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Acceleration of electrons by tightly focused

femtosecond laser pulses

S.G. Bochkarev, V.Yu. Bychenkov

Abstract. The problem of the acceleration of a test electron
in the field of a tightly focused relativistic laser pulse is solved
in the case when the focal spot size is of the order of the
radiation wavelength and the exact solution of Maxwell’s
equations for the electromagnetic field should be used. The
electron acceleration is studied depending on the initial
position of the electron in the focal plane and is compared
with the results corresponding to the paraxial approximation
for the laser field. The maximum energy acquired by the
electron in the laser focus is found. The dependences of the
ejection angle of the electron on its initial position near the
focus are analysed.
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1. Introduction

At present experimental studies of the interaction of
relativistic laser pulses with matter attract great attention
because high-power short-pulse lasers have become avail-
able in recent years. Hereafter, a laser pulse is called
relativistic if an electron can acquire the relativistic energy
in the pulse focus. It is obvious that the maximum intensity
can be achieved when the laser pulse is very tightly focused
on a target to produce the focal spot of size close to the
diffraction limit. However, it is not definitely clear so far
whether such tight focusing is optimal for the most efficient
acceleration of particles in the laser focus. At present the
focal spot size of the order of the laser wavelength was
achieved [1-3]. The interaction between tightly focused
laser radiation and a plasma is determined by a peculiar
topology of the laser field in the focus, especially if we are
dealing with nanotargets — ultrathin films, nanowires
(nanotubes), nanospheres (nanoshells) or other more
complicated nanoobjects of size much smaller than the
laser wavelength. An example is the problem of the so-
called vacuum acceleration of electrons, which was studied
in many theoretical [4—15] and experimental [16— 18]
papers.
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The acceleration of particles from nanotargets irradiated
by a tightly focused laser beam can be studied most
completely by using a powerful modern numerical kinetic
method, the so-called particle-in-cell (PIC) simulation. The
PIC simulation is devoid of a number of simplifications
inherent in idealised theoretical models. In the case of real
three-dimensional geometry, it requires considerable com-
puter resources, and it is natural that it is necessary to
analyse the motion of a test particle in the laser focus before
performing detail calculations. Note that analysis of the
motion of test particles in the laser pulse field can quite
accurately characterise the behaviour of the nanotarget as a
whole if the energy acquired by electrons in the laser field
greatly exceeds their Coulomb interaction energy.

At present the problem of the interaction of a test
electron with the laser field is solved completely enough in
the case when the field is described in the approximation of
quasi-optics (paraxial approximation for a laser beam [19]).
This interaction was studied in most papers on the accele-
ration of electrons by a localised laser field [4, 5, 8, 9, 11—
15]. However, such an approach is not valid upon tight
focusing, when the focal spot size proves to be comparable
with the laser wavelength. The model was further refined by
using the perturbation theory for the paraxial approxima-
tion [6, 10, 20—24] in the ratio of the wavelength A to the
focal spot radius pp as a parameter. In addition, more
sophisticated methods pretending to a more consistent
description of the laser field in the focus were developed
such as, for example, the model proposed in paper [7], where
a more general class of solutions of Maxwell’s equations
describing a focused laser beam was found. However, this
method is valid only if the condition kpp > 1 is fulfilled,
where k = 2/ {see condition (2) in [7]}. This condition is
not satisfied for tightly focusing systems of the type
considered in [1-3]. For example, the focal spot radius
for a Hercules laser [3] is equal approximately to half the
wavelength. In this case, it is necessary to use exact solutions
of Maxwell’s equations, which has not been done so far for
the description of the acceleration of a test particle. The
solution of this problem is the aim of this paper. Note that
the method for describing the laser field produced upon
extremely tight focusing of the laser beam in experiments [3]
was proposed in [25]. However, the authors of [25] did not
pursue the goal to study the acceleration of particles in such
a field.

A laser beam with a focusing radius exceeding the laser
wavelength and with the intensity slowly varying in time
(compared to the laser field period) can be treated in the
zero approximation as a transverse plane electromagnetic
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wave with a slowly varying amplitude, and the acceleration
of electrons in this wave can be studied in the adiabatic
approximation [26]. Due to slow variations in the laser
radiation intensity, an electron is first accelerated at the
leading edge of the laser pulse. After the interaction with the
pulse, the electron loses the acquired energy due to its
deceleration at the trailing edge of the pulse. As a result, in
accordance with the so-called Lawson— Woodward theorem
[5, 27, 28], the electron does not acquire energy. To accele-
rate the electron, it is necessary to violate the adiabaticity
condition. This is possible for a laser pulse with high enough
transverse gradients, which are produced, for example, upon
focusing laser radiation to a spot of radius of a few
wavelengths. Such a tight focusing can result in the loss
of the adiabaticity and in the noticeable acceleration of
electrons. The latter was recently observed in experiments
[16—18]. In this case, the longitudinal component of the
electric field produced due to radiation focusing cannot be
neglected in the theoretical analysis [6, 10, 12—14, 21, 23,
29]. A consideration of the longitudinal field leads to
substantial changes in the acceleration efficiency of particles
even upon moderately tight focusing; however, this field was
erroneously neglected in calculations until recently [4, 17].
The adiabaticity can be broken because the amplitude of
transverse oscillations of electrons excited by tightly focused
relativistic pulses can be comparable with the focal spot
radius. It follows from the theory in this case that the
electron that has acquired considerable energy can leave the
region of the maximum intensity [4, 6, 8—10, 12—14].

