulse Ey shifts by 2.3 THz for
the initial éeld amplitude of 5:8� 109 V mÿ1. For smaller
initial amplitudes of the probe éeld, the shift of the carrier
frequency is zero.

It also follows from Fig. 2 that for Dt < ÿ1:5 fs, when
the reference pulse is delayed with respect to the probe pulse,
the carrier frequency of the latter shifts to the blue. In this
case, the maximum shift dprobe

vmax � v0 ÿ vmax is ÿ15:9 THz
(Dt � ÿ3:85 fs) for Ey0 � 1:2� 109 V mÿ1, ÿ16 THz (Dt �
ÿ4:12 fs) for Ey0 � 2:6� 109 V mÿ1, ÿ16 THz (Dt �
ÿ3:92 fs) for Ey0 � 3:6� 109 V mÿ1, and ÿ16:75 THz
(Dt � ÿ3:92 fs) for Ey0 � 5:8� 109 V mÿ1. This means
that, for the given time delays, the shift of the carrier
frequency in the probe pulse spectrum is determined by the
cross-action of the reference pulse on the probe pulse,
caused by the Kerr inertialless nonlinearity, which is
described by the second term ae0w

�3�
0 Ey(t)E

2
x (t) in the

right-hand side of equation (15b).
For Dt � ÿ1:5 fs, the shift of the carrier frequency of the

probe pulse caused by the cross-action of the reference pulse
is zero.

In turn, for Dt > ÿ1:5 fs, when the reference pulse
begins to be ahead of the probe pulse, the carrier frequency
of the latter shifts to the red. In this case, the maximum red
shift dprobe

vmax is 19.85 THz (Dt � 3:95 fs) for Ey0 � 1:2� 109

V mÿ1, 19.85 THz (Dt � 3:95 fs) for Ey0 � 2:6�109 V mÿ1,
21.32 THz (Dt � 4:09 fs) for Ey0 � 3:6� 109 V mÿ1, and
22.85 TH (Dt � 4:09 fs) for Ey0 � 5:8� 109 V mÿ1. This
means that, for the given time delays, the carrier frequency
of the probe pulse shifts due to the Raman cross-action of
the reference pulse on the probe pulse. Namely, the

excitation of molecular vibrations by the reference pulse
leads to the energy redistribution in the probe pulse
spectrum, resulting in the red shift of the carrier frequency
of the probe pulse. In this case, the frequency shift is
determined by the second term

e0�1ÿ a�w �3�0 Ey�t�
� t

ÿ1
gR�tÿ t�E 2

x �t�dt

in Eqn (16b).
As the input probe pulse amplitude is increased, both the

Kerr inertialless self-action, determined by the érst term
ae0w

�3�
0 E 3

y (t) in the right-hand side in Eqn (15b), and Raman
inertial self-action, determined by the érst term

e0�1ÿ a�w �3�0 Ey�t�
� t

ÿ1
gR�tÿ t�E 2

y �t�dt

in Eqn (16b), become substantial. Note at the same time
that, as the input probe pulse amplitude is increased, the
evolution of the reference pulse spectrum is determined not
only by its self-action but also by the cross-action of the
probe pulse. Indeed, one can see from Fig. 2 that for Ey0 �
3:6� 109 and 5:8� 109 V mÿ1, the dependence of the
carrier frequency shift of the reference pulse on the time
delay becomes the mirror reêection of the dependence
d probe
v (Dt). In other words, the reference and probe pulses as

if interchanged.

5. Conclusions

We have studied theoretically the cross-action of few-cycle
laser pulses propagating in fused silica. The system of
nonlinear Maxwell's equations was integrated numerically
with respect to time by the énite difference method.
Linearly polarised pulses with identical central frequencies
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and mutually orthogonal polarisations have been consid-
ered. The calculations have been performed for a medium
of length 525 mm. Both the instant Kerr inertialless
response and the Raman response of the medium were
taken into account in the nonlinear polarisation of the
medium. The shift of the probe pulse spectrum caused by
the cross-action of the reference pulse has been studied for
different time delays between the interacting pulses and
their spectra are calculated. The dependences of the spectra
of interacting pulses on the time delay between them have
been obtained.

The estimates presented in the paper show that the
frequency shift of the probe pulse caused by the cross-action
of the reference pulse at different time delays between the
interacting pulses can be experimentally detected by using
modern femtosecond lasers.

The results obtained in the paper can be used in the
development of femtosecond optically controlled elements
used in ultra high-speed optical communication systems.
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