
Abstract. The dispersion relation for refractive indices of
solid AlGaInAs solutions is obtained. By using this relation,
the theory is shown to be in good agreement with
experimental refractive indices and the angular divergence
of radiation of semiconductor lasers emitting at 1.3 and
1.55 lm.
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1. Introduction

The use of the AlGaInAs/InP heterostructure instead of
InGaAsP/InP provided the extension of the operating
temperature range of 1.3-mm and 1.55-mm semiconductor
lasers up to 150 ë 170 8C, reduced the threshold current
[1, 2], and ensured a high reliability of the lasers without the
use of microcoolers [3].

The parameters of AlGaInAs/InP heterostructure lasers
were studied in papers [4 ë 9]. However, the values of
refractive indices reported in different papers and used in
calculations of laser parameters differ from each other [8, 9]
[see below curves ( 2 ) and ( 3 ) in Fig. 4]. Attempts to
compare the calculated and experimental dependences of
the angular divergence of laser radiation by using these data
have demonstrated the discrepancy between the theory and
experiment.

In this paper, we present the dispersion relation for the
refractive index, which well describes experiments on the
angular divergence of the 1.3-mm and 1.55-mm lasers.

2. Theory

The real [e1(o)] and imaginary [e2(o)] parts of the relative
complex dielectric constant [or the real (n) and imaginary
(w) parts of the complex refractive index] satisfy the
fundamental Kramers ëKronig relation [10, 11]

e1�o� � n 2�o� ÿ w 2�o� �

� 1� 2

p

�
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�
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where V:p: is the Cauchy principal value of the integral.
The general shape of the fundamental absorption

spectrum e2(�ho) for most of the semiconductors is well
known. The dashed curve in Fig. 1a shows the spectrum
obtained in [10]. The corresponding band diagram is
presented in Fig. 1b, where the vertical arrows indicate
interband optical transitions forming the peculiarities of the
spectrum e2(�ho) for �ho � E0, E1 and E2. Different variants
of model representations of e2(�ho) used for the description
of the edge dispersion n(�ho) are presented in Fig. 1 in paper
[10].

In this paper, we use the model representation shown in
Fig. 1a by solid straight lines. In the energy range from E0

to E1, the dependence e2(�ho) is approximated by a constant
A, while the characteristic maxima at energies E1 and E2 ë
by delta functions.

Taking relation (1) into account, the dispersion relation
for n(�ho) in the model representation in Fig. 1a can be
written in the form [10]
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Figure 1. Model representation (solid lines) and general shape (dashed
curve) of the fundamental absorption spectrum e2(�ho) of a semiconduc-
tor (a) and its energy band diagram (b). The vertical arrows show direct
transitions forming the characteristic features of the spectrum e2(�ho); G,
L and X are the minimal energies at the Brillouin zone centre and in
directions [111] and [100], respectively.



It was necessary to obtain for the AlxGayIn1ÿxÿyAs/InP
system the dependences of A, E0, E1, E2, G1, and G2 on x
and y. For the AlxGayIn1ÿxÿyAs system with the lattice
parameters matched (Da=a � 0) with that of an InP crystal,
the values of x and y are speciéed by the relation
x� y � 0:468� 0:017x [12]. This expression can be written
in the form x� 1:017y � 0:476. The approximate expres-
sion x� y � 0:48 is also often used.

The energy gap width E0 for AlxGayIn1ÿxÿyAs was
deéned by the expression [13]

E0�AlxGayIn1ÿxÿyAs� � xE0�AlAs� � yE0�GaAs�

� �1ÿ xÿ y�E0�InAs� ÿ xyKAlGaAs

ÿ y�1ÿ xÿ y�KGaInAs ÿ x�1ÿ xÿ y�KAlInAs; (3)

where KAlGaAs, KGaInAs, and KAlInAs are the nonlinearity
parameters of the corresponding ternary solid solutions.