By now numerous schemes have been developed for
accelerating electrons by laser pulses, which are based on the
breaking of the adiabaticity of this process, including effects
of a strong nonstationarity of pulses and additional fields.
For example, it was proposed to use laser pulses with
sharply rising leading edges [30] or ultrashort pulses of
duration of only a few optical cycles [31], beatings of
electromagnetic waves with close frequencies [5], schemes
with the acceleration of electrons in a preliminarily ionised
plasma (produced, for example, by a weaker prepulse) [11],
acceleration in the presence of a constant magnetic field [32],
acceleration achieved by applying different modes (com-
bined Gaussian beam) [8, 15], etc. Note that many of these
schemes are difficult to realise. In particular, the scheme
with a laser pulse with a steep leading edge [30] was not
realised so far. At the same time, the preionisation method
proposed in [11] can be used in experiments. Note that the
idea of this method is close to that proposed in [30].

In this paper, we study the acceleration of a test electron
in vacuum by using the exact solution of the Helmholtz
equation, which describes a tightly focused light beam, and
compare the results with the results obtained in the paraxial
approximation. The acceleration of the electron is consid-
ered in the field of the laser pulse with the envelope
symmetric in time and duration t > T, where T is the
optical oscillation period in the case of the maximal focusing
of the laser pulse, when the focal spot size proves to be of
the order of the wavelength. We also investigate the
acceleration of the test electron in a preliminarily ionised
plasma. In this case, the acceleration begins near the
maximum of the laser pulse (after ionisation). The efficiency
and direction of electron acceleration are analysed depend-
ing on its initial position in the focal region and the phase of
the accelerating field.

2. Solution of the wave equation

To construct the solution of Maxwell’s equations in vacu-
um for the electromagnetic field of a focused laser beam

divB=0, rotE= _16_8’
¢ Ot
(1)
rotB:la—E, divE =0
¢ Ot
we will use the vector and scalar potentials 4 and @
104
E=———-Vd, B=rotAd, (2)
¢ ot

satisfying the Lorentz gauge divA4 + c_16<13/61 = 0. Then,
by following papers [15, 20], we will seek the solution of
Eqns (1) for the polarised TM wave with the vector
potential 4 = {4, = A4,0,0} propagating in the direction
z. In the case of smooth focusing (paraxial approach), the
acceleration of the test electron by this wave was studied in
most papers cited above, for example, in [10, 15]. Note that,
although the choice of this mode corresponds to a
particular case, it meets the aim of our paper to
demonstrate the peculiarities of the acceleration of electrons
in the diffraction limit, when the radiation intensity
distribution in the focal region is strongly inhomogeneous.

Thus, to describe the propagation of a converging
electromagnetic wave in a free space within the framework
of our model, it is necessary to solve the scalar wave
equation

10%4
T Z_0. 3

c? or? ®)
The scalar potential @ can be easily found from the gauge
condition. In the case of the quasi-monochromatic electro-
magnetic field, the vector and scalar potentials can be
represented in the form

A(t, R) = Re[A(t, R) exp(—iw?)].

®(1, R) = Re[®(t, R) exp(—iwot)], 4)

where R = {x,y,z} is the radius vector; and A(r, R) and
@(t, R) are slowly varying complex field amplitudes at the
carrier frequency . Then, we have the Helmholtz
equation

AA+kid=0 (5)

for the complex amplitude of the vector potential, where
ko = wp/c. To find the solution of Helmholtz equation (5)
from the given distribution /](r,z =0)= /io(r), where
r={x,y} in a plane z =0 located in front of the focal
plane, we expand this distribution in the Fourier integral

Ay(r) = rc JOO Ay (b) expliko( px + qv)]dpdg, (6)

—00 J—00

where b = {p, q} is the dimensionless wave number. We will
seek the complex amplitude of the vector potential A(r,z) in
the spatial region z > 0 in the form similar to (6)
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According to (5) and (7), the equation for the spectral
amplitude A(b,z) has the form

0°4 2 2\ 4

—+ky(l—=567)A =0, 8

022 + 0( ) ®)
where b= (p* + qz)l/z.

By introducing the dimensionless longitudinal wave
number m, we write the solution of (8) as

A(b,z) = C, exp(imkyz) + C, exp(—inmkyz), 9)

where the value of m is defined, depending on the sign of
1—52 as [6, 21]

m=(1-b)" p2<1,

(10)
m=ib>-1)"* b»>>1.

Here, we select from possible solutions (9) the solution
corresponding to the wave propagating at the speed of light
along the positive direction of the z axis and satisfying the
boundary condition considered for z = 0. Therefore, we set
C, =0 and C; = Ay(b) in (9). Note that the condition
b* > 1 corresponds to non-propagating (evanescent) waves,
which appear in the spatial spectrum upon focusing laser
radiation into a spot of diameter of the order of the
radiation wavelength. Unlike expressions in [6], the non-
propagating waves are taken into account in the solution
obtained. These waves can be neglected only under the
condition kypg > 1 of smooth focusing.

By substituting (9) and (10) into (7), we can find 4 and,
hence, the electric field strength and magnetic field induction
because @ = —ik, '0A4 /0x. The complex amplitudes of the
electric field strength and magnetic field induction E(R) and
B(R) and these quantities themselves are determined by the
relations

N 04 04

B_{07$7_5}5 (11)
(. . 00 00 0O
E*{lkoA—a,—§7—§}» (12)

B(t, R)=Re[Bexp(—iwyt)], E(t, R)=Re[Eexp(—inyt)], (13)

which are finally expressed in terms of function (9) specified
by the field distribution at the input (for z=0). For
definiteness, we will consider below the case of the Gaussian
laser radiation distribution and the convergence angle of its
wavefront specified at the input. The latter is equivalent to
the specification of the so-called f number or its inverse
value called the aperture ratio [33]. Obviously, the results
can be easily generalised to the case of an arbitrary axially
symmetric laser radiation intensity distribution.

