
Abstract. It is shown that the exact analytic solution of the
problem of stationary parametric frequency conversion,
including second harmonic generation and parametric
ampliécation in a medium with quadratic nonlinearity, in
the approximation of three interacting modes is reduced to
the solution of three independent systems of nonlinear
equations. Each of these systems consisting of two nonlinear
Schr�odinger equations is related to other systems only by the
boundary conditions and describes a multicomponent cnoidal
wave containing two noninterfering components. The problem
can be represented in this way because the competition of two
processes (the merging and decomposition of quanta)
proceeding simultaneously on the second-order nonlinearity
can be described through the effective cascade cubic non-
linearity.

Keywords: frequency conversion, quadratic nonlinearity, cascade
cubic nonlinearity, nonlinear Schr�odinger equation, multicompo-
nent cnoidal wave.

1. Introduction

Despite numerous papers devoted to the analysis of
multicomponent self-consistent periodic solutions of the
nonlinear Schr�odinger equation (NSE), Korteweg ë de
Vries, sin-Gordon, and other equations [1 ë 7], such
solutions in laser physics have been considered so far as
somewhat exotic. The matter is that, although these
equations in optics have the universal nature because
they take into account the lowest (cubic) terms in the
expansion of nonlinear polarisation in the wave equation, it
is generally accepted that solutions of this type ë multi-
component cnoidal waves (MCWs) are important for a
limited scope of problems. These are one-dimensional (1D)
problems of the soliton-like propagation of pulse trains in
optical ébres [3 ë 6, 8] and of parametric generation of pulse
trains upon synchronous pumping [9] taking dispersion into
account, as well as two (2D)- and three-dimensional (3D)
problems of the nondiffractive propagation of beams with a
special periodic transverse structure through photorefrac-

tive crystals [7, 10] and crystals with quadratic nonlinearity
[11]. At the same time, MCWs have become quite popular
in other éelds of physics. The concept of MCWs is widely
used in nonlinear hydrodynamics [1, 12], plasma physics
[2, 13], in the description of coupled wave packets ë
quasiparticles (excitons, biexcitons, superconducting pairs,
etc.) formed by electronic wave functions, in the physics of
1D chains (conjugated polymers) [14] and 2D planes
(ferromagnetics and high-temperature superconductors)
[15].

We will show below that NSE solutions in the form of
MCWs play a key role in a classical problem of nonlinear
optics ë the description of parametric up- and down
frequency conversion, including second harmonic genera-
tion (SHG) and parametric ampliécation in nonlinear
crystals, i.e. media with the quadratic nonlinearity [16].

2. Parametric conversion and nonlinear
Schr�odinger equations

Consider a simple case of the collinear interaction of three
plane monochromatic waves. Two of them have the fun-
damental frequency o1;2 � o, the amplitudes A1;2 and the
wave vectors k1;2, while the third wave has the second
harmonic frequency o3 � 2o, the amplitude A3, and the
wave vector k3. The waves propagate from the plane z � 0
along the z axis in a medium with quadratic nonlinearity (a
nonlinear crystal). By neglecting anisotropy and absorption,
we assume that the nonlinear crystal occupies the half-space
z5 0 and the so-called type II parametric process (the oee-
interaction) is realised in it. This process is described by the
well-known system of equations for the amplitudes of three
coupled waves (modes) [16]

qA1

qz
� ÿibA �2A3 exp�ÿiDz�; (1a)

qA2

qz
� ÿibA �1A3 exp�ÿiDz�; (1b)

qA3

qz
� ÿi2bA1A2 exp�iDz�: (1c)

Here, b is the nonlinear coupling constant and D �
k1 � k2 ÿ k3 is the wave mismatch. System of equations
(1) has two integrals of motion

I1�z� � I2�z� � I3�z� � I10 � I20 � I30; (2a)
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I1�z� ÿ I2�z� � I10 ÿ I20; (2b)

where Ii(z) � Ai(z)A
�
i (z) is the variable proportional to the

energy êux density of the ith wave (i � 1ÿ 3), which we will
simply call the intensity; Ii 0 � Ii(z � 0). The érst integral
describes the law of conservation of the energy density êux,
while the second one represents the so-called Manley ë
Rowe relations [16].