The energy gap widths E0 for AlAs, GaAs, and InAs are
presented in Table 1 from [7]. The nonlinearity parameters
were determined from the relation

E0�GayIn1ÿyAs� � yE0�GaAs�

� �1ÿ y�E0�InAs� � y�1ÿ y�KGaInAs (4)

and similar relations. The values E0(Ga0:47In0:53As) �
0.75 eV, E0(Al0:48In0:52As) � 1:45 eV, and E0(Al0:3Ga0:7As)
=1:798 eV were used. The value of E0 for Al0:3Ga0:7As was
obtained from the data presented in [14]. The energy gap
widths E1 and E2 for AlxGayIn1ÿxÿyAs were determined
from relations similar to (3).

Table 1 presents the values of parameters E0, E1, E2, A,
G1, and G2 for two-component solutions AlAs, GaAs, and
InAs used to calculate these parameters for four- and three-
component solutions.

As a result, we found for AlxGayIn1ÿxÿyAs the depend-
ences

E0�x; y� � 0:36� 1:976x� 0:614x 2

� 0:622y� 0:442y 2 � 0:657xy; (5)

E1�x; y� � 2:5� 0:686x� 0:614x 2

ÿ 0:042y� 0:442y 2 � 0:657xy; (6)

E 2�x; y� � 4:7ÿ 0:014x� 0:614x 2

ÿ 0:142y� 0:442y 2 � 0:657xy: (7)

The expressions for E0, E1, and E2 were obtained by
assuming the equality of nonlinearity coefécients for
ternary solutions calculated by expressions similar to (4).
The energy gap width E1 and E2 for AlGaInAs were
calculated by using the values of E1 and E2 for AlAs, GaAs,
and InP presented in Table 1 in [10].

Coefécients entering the expressions for A(x; y) and
G2(x; y); were corrected compared to data [10] to ét the
experimental dependences of n(�ho):

A�x; y� � 1:5x� 1:2y� 1:17�1ÿ xÿ y�; (8)

G1�x; y� � 25x� 30y� 14:7�1ÿ xÿ y�; (9)

G2�x; y� � 110x� 100y� 167�1ÿ xÿ y�: (10)

Figure 2 presents the dependences of the refractive index
n on the emission wavelength calculated by expression (2)
and the corresponding experimental dependences obtained
in [15]. One can see that calculations are in good agreement
with experimental data.

Figure 3 shows the dependence of x on the energy gap
width E0 calculated from (5) for AlxGayIn1ÿxÿyAs solutions
with parameters of the InP crystal lattice [12]. One can see
that the calculated dependence well agrees with experimental
data.

Figure 4 shows the dependence of the refractive index n
on the energy gap width E0 calculated by expression (2) for
l � 1:3 mm for solid AlxGayIn1ÿxÿyAs solutions matched
with InP [curve ( 1 )]. Curve ( 2 ) presents the dependence
taken from [9] and curve ( 3 ) is drawn through three points
taken from Table II from [8]. Curves ( 2 ) and ( 3 ) are also
related to l � 1:3 mm. One can see that the dependence
n(E0) obtained in our paper runs virtually midway between
curves ( 2 ) and ( 3 ).

To prove the validity of the found dependence n(E0), we
compare the theoretical and experimental angular diver-
gence of radiation of semiconductor lasers.

Table 1. Values of parameters E0, E1, E2, A, G1, and G2 for two-
component solutions.

Material E0

�
eV E1

�
eV E2

�
eV A G1

�
eV 2 G2

�
eV 2

AlAs 2.95 3.8 5.3 1.5 25 110

GaAs 1.424 2.9 5.0 1.2 30 100

InAs 0.36 2.5 4.7 1.17 14.7 167
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Figure 2. Wavelength dependences of the refractive index n of the
(Al0:48In0:52As)X(Ga0:47In0:53As)1ÿX heterostructure calculated by expres-
sion (2) for different values of X. Circles are experimental data [15].
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3. Experiment