Taking into account the above said, we specify the
distribution of the vector potential away from the focus
(boundary condition) in the form

o2 2
. 0 ikor r
Ag(r)=A(r,z=0)=4 exp<f 4p0f) exp(zl%z),

A% =14° exp(ip,) = const. (14)

Here, r = (x> + yz)l/z; Py is the beam radius; ¢, is the wave
phase for z=0; f is the parameter determining of the
convergence angle of the wave front, which is related in the
quasi-optical approximation with the coordinate zg of the
focal plane (i.e the plane in which the beam radius p = pg is
minimal) by the expression zp ~ 2p,f. The choice of the
dependence of the phase factor on r in (14) determines the
converging wave front and corresponds to the standard
formulation of the problem of light-beam focusing [19]. It is
well known [34] that the real distance from the focus to a
focusing system is somewhat smaller than 2p,f, this
difference increasing with decreasing the parameter kyp,.
Note also that such a situation also takes place in the case
of a paraxial beam [19].

The expression for spectral amplitude (9) for the initial
distribution (14) in the region z > 0 takes the form

. A° b2 . 2\1/2
A(b’z):chganp —20!(02 expli(1 —b7) "koz], b < 1,

(15)

A(b 4 i b? = 1)"Phyz], b > 1
(b:2) _2ne§anp< 2“602>exp[ ( ) Tkz] > 1,
where o = 1 +i(2¢, /)" and ¢ = k(flp(;l. It is taken into
account in (15) that for the input axially symmetric
distribution A,(r) considered here, the amplitude of the
vector potential depends only on (r,z), while the spectral
amplitude of the vector potential depends only on b and z.
Then, by using expressions (7) and (15), passing to polar
coordinates in the plane (p,q), and integrating over the
polar angle, we obtain the expression for the complex
amplitude of the vector potential

1 00
A(r,z) = JO 0, (z,b)Jy(korb)db + Jl 05(z,b)Jy(korb)db, (16)

where

A% b :
0, = Texp<fm> expli(1 — b2)1/2k02];
0

A% b*
0, = 6()Tocexp<— TE&) exp[—(b* — 1)1/2koz];
and J; is the zero-order Bessel function of the first kind.
The kernels Q; and Q, describe contributions from
propagating and non-propagating waves, respectively.

By substituting 4 into (1), we obtain the components of
the complex amplitudes of the magnetic field induction

1

b =0, By =ik | 01(1 - 53 aylkor)d
0

fkoj 0,(b% = )21y (korb)db, (17)

1 00
J Q] bJ] (kol’b)db + J QZle (korb)db:| s
0 1
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where J; is the first-order Bessel function of the first kind.
Similarly, according to (12), we have the components of the
complex amplitudes of the electric field strength

r3

1 2
E - ij 0, { M W [korbJo (orb) — 2J; (orb)]
0
+ko(1 — bz)JO(korb)}db

00 2
T J Q2{ M L [leorbJy (orb) — 2J; (korb)]

! 73

+ko(1 — b2)JO(k0rb)}db,
(18)

. ixy !
=" { JO 01b[27, (korb) — korbJ(korb)]db

+ JOO sz [2.]1 (kol’b) - kol"b.]o (kol’b)} db} s
1

p

1
J 01b(1 — b2 J, (korb)db
0

1

Expressions (17) and (18) determine the configuration of the
electromagnetic field in the laser beam without the
assumption that the value of kypp is large, which is used
in the paraxial approximation. The structure of fields in the
vicinity of the focus in the case of tight focusing is
considered below in section 3.

In the case of smooth focusing (kypp > 1), integral (16)
can be considerably simplified. In this case, the angular
radiation spectrum is narrow because k| < k,, where k|, =
(k2 + kf)l/z, and because k; ~p ! < pr ', only the region
of small values of b=k, /ky <1 makes the main contri-
bution to integral (16). Then, we obtain from (16) the
approximate expression for the vector potential

2

Po r
A(tr,z) = |4 "exp | —
x( 7'32) ‘ ‘ B exp[ 2)02(2)

o) } cos[op(t,r,2)],

-1

@ = wyt — kyz + arctan [l—zZ(ZZW} +m0(z —2pyf)
1
7zr2[1 +22/(2pof) - (2zp0f)7lzﬂ (19)

2Z*p 2 (Z) — Po»

-\ L2712
omaf(-ir) 31"

where z, = kopg and 0(z) is the Heaviside function. This
expression corresponds to the so-called paraxial approx-
imation or quasi-optics approximation, which is widely
used to describe the propagation of laser beams [19].
Expression (19) gives the following expressions for the
electric field strength and magnetic field induction:

k0|A0|P0 [ r? } :
B, =0, B, = exp|— sin ¢,
' o) 2p%(z)
40 2
B, :wm[_ i } cos g, Ex — B, E, O,
2(2) 20°2)
e(zr)kol4°|xpy [ r? }
E.=—"———"exp|— cos @y, (20)
p2(2) 20%(z) :

zZ V4
¢ = @ + arctan {—7} — arctan (—*),
1 Ze — ZZ*(pof) : ZPO/

_ 2po.f
L+ (2pof)’z%

where e(zp) < 1. Note that the use of boundary condition
(14) in the paraxial limit here can be interpreted as the
specification of a Gaussian beam with the wave front
corresponding to its focusing by a thin lens [19].

Expressions (16)—(20) can be used in the case of the slow
varying amplitude of the vector potential represented in the
form A° = Ao(z— ct) [6]. Such a quasi-stationary model
describes the specified shape of a pulse characterised by the
time scale 7 greatly exceeding the laser wave period
(w7 > 1). In this case, the condition ¢t > p(zg) also should
be fulfilled [6, 7]. If these inequalities are violated, it is
necessary to seek a rigorous analytic solution of Eqn (3),
whereas here we restrict our consideration to the quasi-
stationary model.

e(zp) = ko 'pp's ze

3. Structure of the electromagnetic field
in the case of tightly focused laser radiation

When an electromagnetic pulse is tightly focused to the
region of size comparable with the radiation wavelength,
the structure of the field changes noticeably compared to
that in the case of smooth focusing described by the
paraxial approximation. This in turn changes the type of
acceleration of electrons. To interpret the results of
numerical simulation of the acceleration of electrons, we
consider first of all the laser field structure near the focus.
The numerical study of the field and trajectories of electrons
was performed by using the Mathematics applied software
package [35]. Hereafter, ko', w;!, and E, = mecag /e
(where m, and e are the electron mass and charge) are used
as the units of length, time, and electric field strength. For
definiteness, we will use the parameters /2 = 0.8 pm and
pg = 0.454 of the laser setup described in [3]. We also
assume that f=0.5 and ¢ =0.01. According to our
calculations, the value kyzp =~ 82 corresponds to these
values.