By using (2), we can reduce system (1) to three closed
nonlinear equations describing self-consistent periodic sol-
utions for the complex amplitudes Ai(z) of the waves
interacting in the nonlinear crystal. For this purpose, by
making the change of variables

Aj�z� � ~Aj�z� exp�ÿiajz� (3)

and selecting constant a1ÿ3 so that

a1 � a2 ÿ a3 ÿ D � 0; (4)

we rewrite system (1) in the form

q ~A1

qz
ÿ ia1 ~A1 � ÿib ~A �2 ~A3; (5a)

q ~A2

qz
ÿ ia2 ~A2 � ÿib ~A �1 ~A3; (5b)

q ~A3

qz
ÿ ia3 ~A3 � ÿi2b ~A1

~A2: (5c)

Then, after some simple transformations taking relation
(2a) into account, we obtain for the amplitude ~A1

~A2 of the
nonlinear polarisation wave at the frequency o3 the
equation

q� ~A1
~A2�

qz
� i�a1 � a2� ~A1

~A2

ÿ ib�I10 � I20 � I30 ÿ ~A3
~A �3 � ~A3: (6)

By differentiating (5c) and substituting (6) into the result
obtained, we énd the expression

q2 ~A3

qz 2
ÿ i�a1 � a2 � a3�

q ~A3

qz
� 2b 2

��I10 � I20 � I30 ÿ �a1 � a2�a3 ÿ ~A3
~A �3 � ~A3 � 0: (7)

Note that the second term in (7) can be easily eliminated.
For this purpose, taking into account that a choice of the
speciéc values of a1ÿ3 is not yet unique [see expression (4)],
we should set

a1 � a2 � D=2; (8a)

a3 � ÿD=2: (8b)

Then, we obtain énally

q2 ~A3

qz 2
� 2b 2�I10 � I20 � I30 �

D 2

8b 2
ÿ ~A3

~A�3� ~A3 � 0; (9)

i.e. the closed equation for the complex amplitude ~A3 in the
NSE form. Note that because (9) is the second-order
equation, we are interested only in the solutions satisfying
the boundary condition

q ~A3

qz

����
z�0
� ÿiD

2
~A30 ÿ i2b ~A10

~A20; (10)

which follows from Eqn (5c). Here, ~Ai 0 � ~Ai(z � 0).
By repeating the procedure of successive transformations

described above, we obtain the equation

q� ~A�1 ~A3�
qz

� ÿi�a1 ÿ a3� ~A�1 ~A3

� ib�ÿ2I10 � 4I20 � I30 ÿ 4A2A
�
2� ~A2 (11)

for the amplitude ~A �1 ~A3 of the nonlinear polarisation wave
at the frequency o2. Then, by differentiating (5b) taking
(11) into account and selecting a1ÿ3 so that

a1 ÿ a3 � D=2; (12a)

a2 � D=2; (12b)

we énd the similar closed NSE for the amplitude ~A2

q2 ~A2

qz 2
ÿ b 2�ÿ2I10 � 4I20 � I30 ÿ

D 2

4b 2
ÿ 4 ~A2

~A�2� ~A2 � 0: (13)

As in the previous case, we are interested only in the
solutions of (13) satisfying the boundary condition

q ~A2

qz

����
z�0
� i

D
2

~A20 ÿ ib ~A �10 ~A30; (14)

which follows from Eqn (5b).
Taking the symmetry of the problem into account, the

closed NSE for the amplitude ~A1 can be now obtained by a
simple interchange of subscripts 1$ 2. Therefore,

q2 ~A1

qz 2
ÿ b 2�4I10 ÿ 2I20 � I30 ÿ

D2

4b 2
ÿ 4 ~A1

~A�1� ~A1 � 0 (15)

for

a2 ÿ a3 � D=2; (16a)

a1 � D=2 (16b)

and the boundary condition

q ~A1

qz

����
z�0
� i

D
2

~A10 ÿ ib ~A �20 ~A30: (17)