The quantum-well AlxGayIn1ÿxÿyAs/InP heterostructures
grown for experimental studies emitting at 1.3 and 1.55 mm
had identically varying heights of barriers and waveguide
layers. Heterostructure 1 with xa � 0:11, ya � 0:37, xb �
0:31, yb � 0:17 and heterostructure 2 with xa � 0:11,
ya � 0:37, xb � 0:35, yb � 0:13 emitted at 1.3 mm; hetero-
structure 3 with xa � 0:03, ya � 0:45, xb � 0:2, yb � 0:28
and heterostructure 4 with xa � 0:03, ya � 0:45, xb � 0:14,
yb � 0:34 emitted at 1.55 mm. The quantities xa and ya are
related to the active region and xb and yb to waveguide
layers. Heterostructures emitting at 1.3 and 1.55 mm had
four and éve quantum wells, respectively. The width of the
quantum wells was 60

�
A.

We fabricated quantum-well lasers from these hetero-
structures. The laser stripe width was 2.0 ë 2.7 mm and the
cavity length was 400 mm. Lasers were soldered on a copper
heat sink, the active region up. The angular divergence of
radiation was measured for each laser in the plane perpen-
dicular to the p ë n junction (in the far-éeld zone). In this

case, the angular divergence was virtually independent of the
pump current. It was shown in [16] that the angular
divergence of the quantum-well laser did not change with
increasing the pump current more than by a factor of four.

The angular divergence calculated by using the program
developed in [17] is presented in Fig. 5.

The results presented in Fig. 5 show that the angular
divergences of radiation of a 1.3-mm laser calculated by
using refractive indices obtained from (2) are in better
agreement with experimental data than the angular diver-
gences of radiation calculated by using refractive indices
taken from papers [8] and [9]. Figure 5 also presents the
angular divergence calculated by using refractive indices
obtained from (2) for the 1.55-mm quantum-well laser. One
can see that the calculations are in good agreement with
experiment.

Thus, dispersion relation (2) for the refractive indices of
solid AlxGayIn1ÿxÿyAs solutions well describes the exper-
imental wavelength dependences of refractive indices
obtained in [15] and the angular divergence of radiation
of 1.3-mm and 1.55-mm quantum-well lasers.

Acknowledgements. The authors thank A.P. Bogatov and
A.E. Drakin for placing at our disposal the program for
calculating the angular divergence of radiation of multilayer
quantum-well lasers.

Appendix

Expression (2) has a singularity at the point E0 where the
refractive index n tends to inénity. This can be avoided
taking into account the damping of the oscillator. Then,
expression (2) can be written in the form

n2��ho� � 1� A

p
ln

(
E 2
1 ÿ ��ho�2

f�E 2
0 ÿ ��ho�2 �2 � ��hoE0=k�2g1=2

)
�

� G1

E 2
1 ÿ ��ho�2

� G2

E 2
2 ÿ ��ho�2

; (A1)

where k � o0=g; o0 is the resonance frequency of the
oscillator; and g is the damping parameter.
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Figure 3. Dependences of the energy gap width E0 for solid
AlxGayIn1ÿxÿyAs solutions matched with InP on x calculated from (5).
Circles are experimental data [12].
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Figure 4. Dependence n(E0) for l � 1:3 mm calculated by expression (2)
for solid AlxGayIn1ÿxÿyAs solutions matched with InP ( 1 ). Curve ( 2 ) is
taken from [9], curve ( 3 ) is drawn through three points taken from [8].
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Figure 5. Dependences of the angular divergence y of radiation on the
energy gap width Eb of the waveguide layer calculated by using
expression (2) ( 1, 4 ) and refractive indices taken from [8] ( 2 ) and [9]
( 3 ) for lasers emitting at 1.3 mm ( 1 ë 3, *) and 1.55 mm ( 4, ~). Circles
are experimental data.
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Figure 1A presents the dependences of n(E0) calculated
from (A1) for l � 1:3 and 1.55 mm and k � 30 [18] and 100
[19] for the AlxGayIn1ÿxÿyAs heterostructure matched with
the InP crystal (x� y � 0:48).
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Figure 1A. Dependences of n�E0� calculated taking the damping of the
oscillator into account for l � 1:3 and 1.55 mm and k � 30 (solid curves)
and 100 (dashed curves).
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