Figure 1 presents the spatial distributions of quantities
|E.|*, |E,[*, |E.’, |B,)%, and |B.]" in the focal plane. The
physical sense of the squares of moduli of the complex
amplitudes is that the value |Ex|2, for example, is related to
the value |Ex|2 averaged over the light wave period by the
expression (EZ) = |EA'X\2 /2, where the angle brackets denote
the time averaging. Note that the distribution of |l:?x|2 in the
focal plane for the selected parameters is anisotropic
(Fig. 1a). However, according to (20), this anisotropy
disappears in the paraxial limit, when E. = By and
E, =0, which means that radiation is linearly polarised
in the focal plane. This fact already demonstrates that the
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Figure 1. Distributions |E,|*, \EAJ‘\Z, |E.), |B.)>, and |l§’).\2 in the focal
plane calculated by expressions (17) and (18) for kypp = 2.83.

difference of the distribution of the laser field from the
‘paraxial’ distribution in this case is quite substantial and is
explained in turn by the fact that the value of ¢ is not small
[e(zp) = 0.35]. As in the paraxial approximation, the
distribution of |1§y|2 (Fig. le) is isotropic according to (17).

Figures 1c, d demonstrate the anisotropy of distribu-
tions of |EZ\2 and |JEA?_7|2 in the focal plane. It follows from
expressions (20) (paraxial approximation) that longitudinal
fields have a similar but not equivalent anisotropy in the
focal plane. In this case, in the paraxial approximation
(kopgp > 1) the components E. and B, are negligibly small
compared to E,. Figure 1b shows the distribution of \E | in
the focal plane One can see that the maxima of |E |° are
displaced from the z axis, as in the case of the longitudinal
components |E > and |B.|>. The maxima of distributions
|E.)* and |B.|* in the paraxial approximation for the same
laser spot radius are also displaced from the z axis but are
located closer to it. Thus, for pp = 0.45/, the distance
between the axis and maxima is less by half than it follows
from expressions (17) and (18). Note that the longitudinal
components of the fields upon tight focusing are not small
and their influence on the acceleration of charged particles
should be consistently taken into account. Because of the
anisotropy of E. and B. in the plane z = zg, the transverse
components of the Lorentz force will also have the trans-

verse anisotropy. Therefore, it should be expected that
electrons located at the initial instant in the focal plane
at the same distance from the z axis will be accelerated
differently (see section 4).

Let us also discuss the distribution of the modulus of the
Poynting vector §, and first of all the anisotropy of the
distribution, which follows from the exact solution (17),
(18). The value of |S| is related to the electric field strength
and magnetic field induction by the expression

S| = 5= { [Re(£,B: — £.8))]" + [Re(£.B; — E.B))°

L L 1/2
+ [Re(E,B; — E,B)]*} 1)
A specific feature of solution (17), (18) is that the
coordinate z = 2p, f of the focal plane decreases by ~3/
compared to the paraxial case. Figure 2 presents the
transverse and longitudinal distributions of |S| compared
to the paraxial case corresponding to (20). Thus, the
transverse distribution calculated from expressions (17) and
(18) is virtually symmetric, as follows from Fig. 2a. For
comparison, Fig. 2b demonstrates the transverse distribu-
tion of |S| for the focal spot of the same radius
(pg = 0.452) obtained by expressions (20) of the paraxial
approximation, i.e. outside the framework of its applica-
tion. Here, the value of pp corresponds to the decrease in
the value of |S| by a factor of e. In the case of tight
focusing (Figs 2c, d), the distributions of |S| are substan-
tially different: the distribution of |.§| exhibits oscillations in
front of the focal plane in Fig. 2c, whereas such oscillations
are not observed in the paraxial case in Fig. 2d. The control
calculation for the case ¢(zg) < 1 showed good agreement
between the field distributions obtained from (20) and
calculated by expressions (17) and (18).

4. Acceleration of a test electron
by a short laser pulse

We will describe the motion of an electron in the field of a
tightly focused laser pulse with the symmetric envelope by
assuming in (16) that

o o T o
A° = Ay exp(i -2 )0(1+-2 )cos? (22
Oexp(l(po)9< wor)9< +wor)cos (2wor)’

g = k()Z — ol + wyT. (22)
Here, we have a slowly varying function of the variable
koz — wyt instead of A° =const in (14) and (16). The
expression for the envelope 4° was chosen in accordance
with [4, 6]. Expression (22) corresponds to a laser pulse of
duration 7. It is assumed below that the initial position of
the electron is specified by the radius vector Ry =
{x0,90,20}- We assume that the laser pulse duration
(FWHM) is ~30fs, as for the laser used in [3], and
a =100, where a = E"™/E,, and EJ™ is the maximum
value of E, in the focus. This corresponds to the energy flux
density at the maximum mew§c3a2/(8nez)z2x 10%
W cm 2. This value has been already achieved in experi-
ments [3].