The possibility of reducing system (1) to the three closed
NSEs for the complex amplitudes ~A1ÿ3 is amazing at érst
glance. Indeed, it is well known that periodic and aperiodic
NSE solutions, the so-called cnoidal waves and solitons
expressed in terms of the Jacobi elliptic functions sn x, cn x
and dn x [17] and hyperbolic functions cosh x and tanh x
(where x is a variable proportional to z), describe the self-
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consistent solutions of numerous problems in a variety of
éelds in physics [3 ë 6]. The possibility of writing equations
in the NSE form is usually attributed to the presence of
cubic nonlinearity in the medium [3 ë 6]. However, there is
no paradox in this case because, by having passed to closed
equations (9), (13), and (15), we in fact simply began to
describe the result of competition of two processes simulta-
neously proceeding on the second-order nonlinearity
[merging (o1 � o2 ! o3) and decomposition (o3 ! o1�
o2) of quanta] in terms of an efécient cascade cubic
nonlinearity [18].

Note also that NSEs (9), (13) and (15) obtained above
are, however, related to each other by boundary conditions
(10), (14) and (17), and, which is more important, the éeld
amplitudes ~Ai in these equations are complex in the general
case. Therefore, unlike many other nonlinear problems
described by NSEs, the dependences of the moduli and
phases of the éeld amplitudes ~Ai on the coordinate z in our
case can be very complicated. Because of this, the known
analytic solutions of NSEs [16, 19], which are proportional
to the Jacobi functions sn x, cn x and dn x, do not exhaust all
the possible solutions of the initial problem (1) but
determine only those branches of these solutions for which
the phase of the amplitude ~Ai is éxed at least for one of the
interacting waves, while the phase of the amplitude Ai

changes linearly during the wave propagation according
to (8b), (12b) or (16b).

To avoid this problem, we can separate the real and
imaginary parts of the amplitudes ~Ai(z) of all the waves
interacting in a nonlinear crystal by introducing the three
pairs of real functions ~A0i(z) and ~A00i (z), so that

~Ai�z� � ~A0i�z� � i ~A00i �z�: (18)

By substituting now (18) into (9), (13) and (15) and into
boundary conditions (10), (14) and (17), we obtain the three
systems of equations for the real functions ~A0i(z) and ~A00i (z)

q2 ~A03
qz 2
� 2b 2

�
I10 � I20 � I30 �

D2

8b 2

ÿ�� ~A03�2 � � ~A003�2 �
�

~A03 � 0; (19a)

q2 ~A003
qz 2
� 2b 2

�
I10 � I20 � I30 �

D2

8b 2

ÿ�� ~A03�2 � � ~A003�2 �
�

~A003 � 0; (19b)

q2 ~A02
qz 2
ÿ b 2

�
ÿ2I10 � 4I20 � I30 ÿ

D2

4b 2

ÿ 4�� ~A02�2 � � ~A002�2 �
�

~A02 � 0; (20a)

q2 ~A002
qz 2
ÿ b 2

�
ÿ2I10 � 4I20 � I30 ÿ

D2

4b 2

ÿ 4�� ~A02�2 � � ~A002�2 �
�

~A002 � 0; (20b)

q2 ~A 01
qz 2

ÿ b 2

�
4I10 ÿ 2I20 � I30 ÿ

D2

4b 2
ÿ

ÿ 4�� ~A01�2 � � ~A001�2 �
�

~A01 � 0; (21Â)

q2 ~A001
qz 2
ÿ b 2

�
4I10 ÿ 2I20 � I30 ÿ

D2

4b 2

ÿ 4�� ~A1�2 � � ~A001�2 �
�

~A001 � 0; (21b)

and the boundary conditions corresponding to these tree
systems

~A030 � Re ~A30; (22a)