The evolution of the electron motion is described by the
Lorentz equations
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Figure 2. Distribution of the modulus of the Poynting vector in the x, y plane and the corresponding longitudinal-transverse distributions of |\S| in the
x, y plane calculated by exact expressions (17), (18), and (21) (a, ¢) and by paraxial expressions (20) and (21) (b, d) for the focal spot of the same size

kopr = 2.83; (e) distribution of |:S| on the z axis.

d
P F,+Fy Fp=—¢E, Fy=—SvxB,
dt ¢

dR P

p2 1/2
cr=(1+55) 23
=i = (V) @y

—=v=

where v, p, and y — 1 are the electron velocity, momentum,
and kinetic energy (in the units of m.c?); Fy is the force
acting on the electron from the electric field; and Fj is the
force acting on the electron from the magnetic field (v x B
force). We will study the acceleration of the test electron for
its several initial positions: the electron in the focal plane
(zg = zg), in front of the focal plane (z;, < zg), and behind
the focus (zy > zg). As follows from the study performed
below, the electron energy and the ejection angle of the
electron from the focal plane can strongly depend on its
initial position.

For definiteness, we set the initial phase equal to ¢, =0
and consider first of all the situation when the electron is
initially located in the focal plane. Consider three variants:
(1) the electron is located exactly in the focus, i.e. its initial
position is determined by the vector Ry = {0,0,zg}; (ii) the
electron is displaced with respect to the focal-spot centre
along the x axis parallel to the polarisation vector A,

Ry ={2/2,0,z¢}; and (iii) the electron is displaced along
the y axis perpendicular to the polarisation vector,
Ry, ={0,1/2,z¢}. Figure 3 presents the time evolution of
y and the electron momentum components. One can see that
the electron very quickly, during a few optical cycles (T =
2n/w,) acquires the relativistic energy. Then, being some-
what decelerated and again acquiring energy, the electron
escapes from the strong-field region and flies freely from the
focus. The characteristic acceleration time for variants i—iii,
i.e. the time during which the electron acquires half its
maximal energy is approximately 110, 20, and 110 fs,
respectively. Note that the electron acquires the minimal
energy in variant (i), but its acceleration time is also
minimal in this case. In the case of variants (i) and (ii),
the electron always moves in the (x,z) plane and is only
slightly displaced along the y axis (p, =~ 0), whereas in
variant (iii) the electron escapes with the large momentum
component p, comparable with p, and p.. In all the three
cases, the angles of deviation of the electron (y = p~p.)
from the propagation direction of the light pulse (ejection
angles) are large. Thus, these angles for variants (i), (ii), and
(iii) are approximately 30°, 45°, and 45°, respectively. The
rate of energy gain is maximal for variant (iii)
(~135 GeV mfl) and minimal for variant (ii)) (~28
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GeV m’l), while this rate for variant (i) is ~90 GeV m .
The rate of energy accumulation is defined here as
(y — 1)/|IR — Ry|, where y —1 and |R — R,| are the finite
kinetic energy in units of m.c? and the approximate distance
propagated by the electron before it begins to move by
inertia. Thus, the rate of energy gain and the energy itself
imparted to the electron located exactly at the laser focus
prove to be far from maximal. In variant (iii), the electron
acquires the maximum energy for the time ~250 fs, which
corresponds to y ~ 22. In addition, the total acceleration
time of the electron located initially at the focus [variant (i)],
i.e. the time during which it passes to the inertial motion,
exceeds acceleration times for variants (ii) and (iii) and is
equal to ~500 fs.

We can conclude as a whole that accelerated electrons
escape at large angles to the z axis. This occurs because the
longitudinal and transverse components of forces Fy and Fp
are of the same order of magnitude. The parameters of
escaping electrons (the ejection angle and energy) depend
substantially on the initial position of the electron in the
focal plane specified by the electron displacement from the
focus by the distance of the order of the wavelength only.
This is related to the extremely tight focusing of the laser
pulse, which causes a strong dependence of the parameters
of the accelerated electron on its initial position near the
focus. In particular, Fig. 3 demonstrates a considerable
difference between the energies of the accelerated electron
displaced parallel to the polarisation vector (along the x
axis) or perpendicular to it (along the y axis).

According to the simplest concepts about the motion of
an electron in the field of a plane electromagnetic wave [26],
the maximal energy of the electron should be quite high,
y ~a’/2. For the example discussed here, the electron
energy is ~2.5 GeV. However, the energy acquired by
the electron proves to be approximately 200 times lower.

The reason is that the electron accelerated at the leading
edge of the pulse rapidly leaves the focal region before being
subjected to the field at the pulse maximum. The study of
the electron acceleration in the laser field in the paraxial
approximation [6] has shown that the electron does not
accumulate the energy ~a2/2, and this value is only the
upper bound.

At the same time, the paraxial approach (for the focal
spot of the same size and the same focal intensity of laser
radiation) also gives the overestimated maximum energy of
the electron leaving the focal region. If the electron located
initially in the focal region accumulates the maximum
energy y =~ 25, the paraxial approximation gives in this
case the maximum energy that is approximately an order
of magnitude higher. Thus, the paraxial approximation in
the case of very tight focusing considerably overestimates
the real maximum energy of accelerated electrons. At the
same time, when the pulse radiation is defocused, the
acceleration efficiency can be higher, i.e. the electron energy
can be noticeably higher in the case of smooth focusing than
for very tight focusing for the same laser energy (this
situation is considered below). For example, the energy
y = 18 for the electron located initially at the focus can be
achieved by defocusing the laser pulse to pp = 5.54, when
the radiation intensity at the focus (1.5 x 10 W cm™2)
proves to be much lower than upon tight focusing.