~A0030 � Im ~A30; (22b)

q ~A03
qz

����
z�0
� D

2
~A0030 � 2b� ~A010 ~A0020 � ~A0010 ~A020�; (22c)

q ~A003
qz

����
z�0
� ÿD

2
~A030 ÿ 2b� ~A010 ~A020 ÿ ~A0010 ~A0020�; (22d)

~A020 � Re ~A20; (23a)

~A0020 � Im ~A20; (23b)

q ~A02
qz

����
z�0
� ÿD

2
~A0020 � b� ~A010 ~A0030 ÿ ~A0010 ~A030�; (23c)

q ~A002
qz

����
z�0
� D

2
~A020 ÿ b� ~A010 ~A030 � ~A0010 ~A0030�; (23d)

~A010 � Re ~A10; (24a)

~A0010 � Im ~A10; (24b)

q ~A01
qz

����
z�0
� ÿD

2
~A0010 � b� ~A020 ~A0030 ÿ ~A0020 ~A030�; (24c)

q ~A001
qz

����
z�0
� D

2
~A010 ÿ b� ~A020 ~A030 � ~A0020 ~A0030�: (24d)

It is easy to verify that each of systems (19), (20) and (21) is
still closed (with an accuracy to its boundary conditions)
and is formed by a pair of coupled NSEs describing a two-
component cnoidal wave with the noninterfering compo-
nents ~A0i(z) and ~A00i (z). Because now both these components
are real, there is no need to present here the procedure for
constructing the self-consistent periodic and aperiodic
analytic solutions for them because this procedure is
similar to that described in detail in our paper [10].

3. Peculiarities of analytic MCW solutions

Note that in situations when we are not interested in
variations in phases of all the interacting waves during their
propagation, i.e. in all the particular dependences ~A0i(z) and
~A00i (z), it is sufécient to obtain the analytic solution only for
one of the systems of equations (19), (20) or (21). The
dependences of the intensities of the two remaining waves
on z can be found from integrals (2). For example, by
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solving the system of equations (19) taking (2) into account,
we can immediately obtain

I1�z� �
1

2

�
2I10 � I30 ÿ � ~A03�z��2 ÿ � ~A003�z��2

�
; (25a)

I2�z� �
1

2

�
2I20 � I30 ÿ � ~A03�z��2 ÿ � ~A003�z��2

�
; (25b)

and by solving systems (20) and (21), we obtain

I1�z� � I10 ÿ I20 � � ~A02�z��2 � � ~A002�z��2; (26a)

I3�z� � 2I20 � I30 ÿ 2f� ~A02�z��2 � � ~A002�z��2g; (26b)

and

I2�z� � I20 ÿ I10 � � ~A01�z��2 � � ~A001�z��2; (27a)

I3�z� � 2I10 � I30 ÿ 2f� ~A01�z��2 � � ~A001�z��2g, (27b)

respectively.
Note also that, as shown in [10], the functional type of

any of the solutions of systems (19), (20) and (21) is limited
by the fundamental solutions of the érst- and second-order
Lame equations [20] , i.e. ~A0i(z) and ~A00i (z) should be pro-
portional to one of the elliptic functions sn x, cn x, dn x,
dn2x� g �2�1;5 , sn x cn x, sn x dn x and cn x dn x (here, g�2�1;5 are
constants, see [10]). In the cases when the two MCW
components ~A0i(z) and ~A00i (z), obtained by solving some of
the systems (19), (20) or (21), are proportional to the same
elliptic function, the solution is degenerate and is reduced to
the MCW of the so-called Manakov type [10]. In this case,
the phase of the amplitude ~Ai for one of the MCW
components remains constant, while the phase of Ai changes
linearly during the wave propagation according to (8b),
(12b) or (16b). Note that due to the orthogonality of the
fundamental solutions of the Lame equation, the MCWs
describing the solution of the problems in which the
intensity of any of the interacting éelds in a nonlinear
crystal vanishes at some points on the z axis should have
namely this type.