Figure 4 presents the dependences of the energy and
ejection angle of the electron on its initial position in the
focal plane calculated for the initial positions of the electron
on the x and y axes. A comparison of these dependences
with the corresponding dependences related to acceleration
in ‘paraxial’ fields (20) demonstrates considerable differ-
ences both in electron energies and ejection angles.
Calculations show that the electron energy and ejection
angle depend nonmonotonically on the initial position of the
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Figure 3. Evolution of the momentum components (a, b, ¢) and y (d) for an electron accelerated in fields (17), (18) for the initial position of the electron
determined by variants (i) —(iii) for symmetric laser pulse of duration ~30 fs (22) with @ = 100 and k(py = 2.83. The solid, dot-and-dash, and dashed

curves corresponds to variants (i), (ii), and (iii), respectively.
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Figure 4. Dimensionless kinetic energy of the electron (a) and the angle of its ejection  (b) for a symmetric pulse as functions of the electron position
Xo in the focal plane on the x axis and the same dependences for electrons located on the y axis (c, d) (solid curves); thin curves correspond to the
electron acceleration in paraxial fields (20). The laser pulse parameters are as in Fig. 3.

electron in the focal plane. This corresponds qualitatively
but not quantitatively to the results of the paraxial
approach. These effects are related to the tight focusing
of radiation and demonstrate once more the influence of the
longitudinal field components E. and B, on the electron
acceleration. Longitudinal fields in (17), (18), and (20) have
strongly anisotropic distributions in the focal plane, which
leads to the anisotropic distribution of the electron escape
parameters 7y, .

As a whole, the following behaviour is observed: moving
away from the laser beam axis after acceleration in the focal
plane, the electron escapes at a larger angle, as in the case of
‘paraxial’ fields, although this dependence is nonmonotonic.
Note that, as the electron moves away from the beam axis in
the direction parallel to the polarisation vector, the energy
acquired by it decreases, while in the case of the electron
departure from the beam axis in the direction perpendicular
to the polarisation vector, the electron energy increases. It is
natural that in the periphery region the electron energy
decreases as the electrons moves away from the beam axis,
independently of its initial position due to a drastic decrease
in the laser radiation intensity in this region. If the electron
is initially located in the polarisation plane, it remains in this
plane during acceleration, which is typical for the paraxial
approximation.

However, the situation is different for electrons initially
located on the y axis. Being accelerated, these electrons
escape at different angles to the polarisation plane. This
differs substantially from acceleration in ‘paraxial’ fields for
kopp > 1, when the longitudinal fields E. and B. can be
approximately neglected. In this case, the electron moves
only in the plane parallel to the polarisation plane.
However, the neglect of the longitudinal electric and
magnetic field components, which was used in the simplest

approaches in the case of not too smooth focusing, for
example, in [4, 7], leads to incorrect results.

As a whole, the nonmonotonic dependences of y on X,
and y, prove to be quite smooth, unlike the dependences
obtained in the paraxial approximation. The unjustified
application of paraxial expressions when the strong inequal-
ity kopp > 1 is violated can lead to quite unusual
dependences of the electron energy and ejection angle on
the initial electron position in the focal plane, in particular,
sharp maxima (spikes) in the distribution of y and  can be
observed at some initial electron positions (Fig. 4). This
clearly demonstrates the incorrectness of using paraxial
expressions when the strong condition kgpp > 1 is not
satisfied.

The size of the focal spot, from which the electron
escapes by accumulating the relativistic energy in paraxial
fields, proves to be smaller than in the case of the correct
description of the acceleration of electrons in exactly defined
fields (Figs 4a, c). The reason is that the paraxial approx-
imation does not take diffraction effects into account
correctly enough, thereby predicting a stronger localisation
of the strong longitudinal field in the axial region than it
follows from the exact theory. Note that the average energy
of accelerated electrons initially located on the x axis proves
to be overestimated when paraxial fields are used, while the
average energy of accelerated electrons initially located on
the y axis is approximately the same as in the case of exactly
defined fields. Although the paraxial approach overesti-
mates the maximum electron energy, it should be expected
that the total number of electrons accelerated in the focal
region, for example, up to relativistic energies will be greater
in the case of exactly defined fields due to inaccurate
consideration of diffraction effects in the paraxial approx-
imation mentioned above.
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Our study shows that the parameters y and yy are not
strictly correlated for kypp 2 1. Such a correlation is typical
for the description of electrons moving in the case of smooth
focusing (kgpp > 1) in the quasi-plane wave approximation,
when cosy ~ [(y — 1)/(y + l)]l/z. The correlation is broken
with decreasing the focal-spot radius, as was already
demonstrated in the paraxial approximation [6, 14]. In
the case of tight focusing, the violation of the correlation
is even more pronounced. The absence of the correlation is
demonstrated, for example, by a comparison of the two
cases corresponding to the initial positions of the electron
Ry ={0,1/4,z¢} and Ry, = {0,0,zr + 1/2}. In both cases,
the energy y,, of electrons escaping from the focal region
achieves ~10. At the same time, the ejection angles are
substantially different (¥, ~ 50° and , ~ 20°), whereas
Y =~ 25° according to expression (49) from [6].

Strictly speaking, the conclusions made above concern
the case of an electron located initially in the focal plane. We
also studied the acceleration of an electron located initially
in planes lying both in front of the focal plane (z, < zg) and
behind it (z5 > zg) at distances of the order of the wave-
length. It was found that the electron was still accelerated
inefficiently. The general tendency is, however, that the
maximum energy accumulated by the electron located in
front of the focal plane proves to be somewhat higher than
in the case of the initial location of the electron behind the
focal plane. This conclusion is independent of the choice of
the initial phase [¢, # 0 in (22)]. This effect is explained by
the fact that the electron located initially in front of the focal
plane is subjected to strong accelerating fields for a longer
time because it is pushed forward to the focal region by the
longitudinal component of the force Fp. If the electron is
located initially behind the focal plane, it is accelerated by
weaker fields. The optimal position of the electron in front
of the focus on the z axis corresponds to the condition
zp — zg =~ 1.54; in this case, y &~ 28. Note, however, that the
coordinate of the optimal position of the electron and its
maximum energy vary somewhat depending on the initial
phase of the field, but the position in front of the focal plane
is always optimal. The same situation takes place qual-
itatively when paraxial fields with the same focal intensity
and focusing radius are used. The optimal position of the
electron in this case is determined by the condition
zp — zg =~ 1.5, and the electron energy is y ~ 200, which
considerably exceeds the energy accumulated by the elec-
tron.

To find the optimal focusing conditions providing the
maximal acceleration of electrons for the specified laser
energy (app = const = 457), we performed calculations for
different values of pp in the range between (0.5 — 20)4. In
fact, we are dealing with the defocusing of laser radiation
with the parameters pp = 0.45/ and a = 100 used above. We
found that the maximum energy of the electron located
exactly at the focus is a nonmonotonic function of the focal-
spot radius. The optimal value of the radius is pp =~ 3.51
(a =~ 13), to which the maximum energy y~ 30 of the
accelerated electron corresponds. As the focal-spot radius
is increased compared to its optimal value, the final electron
energy decreases, as would be expected, and the electron
accumulates no energy in the plane wave limit (kgpp > 1).
For small focal-spot radii (pp < 3.54), the energy of the
accelerated electron increases with increasing pp. Thus, for
the electron located in the focal plane, the case of moder-
ately tight focusing (kgpp > 1) is optimal. It should be

emphasised that because the energy accumulated by the
electron depends on its initial position, as shown above, the
optimal focusing conditions for different positions of the
electron with respect to the focal plane will be different.

A series of calculations of the electron acceleration
performed for different values of ¢, shows the noticeable
dependence of the parameters of the accelerated electron on
@, although it does not demonstrate the qualitative differ-
ence from the results presented above for ¢, = 0. A similar
dependence was obtained in [36], where the electron motion
was described in the paraxial approximation. For example,
the energy of the electron located initially in the focal plane
varies depending on the phase in the interval 1318, i.e.
within 30 %. If the initial position of the electron is
displaced by the distance </ from the focal plane,
variations in the electron energy depending on the initial
phase are also moderate, lying within 30 % —40 %. If the
electron is initially located on the laser beam axis, the
dependence of the electron energy on the initial phase for a
fixed position z; is periodic with the period m. This period is
not equal to 2m, as could appear at first glance, because only
the sign of p, changes when the phase changes by 7, whereas
the value of ¢, remains invariable. The electron energy
averaged over ¢, as a function of the coordinate z, achieves
its maximum 7y ~ 18 for zp—zy ~ A.

5. Acceleration of the test electron
by a laser pulse in a preliminarily ionised plasma

As mentioned in Introduction, a challenging idea for
obtaining high-energy electrons is to use plasmas with
highly charged ions as a target [11]. The plasma can be
produced with the help of a prepulse whose intensity is
insufficient to ionise the medium completely. The main,
more intense pulse is used to further ionise plasma by
producing electrons which are accelerated under the action
of the central part of the laser pulse (near its maximum)
rather than of its leading edge. This is explained by the fact
that the atomic potential coupling electrons with a nucleus
in highly charged ions will prevent ionisation until the laser
field strength exceeds the threshold of the tunnel ionisation
of the ion [37]. Free electrons will be initially subjected to
almost the peak accelerating field, by accumulating a high
energy before leaving the focal region. In this case, the
acceleration efficiency can be substantially increased
compared to the case considered in section 4, when the
electron escaped from the focal region before the appear-
ance of a strong field in it.

Thus, by using preliminarily ionised plasmas with highly
charged ions, it is possible to increase the electron energy
upon tight focusing. In fact, the problem of the acceleration
of the test electron in preliminarily ionised plasmas is
reduced to the problem of the electron acceleration by
the field of a laser pulse with a steep leading edge [30].

We consider in this section the acceleration of an
electron in the field of a laser pulse of the same shape
(22) and duration and intensity as in section 4. The electron
begins to move when it is already located in the laser pulse
field E=(E?+ E12 + E)'? = E, that increased to the
value sufficient to ionise the given ion, which is assumed
to have a high degree of ionisation Z. The threshold
radiation intensity required to perform the tunnelling
ionisation of the ion is proportional to Uff,n/Zz, where
U,on 1s the ionisation potential. As an example, we consider
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the acceleration of an electron produced upon photoionisa-
tion of Ti**" ion in the laser field with E > Ey, ~ 71E,. To
obtain a plasma with the Ti*** jons, it is sufficient to use a
laser prepulse with the intensity of no less than
4 x 10" W em™2. To eject the next-to-last electron of the
K shell for producing the Ti*'" ion, the laser intensity
should be 102 W cm’z, and to obtain the Ti*** ion, the
laser intensity should be 1.5 x 10% W cm ™.

Figure 5 presents the time dependences of y and the
electron momentum components for ¢, = 0. As previously,
the instant #=0 corresponds to the beginning of the
electron acceleration by the laser pulse (instant of ionisa-
tion). These dependences corresponds to the initial positions
of electrons in the focal plane Ry = {0,0, zg} [variant (iv)],
Ry ={2/3,0,zg} [variant (v)], and Ry = {0,4/3,zg} [vari-
ant (vi)]. Note that variant (iv) differs from variant (i)
considered in section 4 by a considerably stronger initial
laser field, which acts on the electron at the initial instant of
its motion. The calculated ejection angles and energies of
electrons are  ~ 30°, 16°, 8° and y =~ 10, 84, 76 for variants
(iv), (v), and (vi), respectively. The total acceleration time is
approximately the same and is ~ 100 fs. The energy of the
escaped electron in variant (iv) is even somewhat smaller
than that in variant (i) (Fig. 3), while the ejection angle is
approximately the same despite a strong electric field acting
on the electron at 7 = 0. In fact, the initial location of the
electron exactly at the laser focus is unfavourable for the
selected phase ¢, = 0. One can see from Fig. 5 that the
electron is accelerated for the time ~27 up to the energy
corresponding to y ~ 100, but then it rapidly loses its energy
due to the appearance of a decelerating field. At the same
time, the electron energy in variants (v) and (vi) is
approximately five times higher than that in variants (ii)
and (iii). Correspondingly, the ejection angles are somewhat

smaller. Note that the parameters of accelerated electrons
depend on their initial position in the vicinity of the focus
stronger than in the case discussed in section 4.