In fact, the solutions of this type are usually presented in
all papers devoted to the search for exact analytic solutions
of the problem under study [16, 19]. If this is not the case,
the type of MCWs due to boundary conditions (22), (23)
and (24) begins to change with changing the relation
between the initial (at the nonlinear crystal input) phases
Dj0 � j10 � j20 ÿ j30 of the complex amplitudes Ai 0 of all
the three interacting waves. This is not surprising because
this process is coherent and therefore it is extremely sensitive
to the phases of the initial éelds Ai 0 in the cases when they
are present at the nonlinear crystal input (in the plane
z � 0). To solve the initial problem in this case by tradi-
tional methods is apparently difécult [16, 19] because it is
difécult to imagine the form of a closed equation describing
the variation in the phase, which is determined by the
arctangent of the ratio of two different elliptic functions.

Note also that the types of solutions of system (19) on
the one hand and systems (20) and (21) on the other are
fundamentally different, which determines the admissible
character of MCWs of the Manakov type for waves A3 and
A1;2, respectively. This can be explained with the help of a

simple analogy with the problem of self-action on the so-
called Kerr nonlinearity, in which system (19) corresponds
to the propagation of radiation through a medium with a
defocusing nonlinearity, whereas systems (20) and (21)
correspond to the propagation of radiation in a medium
with a focusing nonlinearity (see, for example, [10]).

4. Examples of analytic solutions

As an example of the realisation of the approach described
above, we will analyse one of the known simplest solutions
of problem (1) corresponding to the Manakov MCW and
describing SHG in the absence of a wave with the
amoplitude A3 at the frequency o3 � 2o at the nonlinear
crystal input (i.e. for I30 � 0). Taking this into account, we
will seek the solution of NSE (9) in the form

~A3 � B3sn �gz�: (28)

By substituting (28) into (9), we obtain at once two
necessary conditions

g 2�1� k 2� � 2b 2

�
I10 � I20 �

D2

8b 2

�
; (29a)

g 2k 2 � b 2B3B
�
3 : (29b)

Here, k is the modulus of elliptic functions sn x, cn x and
dn x, whose value should lie in the interval 15 k5 0.

The situations when k! 0 and k! 1 correspond to the
limiting cases of harmonic [sn (gz)! sin (gz), cn (gz)!
cos (gz); dn (gz)! 1] and aperiodic [sn (gz)! tanh (gz);
cn (gz)! 1=cosh (gz), dn (gz)! 1=cosh (gz)] solutions. This
gives

g 2 � b 2

�
2�I10 � I20� �

D 2

4b 2
ÿ B3B

�
3

�
; (30a)

k 2 � B3B
�
3

2�I10 � I20� � D 2=�4b 2� ÿ B3B
�
3

: (30b)

Note that in the case under study, we always have
15 k 2 5 0 because, taking (2a) into account, the obvious
relation

I10 � I20 5B3B
�
3 (31)

is always fulélled. In this case, the oscillations of ~A3(z)
cannot be harmonic (k � 0) because for B3B

�
3 � 0, we

obtain, taking (25) into account, the trivial solution

I1�z� � I10; (32a)

I2�z� � I20; (32b)

A3�z� � A30 � 0: (32c)

It follows from (10) that A10 � 0 or A20 � 0, i.e. at least one
of the éelds at the frequency o in the plane z � 0 is also
absent. At the same time, the solution in form (28) can be
aperiodic (k � 1), but only when energy transfer to the
mode at frequency o3 is complete (I10 � I20, B3B

�
3 � 2I10)

and the SHG process is synchronous (D � 0).
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The amplitude B3 can be now found from condition (10),
which, taking (30a) into account, immediately gives

�B3B
�
3 �2 ÿ 2

�
I10 � I20 �

D 2

8b 2

�
B3B

�
3 � 4I10I20 � 0: (33)

This leads to the énal result

I1�z� � I10 ÿ
1

2

�
I10 � I20 �

D 2

8b 2
ÿ
�
�I10 ÿ I20�2

��I10 � I20�
D 2

4b 2
�
�

D 2

8b 2

�2 �1=2�
sn2�gz�; (34a)

I2�z� � I20 ÿ
1

2

�
I10 � I20 �

D 2

8b 2
ÿ
�
�I10 ÿ I20�2

��I10 � I20�
D 2

4b 2
�
�

D 2

8b 2

�2 �1=2�
sn2�gz�; (34b)

A3�z� �
�
I10 � I20 �

D 2

8b 2
ÿ
�
�I10 ÿ I20�2 � �I10 � I20�

� D 2

4b 2
�
�

D 2

8b 2

�2 �1=2�1=2

sn�gz� exp
�
i
D
2
z

�
(34c)

for

g 2 � b 2

�
I10 � I20 �

D 2

8b 2
�
�
�I10 ÿ I20�2

��I10 � I20�
D 2

4b 2
�
�

D 2

8b 2

�2 �1=2�
; (35)

k 2 �
�
I10 � I20 �

D 2

8b 2
ÿ
�
�I10 ÿ I20�2 � �I10 � I20�

� D 2

4b 2
�
�

D 2

8b 2

�2 �1=2���
I10 � I20 �

D 2

8b 2

�
�
�I10 ÿ I20�2 � �I10 � I20�

D 2

4b 2
�
�

D 2

8b 2

�2 �1=2�
: (36)

It is quite natural that solution (34) coincides with the
known analytic solution for the simplest SHG case consid-
ered above [16, 19]. However, we emphasise once more that
our method allows us to obtain the analytic solution of the
initial problem (1) for any boundary conditions. Let us
illustrate this by the second example describing another
solution of problem (1), which also corresponds to the
Manakov MCW in the case of SHG with a complete
depletion of the éeld with the amplitude A2 due to transfer
of its energy to the éeld with the amplitude A3. Taking this
into account, we will seek the solution of Eqn (13) in the
form

~A2 � B2cn �gz�: (37)

By substituting (31) into (13), we also obtain the two
requirements

g 2 � b 2

�
2I10 ÿ 4I20 ÿ I30 �

D 2

4b 2
� 4B2B

�
2

�
; (38a)

g 2k 2 � 2b 2B2B
�
2 ; (38b)

which, taking the boundary conditions into account, give
immediately the required solution

I1�z� � I10 ÿ I20sn
2�gz�; (39Â)

A2�z� � A20cn �gz� exp
�
ÿiD

2
z

�
; (39b)

I3�z� � 2I20

�
D 2

8b 2I10
� sn 2�gz�

�
(39c)

for

g 2 � 2b 2I10

�
1� D2

8b 2I10

�
1ÿ I20

I10

��
; (40a)

k2 � I20

��
I10 �

D 2

8b 2

�
1ÿ I20

I10

��
: (40b)

It follows from (39) that the solution of this type exists only
for I10 5 I20 and the amplitude A30 of the wave at frequency
o3 at the nonlinear crystal input can be arbitrary small only
upon synchronous interaction (D! 0). In this case, when
the intensities of the waves with amplitudes A1 and A2 are
equal at the nonlinear crystal input (I10 � I20), solution (39)
becomes aperiodic (k � 1) and

I1�z� � I2�z� �
I10

cosh2�gz� ; (41a)

I3�z� �
D 2

4b 2
� 2I10 tanh

2�gz� (41b)

for

g 2 � 2b 2I10: (42)

As far as we know, analytic solution (39) of initial problem
(1) has not been reported in the literature so far.