The efficiency of acceleration of an electron located
initially exactly at the laser focus increases if the initial phase
of the field is favourable, which is manifested in the increase
in the electron energy and decrease in the ejection angle.
Thus, the acceleration efficiency of the escaped electron in
the case of the favourable initial phase is several times
higher than that for the initially free electron (section 4). For
example, for ¢, = m/4 in variant (iv), we have y ~ 67 and
Y =~ 23°. For comparison, for ¢, = n/2, we have y ~ 36 u
Y~ 27°. A strong dependence of the parameters of the
escaped electron initially located at the laser focus on the
initial phase is explained by the tight focusing of laser
radiation resulting in the influence of the longitudinal field
on the electron motion near the focus. Even if the electron is
located initially exactly at the focus, where the longitudinal
field is zero, during acceleration it is subjected to the action
of the fields depending on the initial phase. Variations in this
phase in the case of tight focusing strongly change the
acceleration of the electron near the focus. At the same time,
when the initial position of the electron is displaced from the
axis (within the focal plane) by ~/ and the phase is varied
between 0 and 2w, a change in y is small (~10 %). This is
explained by the rapid escape of electrons from the focal
plane.

Calculations performed for different initial positions of
the electron on the laser axis and initial phases showed that
the energy y ~ 100 can be achieved in the case of the optimal
initial position of the electron zg —zy ~ 1.3. Thus, the
electron energy in a preionised plasma can be 3—4 times
higher than in the case of the acceleration of a free electron
(see section 4). By using expressions for the strength and
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Figure 5. Evolution of the momentum components (a, b, ¢) and y (d) for the electron accelerated in a preliminarily ionised plasma for the electron
initial positions determined by variants iv—vi and the pulse parameters as in Fig. 3. Solid, dot-and-dash, and dashed curves correspond to variants

(iv), (v), and (vi), respectively.
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induction of the fields in the paraxial approximation for the
focal spot of the same size, we obtain the overestimated (by
an order of magnitude) maximal energy of the accelerated
electron.

6. Conclusions

Because we were interested first of all in practical results
that can be achieved due to a considerable increase in the
focal intensity of laser radiation provided by the develop-
ment of modern laser technologies, we studied in this paper
a direct acceleration of a test electron in the case of the tight
focusing of laser radiation, when the paraxial approxima-
tion cannot be used for the description of the laser field at
the focus. The laser field near the focus is described by the
solution of Maxwell’s equations (16)—(18) obtained for a
femtosecond laser pulse under the condition ¢t > p(zp)
(section 3). We studied the acceleration of an electron
initially at rest by a symmetric laser pulse, when the
electron was subjected at the initial instant to the field of
the leading edge of the pulse (section 4). We also considered
the acceleration of an electron produced upon ionisation of
a highly charged ion, when the electron is produced and
accelerated ‘inside’ the laser pulse near its maximum
(section 5).

Our analysis has shown that upon acceleration of free
electrons by a tightly focused laser pulse with the symmetric
envelope, they escape at large angles to the laser beam axis.
This is explained by the fact that the longitudinal and
transverse components of the forces Frp and Fp are of the
same order of magnitude. The energy of the escaping
electron is much smaller than the energy gained by electrons
in the field of a plane electromagnetic wave (~ mec2a2/2).
In addition, a strict correlation between the electron energy
and ejection angle, which is inherent in the acceleration of
electrons in the quasi-plane wave approximation, is absent.
However, the general tendency is a decrease in the ejection
angle with increasing the electron energy. Free electrons
located initially near the focus are first accelerated by the
leading edge of the pulse and very quickly, during only a few
optical cycles, leave the focal region. This occurs before the
action of the central, intense part of the pulse on them. As a
result, despite the extremely high concentration of the laser
energy, the electrons are not accelerated efficiently. In fact,
the higher electron energies can be achieved in the case of a
moderate focusing, when electrons remained for a longer
time in the focal region. This study is of interest for analysis
of the operation and applications of modern laser setups
using the tight focusing of intense laser pulses [3].

A comparison of the results on the acceleration of an
initially free electron by short relativistic laser pulse in
exactly defined fields (17) and (18) with the results obtained
in the paraxial approximation for the laser field (20) shows
that the latter leads to the overestimated value of the
maximum energy of accelerated electrons. At the same
time, for an ensemble of electrons located near the focus,
the number of electrons accelerated up to relativistic
energies (y > 2) proves to be larger than that in the paraxial
approximation. It follows from the calculations that the
energy of escaping electrons is maximal when electrons are
located in front of the focus at the instant /= 0. Our
calculations also confirm the conclusion [6] about the quasi-
isotropic escape of electrons from the focal region. In
particular, this means that the electrons, which were initially

located on the axis perpendicular to the polarisation
direction, do not move in the plane parallel to the polar-
isation plane, as was asserted in paper [17], where
longitudinal fields were neglected in calculations. Thus,
our study confirms the necessity of a correct consideration
of longitudinal fields.

According to the idea proposed in [11], we considered
the acceleration of photoelectrons from the preliminarily
ionised plasma. Unlike [11], we studied the acceleration of
electrons in the exactly defined fields rather than ‘paraxial’
fields. As a whole, as in the case of paraxial fields, our
calculations confirm the conclusion that the electron pro-
duced upon ionisation acquires a considerably greater
energy than the initially free electron. The calculations of
the parameters of electrons produced upon ionisation of
Ti®*" ions confirm the validity of the use of the scheme
proposed earlier.
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