In conclusion, we consider another quite interesting
exact analytic solution of problem (1), which we have
not found in the literature, and which also corresponds
to MCWs of the Manakov type in the case of SHG with an
incomplete depletion of the éeld with the amplitude A2 due
to transfer of its energy to the éeld with the amplitude A3.
Taking this into account, we will seek the solution of
Eqn (13) in the form

~A2 � B2dn �gz�: (43)

By substituting (43) into (13), we obtain the two require-
ments

g 2k 2 � b 2�2I10 ÿ 4I20 ÿ I30 �
D 2

4b 2
� 4B2B

�
2 �; (44a)

k 2�g 2 ÿ 2b 2B2B
�
2 � � 0: (44b)

Equality (44b) can be fulélled either in the trivial case
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k 2 � 0; (45)

or when the condition

g 2 � 2b 2B2B
�
2 (46)

is fulélled. In the érst case, taking (44a) and condition (14)
into account, we obtain

I1�z� � I10; (47a)

I2�z� � I10

�
1� 8b 2I10

D 2

�
; (47b)

I3�z� � 2I10

�
1� D 2

8b 2I10

�
; (47c)

which corresponds to the regime of the so-called parametric
bleaching, i.e. to the situation in which the rates of
processes o1 � o2 ! o3 and o3 ! o1 � o2 are the same.
In the second case, taking boundary conditions (14) into
account, we have

I1�z� � I10cn
2�gz� � D 2

8b 2I10
�I20 ÿ I10�sn 2�gz�; (48a)

A2�z� � A20dn �gz� exp
�
ÿiD

2
z

�
; (48b)

I3�z� �
D 2

4b 2I10
I20cn

2�gz� � 2I10

�
1� D2

8b 2I10

�
sn 2�gz� (48c)

for

g2 � 2b 2I20; (49a)

k 2 � I10
I20
ÿ D 2

8b 2I10

I20 ÿ I10
I20

: (49b)

It follows from the requirement 04 k4 1 and boundary
condition (14) that this new solution of the initial problem
(1) exists only under the condition

I10 4 I20 4 I10

�
1� 8b 2I10

D 2

�
: (50)

5. Conclusions

We have shown that the exact analytic solution of the
problem of stationary parametric frequency conversion,
including SHG and parametric ampliécation in a medium
with quadratic nonlinearity, in the approximation of three
interacting modes is reduced to the solution of three
independent systems of nonlinear equations. Each of these
systems consisting of two NSEs is related to other systems
only by its boundary conditions and describes a MCW
containing two noninterfering components. This very
efécient approach is based on the description of the
competition between processes of merging (o1 � o2 !
o3) and decomposition (o3 ! o1 � o2) of quanta, which
proceed simultaneously on the second-order nonlinearity in
terms of the efécient cascade cubic nonlinearity.

In this case, due to well-developed methods for solving
such systems of equations, the analytic solutions of the

initial problem in the MCW form for any boundary
conditions are constructed by using standard algorithms
based on a énite set of elliptic functions ë the fundamental
solutions of the érst- and second-order Lame equations.
Moreover, the approach described in the paper allows one
not only to classify such solutions, by simplifying consid-
erably a priori choice of elliptic functions that are the most
convenient for each particular situation, but also to displace
them along the z axis, thereby changing the type of
boundary conditions. The latter circumstance allows the
use of the same solution form both for SHG and parametric
ampliécation. For example, the shift of the argument
x! x� K of elliptic functions by a quarter of a period
(where K is the complete elliptic integral of the érst kind) is
described by the transformation [17]

sn x! cn x
dn x

; cn x! ÿ�1ÿ k 2�1=2 sn x
dn x

;

dn x! �1ÿ k 2�1=2 1

dn x
:

Note also that solutions in the MCW form can be
extrapolated to the half-space z < 0 (by élling in fact this
half-space with the same nonlinear medium) and then set
into motion at a constant velocity v along the z axis (by
performing the transformation z! Z, where Z � zÿ vt is
the running coordinate, and t is the time). This follows (at
least without the consideration of the problem of correctness
of using multipole expansions at relativistic velocities [21])
directly from the invariance of initial equations (1) (in fact,
the wave equation) with respect to the Lorentz trans-
formations. Therefore, the question arises of whether
these solutions are `true' soliton-like solutions or we are
dealing here with a mathematical analogy. It seems that the
answer to this question is not simple because the presence of
a defocusing nonlinearity in one of the pairs of coupled
NSEs (19) prevents the `collision' of two aperiodic solutions
moving at different velocities v1;2, which could separated by
an inénite distance after the collision.
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